• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 5
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 22
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Síntese, caracterização e estudo da ação antituberculose e citotóxica de hidrazonas derivadas de isoniazida e de seus complexos de cobre(II) e gálio(III) / Synthesis, characterization and study of antituberculosis and cytotoxic action of isoniazid-derived hydrazones and its copper(II) and gallium(III) complexes

Gisele dos Santos Silva Firmino 30 January 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / No presente trabalho é descrita a obtenção de hidrazonas derivadas de isoniazida e de seus complexos de cobre(II) e gálio(III) candidatos a protótipos de fármacos antituberculose e antitumoral. Para investigar o efeito da modificação química sobre as bioatividades do fármaco isoniazida, foram preparados cinco derivados hidrazônicos: 2-piridinocarboxaldeído isonicotinoil hidrazona (HPCIH, 1), 2-acetilpiridina isonicotinoil hidrazona (HAPIH, 2), 2-benzoilpiridina isonicotinoil hidrazona (HBPIH, 3), 2-piridinoformamida isonicotinoil hidrazona (HPAmIH, 4) e 2-pirazinoformamida isonicotinoil hidrazona (HPzAmIH, 5), sendo o composto HPAmIH (4) inédito. Análises de ponto de fusão, espectroscopia de infravermelho (IV), espectrometria de massas, ressonância magnética nuclear (RMN), análise elementar e termogravimetria confirmaram a obtenção e pureza das hidrazonas. Foi determinada ainda a estrutura de HPCIH (1) por difração de raios X de monocristal. Essas moléculas foram efetivas em inibir o crescimento de cepas de micobactérias Mycobacterium tuberculosis H37Rv (ATCC 27294) nas concentrações testadas, com exceção de HPzAmIH (5). As hidrazonas HAPIH (2) e HBPIH (3) foram os compostos orgânicos mais ativos (concentração inibitória mínima, CIM = 0,625 g/mL), apresentando atividade antimicobacteriana apenas duas vezes inferior à do fármaco isoniazida.Quanto à ação contra células tumorais, as hidrazonas HAPIH (2) e HBPIH (3) foram as mais potentes contra as linhagens OVCAR-8 (tumor de ovário - humano), HCT-116 (tumor de cólon - humano) e SF-295 (glioblastoma humano), com inibições de 34,98 a 98,63% do crescimento celular, na concentração de 5 g/mL, enquanto que a isoniazida não foi efetiva contra as linhagens estudadas. Para avaliar o efeito da coordenação a metais sobre a atividade farmacológica das hidrazonas, foram sintetizados os complexos de cobre(II) e gálio(III), sendo todos inéditos: [Cu(HPCIH)Cl2]∙H2O (6), [Cu(HAPIH)Cl2]∙H2O (7), [Cu2(HBPIH)2Cl2]Cl2∙4H2O(8), [Cu(HPAmIH)Cl2]∙H2O (9), [Cu(HPzAmIH)Cl2]∙H2O (10), [Ga(HPCIH)2](NO3)32H2O (11), [Ga(HAPIH)(APIH)](NO3)22H2O (12), [Ga(HPAmIH)(PAmIH)](NO3)22H2O(13) e [Ga(HPzAmIH)(PzAmIH)](NO3)2H2O (14). Os complexos foram caracterizados por espectroscopia de IV, análise elementar, condutivimetria, RMN e espectroscopia eletrônica. Em geral, os complexos também demonstraram ação contra M. tuberculosis, sendo que apenas para 6, 9, 10 e 14 foi verificada melhor atividade em relação às hidrazonas livres. Os complexos metálicos foram tanto quanto ou mais ativos contra as células tumorais OVCAR-8, HCT-116 e SF-295 do que as hidrazonas livres. Merecem destaque os complexos 79 e 12, que apresentaram inibição de crescimento celular de 72,2100%, na concentração de 5 g/mL. Os resultados demonstram portanto que em geral os compostos 114 são menos ativos do que a isoniazida contra M. tuberculosis, enquanto que a modificação química do fármaco, formando-se hidrazonas com posterior complexação cobre(II) e gálio(III) constituíram uma estratégia interessante na obtenção de compostos mais potentes contra células tumorais / In this work we describe the synthesis of isoniazide-derived hydrazones and their copper(II) and gallium(III) complexes candidates for drug prototypes to treat antituberculosis and cancer. Five hidrazone derivatives have been prepared in order to investigate the effect of chemical modification on the bioactivities of the drug isoniazid: 2-pyridinecarboxaldehyde isonicotinoyl hydrazone (HPCIH, 1), 2-acetylpyridine isonicotinoyl hydrazone (HAPIH, 2), 2-benzoylpyridine isonicotinoyl hydrazone (HBPIH, 3), 2-pyridineformamide isonicotinoyl hydrazone (HPAmIH, 4) and pyrazineformamide 2-isonicotinoyl hydrazone (HPzAmIH, 5), being HPAmIH (4) unpublished. Melting point, infrared spectroscopy (IR), mass spectrometry, nuclear magnetic resonance (NMR), elemental analysis and thermogravimetric analysis has confirmed the formation of hydrazones as well as its purity. All compounds have been effective in inhibiting the growth of Mycobacterium tuberculosis H37Rv (ATCC 27294) mycobacteria strains in the tested concentrations, except HPzAmIH (5). The hydrazones HAPIH (2) and HBPIH (3) have been the most active compounds (minimum inhibitory concentration, MIC = 0.625 g/mL), which have presented the antimycobacterial activity only two times lower than isoniazid drug. In relation to the action against tumor cells, the hydrazones HAPIH (2) and HBPIH (3) have been the most potent compounds against the cell lines OVCAR-8 (ovarian tumor - human), HCT-116 (colon tumor - human) and SF-295 (glioblastoma - human), with inhibitions from 34.98 to 98.63% of cellular growth at a concentration of 5 g/mL. Isoniazid, in turn, hasnt been effective against all cell lines studied. To evaluate the effect of coordinating the metal on the pharmacological activity of hydrazones, complexes of copper (II) and gallium (III) have been synthesized, being all novel compounds: [Cu(HPCIH)Cl2]∙H2O (6), [Cu(HAPIH)Cl2]∙H2O (7), [Cu2(HBPIH)2Cl2]Cl2∙4H2O(8), [Cu(HPAmIH)Cl2]∙H2O (9), [Cu(HPzAmIH)Cl2]∙H2O (10), [Ga(HPCIH)2](NO3)32H2O (11), [Ga(HAPIH)(APIH)](NO3)22H2O (12), [Ga(HPAmIH)(PAmIH)](NO3)22H2O (13) and [Ga(HPzAmIH)(PzAmIH)](NO3)2H2O (14).The complexes have been characterized by IR spectroscopy, NMR, elemental analysis, conductivimetry and electron spectroscopy. In general, these complexes have also shown action against M. tuberculosis, whereas only 6, 9, 10 and 14 have demonstrated better activity than the free hydrazones. The metal complexes have been equally or more active against human the cancer cell lines OVCAR-8, HCT-116 and SF-295 than the free hydrazones. The complexes 79 and 12 deserve to be highlighted, which have shown 72.2100% inhibition of cell growth in the 5 g/mL concentration. The results therefore demonstrate that in general compounds 114 are less active than isoniazid against M. tuberculosis, while chemical modification of the drug, forming hydrazones and subsequent complexation with the copper (II) and gallium(III) metal ions have been an interesting strategy to obtain compounds more potent against tumor cells
12

Synthesis, Structural Elucidation and Anticancer Activity Studies on Metal Complexes of Nucleic Acid Constituents and their Derivatives

Sivakrishna, Narra January 2016 (has links) (PDF)
Metal-nucleic acid interaction studies have been gaining attention due to their biological and chemical importance. Nucleic acids are negatively charged bio-polymers and neutralization of their negative charge is essential for the stability and function. In the cells, organic positive ions (positively charged amino acids and polyamines) and some of the metal ions (e.g. Na+, K+, Mg2+...etc) neutralize the charge of nucleic acids. Whereas, interactions of some metal ions (e.g. Cd2+, Hg2+…etc) with nucleic acids destabilize the structure. The stability and conformation of nucleic acids alter due to metal interactions. Further, metal interactions with nucleic acids can bring changes in conformation of ribose, H-bonding and π-π stacking interactions. To understand the metal interactions with nucleic acids, various spectroscopic techniques are being used. However, X-ray crystallographic technique is advantageous over all other spectroscopic techniques since it gives thorough detail of coordination mode and structure. However, crystallization of large molecules like nucleic acids with metals is associated with great difficulty. In order to simplify the problem, nucleic acid constituents and derivatives have been used as model systems for metal-nucleic acid interactions. Nucleic acid constituents and derivatives are multidentate ligands. Moreover, binding mode of metal with nucleic acid constituents and derivatives depends on various factors include pH, temperature, type of metal…etc. Further, understanding of metal nucleic acid interactions can aid to develop new anticancer drugs targeting nucleic acids. For example, cisplatin is a platinum based anticancer drug, which coordinates to N(7) of guanine in DNA brings cell death. There have been several reports in literature on the complexes of metal nucleic acid constituents. However, much more research is warranted for thorough understanding of metal-nucleic acid interactions. On the other hand, nucleic acid constituents and derivatives are used extensively in anticancer drug development. Some of nucleic acid constituent derivatives, 5-Fluro uracil and 6-Mercaptopurine, are currently in use for the treatment of colorectal cancer and leukemia, respectively. Moreover, cisplatin is a platinum based anticancer drug used in the treatment of various types of cancers. However, use of these drugs for long time poses severe side effects and drug resistance. Most of the side effects are due to non bio-compatibility of drugs. To overcome problems associated with present anticancer drugs, bio-compatible metal based anticancer drug development could be an attractive and alternative strategy. To address this, in this study, we report synthesis of a number of new metal complexes of nucleic acid constituents and their derivatives and characterization by various spectroscopic techniques. Also, the interactions of Ni, Cu and Zn ions with various nucleic acid constituents and their derivatives have been elucidated by single crystal X-ray crystallography. Interestingly, Ni, Cu and Zn ions showed various coordination modes to nucleic acid constituents and their derivatives. Further, anticancer studies were carried out for all these complexes in various cancer cell lines. Several complexes showed better cytotoxicity than the well-known drug cisplatin. My thesis work is divided into five parts based on the nature of molecules. I. Synthesis, X-ray crystallographic and anticancer studies on metal (Zn/Ni) complexes of guanine (G) based nucleic acid constituents In order to understand (Zn/Ni) interactions with guanine based nucleic acid constituents and their anticancer activity, several (Zn/Ni) complexes of 5′-GMP, 5′-IMP and hypoxanthine complexes were prepared. The synthesized complexes are (1) [Zn (5′-GMP)]n.11H2O, (2) [Ni (5′-GMP)2 Na2 (μ-OH2)3 (H2O)8].2H2O, (3) [Ni (5′-IMP)2Na2 (H2O)12]n.5H2O and (4) [Ni (hx)2 (H2O)4] Cl2 [Here 5′-GMP = 5′-Guanosine Mono Phosphate, 5′-IMP = 5′-Inosine Mono Phosphate and hx = Hypoxanthine). These complexes were characterized by various spectroscopic and X-ray crystallography techniques. Complex 1: The X-ray structure revealed that zinc is coordinated to 5′-GMP through N(7) position of purine and phosphate moieties, the uncoordinated water molecules are making interesting complicated network of hydrogen bonds in the unit cell. The geometry of zinc coordination centre is distorted tetrahedral. Fascinatingly, zinc exhibited two different coordination environments. In one case, all phosphate oxygens participated in coordination with zinc. In second case, N(7) position of purine and phosphate oxygens participated in coordination with zinc. Moreover, zinc formed a coordination polymer with 5′-GMP. The conformation of ribose changed upon zinc interaction with 5′-GMP from C(3′)-endo to C(2′)-endo, these results suggest that zinc interaction with nucleic acids may change their conformation. Complex 1 is stabilized in solid state by H-bonding and π-π stacking interactions. Complex 2: In complex 2, 5′-GMP is coordinated to nickel through N(7) position of purine but phosphate moiety did not take place in coordination. Two molecules of 5′-GMP and four water molecules coordinated to nickel and formed distorted octahedral geometry. The charge of complex 2 is balanced by sodium coordination to sugar hydroxyl groups and nickel coordinated water molecules. The geometry of sodium coordination centre is distorted octahedral. The conformation of 5′-GMP is altered due to nickel interaction. Moreover, complex 2 is stabilized in solid state by H-bonding and π-π stacking interactions. Complex 3: Nucleotide 5′-IMP also showed similar coordination modes like 5′-GMP towards nickel, where N(7) position of purine participated in coordination with nickel and phosphate moieties did not coordinate to nickel. Two molecules of 5′-IMP and four water molecules participated in coordination with nickel and formed distorted octahedral geometry. Interestingly, the charge of complex 3 is balanced by sodium coordination to sugar hydroxyl moieties. The geometry of sodium coordination centre is distorted octahedral. Moreover, nickel is forming coordination polymer with 5′-IMP. Further, nickel interactions with 5′-IMP brought changes in the conformation of ribose moiety. These results suggest that nickel interactions with nucleic acids may bring changes in their conformation. Interestingly, right hand helical structure formation is observed for complex 3 in crystal structure. Further, the chirality of complex 3 was confirmed by circular dichroism studies. Complex 3 is stabilized by both H-bonding and π-π stacking interactions in solid state. Complex 4: Surprisingly, nickel is coordinated to hypoxanthine through N(9) position of purine in acidic conditions and not through N(7) or N(3). The coordination mode of nickel with hypoxanthine is different from complexes 2 and 3. Two hypoxanthine moieties are coordinated to nickel in axial manner. The geometry of nickel coordination centre is distorted octahedral. Further, complex 4 is stabilized by H-bonding and π-π stacking interactions in solid state. Cytotoxicity studies of complexes 1-4 on various cancer cell lines revealed that complex 1 is better cytotoxic than complexes 2-4. Moreover, complex 1 exhibited comparable cytotoxicity with cisplatin on various cells lines and induced apoptotic cell death. II. Synthesis, structure elucidation and anticancer activity of copper-adeninyl complexes In order to understand copper-adenine interactions and anticancer activity, several copper complexes of adenine derivatives were prepared. Here, most of adenine derivatives used in complex preparation is known as cycline dependent kinase inhibitors. Prepared copper complexes are 1) [Cu (N6-benzyl adenineH)2Cl3 ].Cl.2H2O, 2) [Cu (2-amino-N6-benzyladenineH)2Cl3].(2-amino-N6-benzyl adenineH)2.3Cl.5H2O, 3) [Cu (α-(Purin-6-ylamino)-p-toluenesulfonamide H)2Cl4], 4) [Cu (kinetinH)2 Cl3].Cl.2H2O, 5) [Cu (N-1H-purine-6-yl-alanineH) (H2O) Cl3].H2O, 6) [(Cu (N-1H-purine-6-yl-alanineH)2Cl3).(Cu(N-1H-purine-6-yl-alanineH)Cl)2(μ-Cl)2].Cl.4H2O. All these complexes were characterized by X-ray crystallography and various spectroscopic techniques. Complex 1: Synthesis and X-ray structures of complex 1 were reported in literature. However, anticancer activity of complex 1 is not known. Therefore, it was prepared based on the reported lines to assess the anticancer activity. The anticancer activity of complex 1 was studied on various cell lines. Interestingly, complex 1 exhibited better cytotoxicity than cisplatin in MCF-7 and MDA-MB-231 cell lines. Complex 2: Ligand 2-amino-N6-benzyl adenine is coordinated to copper through N(9) of purine. In addition, two uncoordinated 2-amino-N6-benzyl adenine, three chloride and five water molecules are making it as a co-complex with uncoordinated ligands. The copper coordination centre adopted distorted trigonal bipyramidal geometry [3+2] with τ = 0.671 (α-β/60, where α, β are two greatest valence angles of coordination centre). Further, complex 2 is stabilized in solid state by both H-bonding and π-π stacking interactions. H-bonding is observed between N-H···Cl. Uncoordinated water molecules formed six-member rings with H-bonding network. The π-π stacking interactions are observed between phenyl and purine moieties. Complex 2 exhibited better cytotoxicity than 2-amino-N6-benzyl adenine and copper salt. Complex 3: Ligand α-(2-Amino purin-6-ylamino)-p-toluene sulfonamide is coordinated to copper through N(9) position and protonation is observed at N(3) position. Two molecules of α-(2-Amino purin-6-ylamino)-p-toluene sulfonamide and four chloride ions are forming a distorted octahedral geometry with copper. Complex 3 is stabilized by N-H···Cl and N-H···O H-bonding. Further, complex 3 exhibited better cytotoxicity than cisplatin in U251 cells. Complex 4: Kinetin is coordinated to copper through N(9) position of purine. Protonation is observed on N(3) position and balanced the charge of complex 4. Two molecules of kinetin and three chloride moieties are coordinated to copper and forming distorted trigonal bipyramidal geometry [3+2] with τ = 0.431. Moreover, complex 4 is stabilized by both H-bonding interactions and π-π stacking interactions. The H-bonding of complex 4 is observed between N-H···Cl and C-H···Cl. The π-π stacking interactions are observed between furanyl aromatic ring and imidazole ring of purine. Complex 4 exhibited better cytotoxicity than kinetin and copper salt. Complex 5: The N-1H-purine-6-yl-alanine is coordinated to copper through N(9) position of purine. Complex 5 crystallizes in the monoclinic space group P21 with Z=4. One molecule of N-1H-purine-6-yl-alanine, two chloride ions and one water molecule coordinated to copper. The geometry of copper coordination centre is distorted trigonal bipyramidal [3+2] with Cu(1) τ1 = 0.613 and Cu(2) τ2= 0.671. Protonation is observed on N(3) position. Complex 5 is stabilized by both H-bonding and π-π stacking interactions. The H-bonding of complex 5 is observed between N-H···Cl and C-H···Cl. The π-π stacking interactions are observed between imidazole moieties. Moreover, complex 5 exhibited better cytotoxicity than N-1H-purine-6-yl-alanine and copper salt. Complex 6: Complex 6 is a co-complex, where two different complexes are co-crystallized. The crystal structure of complex 6 indicate that geometry of Cu(1) and Cu(2) coordination centre are distorted trigonal bipyramidal [3+2] with τ1 = 0.3261 and τ2 = 0.8, respectively. Two molecules of N-1H-purine-6-yl-alanineH are coordinated to Cu(2) through N(9) position of purine. The N-1H-purine-6-yl-alanineH ligands are arranged in geometry in trans manner with respect to axis passing through the N(9) atom and copper. Whereas, in second co-complex two N-1H-purine-6-yl-alanineH are coordinated to Cu(1) through N(9) and N(3) position of purine. Both Cl(1) and Cl(3) coordinated to copper are forming a bridge between copper. In addition, one uncoordinated chloride and two water molecules are present in the unit cell. Complex 6 is stabilized in crystalline state by both H-bonding and π-π stacking interactions. Complex 6 exhibited better cytotoxicity than complex 5, N-1H-purine-6-yl-alanine and copper salt on various cell lines. III. Synthesis, structure and anticancer activity of zinc complexes of adenine derivatives In order to understand zinc interaction with adenine and their anticancer activity, several zinc complexes of adenine derivatives were prepared. The prepared complexes are (1) [Zn (N6-benzyladenineH).Cl3].2H2O, (2) [Zn2 (μ -N6-benzyladenine)2( μ-H2O)2(H2O)4].(OTf)4.H2O, (3) (N6-benzyl adenineH2) [ZnCl4].2H2O, (4) [Zn (2-Amino-N6-Benzylpurine)Cl3).2-Amino-N6-BenzylpurineH).EtOH, (5) (2-Amino-N6-(3-picoyl)purineH2)[ZnCl4].H2O, (6)(2-Amino-N6-(3-picoyl)purineH2)[ZnCl4].HCl, (7) (2-Chloro-N6-(3-picoyl) purineH2) [ZnCl4].H2O, (8) ((α-Purine-6-ylamino)-p-toluene sulfonamide H)2[ZnCl4].2HCl.2H2O. Complex 1: The N6-benzyl adenine is coordinated to zinc through nitrogen atom N(7) of purine. One molecule of N6-benzyl adenine and three chloride ions are coordinated to zinc and forming distorted tetrahedral geometry. Interestingly, the nitrogen atom N(1) of purine is protonated. Complex 1 exhibited strong H-bonding interactions between N-H···O, N-H···Cl and N-H···N. The complex 1 showed better cytotoxicity than N6-benzyl adenine and ZnCl2. Complex 2: The N6-benzyl adenine formed a dimeric complex with zinc at neutral pH. Complex 2 crystallizes in the triclinic space group P-1with Z=1. Two Zn metal centres are bridged by two molecules of N6-benzyl adenine through nitrogen atoms N(3) and N(9) of purine forming a di-nuclear complex, further two zinc centres is bridged by two water molecules and other two water molecules on the other side completing the octahedral coordination for the Zn. Complex 2 is stabilized in crystalline state by H-bonding interactions. The H-bonding of complex 2 is observed between O-H···O and N-H···O. Complex 2 exhibited better cytotoxicity than N6-benzyl adenine and ZnCl2 on various cell lines. Complex 3: The N6-benzyladenine is not coordinated to the Zn metal at acidic pH and forms an ion-pair complex. Ion-pair complex 3 crystallizes in the monoclinic space group Cc with Z=4. The protonation is observed at N(1) and N(9) atoms of N6-benzyl adenine. The positive charges on N6-benzyl adenine is neutralized by the presence of two chloride ions in [ZnCl4]2-. Alternative arrangement of cation and anion arrangement is observed in complex 3. Water channel formation is observed between cation and anion arrangement. Moreover, complex 3 is stabilized by H-bonding and π-π stacking interactions. H-bonding is observed in complex 3 between N-H···Cl, O-H···Cl and N-H···O. The π-π stacking interactions in complex 3 are observed between benzyl six-membered aromatic ring and purine six-membered rings. Complex 3 exhibited better cytotoxicity than N6-benzyl adenine and ZnCl2 in various cell lines. Complex 4: Ligand 2-amino-N6-benzyl adenine resulted in a different structure from N6-benzyl adenine with zinc. One molecule of 2-amino-N6-benzyl purine is coordinated to zinc through nitrogen atom N(7) of purine. Surprisingly, one uncoordinated positively charged 2-amino-N6-benzyl purineH is present in the asymmetric unit, which is balancing the charge of zinc complex 4. Protonation is observed on N(3A) atom. Interestingly, tautomeric proton is located on coordinated purine of N(9) atom and uncoordinated purine of N(7A) atom. Geometry of ‘Zn coordination centre’ is distorted tetrahedral. Complex 4 is stabilized by H-bonding and π-π stacking interactions. The H-bonding interaction in complex 4 is observed between N-H···O and N-H···Cl. The π-π stacking interactions are observed between five-member aromatic rings and six-membered aromatic rings. Complex 4 exhibited better cytotoxicity than 2-amino-N6-benzyl purine and ZnCl2 in various cell lines. Complex 5: 2-Amino-N6-(3-picoyl) purine forms an ion-paired complex with zinc at acidic pH. The protonation in 2-Amino-N6-(3-picoyl) purine is observed at N(3) of the purine and picolyl N(14). The positive charge of 2-Amino-N6-(3-picoyl) purine is neutralized by the presence of two chloride ions in [ZnCl4]2-. Moreover, complex 5 exhibited both H-bonding interactions and π-π stacking interactions. The H-bonding interactions are observed between N-H···Cl, N-H···N, O-H···Cl, N-H···O and C-H···N. One uncoordinated water molecule is present in unit cell, which is involved in H-bonding with both ions. The π-π stacking interactions are observed between purine five-membered rings and purine six-membered ring. Complex 5 exhibited better cytotoxicity than cisplatin in HeLa and MDA-MD-231 cells. Complex 6: 2-Amino-N6-(3-picoyl) purine formed similar structure of complex 5 in strong acidic conditions. Complex 6 exhibited both H-bonding and π-π stacking interactions. The H-bonding in complex 6 is observed between N-H···Cl and N-H···N. In complex 6, the π-π stacking interactions are observed between pyridyl six-membered rings and purine six-membered rings. Purine-Purine stacking interactions are observed between purine six-membered ring and five-membered rings. Complex 6 exhibited better cytotoxicity than cisplatin in HeLa, MCF-7, MDA-MB-231 and HeLa-Dox cells. Interestingly, complex 6 arrested (G2/M phase) cell cycle in HeLa and MCF-7 at higher concentration and induced apoptosis. Complex 7: 2-chloro-N6-(3-picoyl) purine formed ion-pair complex with zinc. The protonation in 2-chloro-N6-(3-picoyl) purine is observed on N(9) of purine and N(14) of picolyl atoms. The positive charge of 2-chloro-N6-(3-picoyl) purine is neutralized by the presence of two chloride ions in [ZnCl4]2-. Complex 7 is stabilized by both H-bonding and π-π stacking interactions. The H-bonding is observed between N-H···Cl, O-H···Cl and N-H···O in complex 7. The π-π stacking interactions are observed between pyridyl six-membered ring and six-membered ring of purine. Complex 7 exhibited better cytotoxicity than cisplatin in HeLa, MCF-7, U251 and HeLa-Dox cells. Complex 8: (α-Purine-6-ylamino)-p-toluene sulphonamide formed ion-pair complex with zinc. Ion-pair complex 8, crystallizes in the triclinic space group P-1 with Z=4. The protonation on (α-Purine-6-ylamino)-p-toluene sulfonamide is observed at N(9) and N(1) atoms of purine. The positive charge of the ligand is neutralized by two chloride ions present in [ZnCl4]2 -. The H-bonding is observed between N-H···Cl, O-H···N, N-H···O and O-H···Cl. The π-π stacking interactions are observed between benzyl rings of benzene sulfonamide moieties. Complex 8 exhibited better cytotoxicity than cisplatin in HeLa, MCF-7 and HeLa-Dox cells. Moreover, these complexes induced apoptotic cell death as revealed by Annexin V/PI assay, FACS and microscopy analysis. IV. Synthesis, structure and cytotoxicity studies of zinc complexes of uracil-1-acetic acid and N6-adeninebutyric acid To understand the zinc interactions with nucleic acid constituent derivatives and their anticancer activity, zinc complexes of uracil-1-acetic acid and N6-adeninebutyric acids were prepared. (1) [Zn (uracil-1-acetato)2 (H2O)4] and complex (2) [Zn (N6-adeninebutyric acid)2 (H2O)2]) were characterized by X-ray crystallography and various spectroscopic techniques. The X-ray structures showed acetate moiety coordination to zinc rather than purine and pyrinidine moities. The geometry of zinc coordination centre is distorted octahedral. Complexes 1 and 2 are stabilized by non-covalent interactions. Anticancer studies of these complexes showed better cytotoxicity than cisplatin in MDA-MB-231cells. V. Copper (II) complexes of 6-mercaptopurine, hypoxanthine and uracil-1-acetic acid: Synthesis, structures, antioxidant and potent anticancer activity To delineate copper interactions with purine and pyrimidine derivatives and anticancer activity, several copper complexes of 6-mercaptopurine, hypoxanthine and uracil-1-acetic acid were prepared. The prepared complexes are (1) [Cu (6-MP) (bpy) Cl2], (2) [Cu (hx) (phen) Cl2].H2O and (3) [Cu (bpy)2 (uracil-1-acetato)].6H2O)] (bpy = 2, 2′-bipyridine, phen = 1, 10-phenanthroline, 6-MP = 6-Mercapto Purine and hx = hypoxanthine). All these complexes were chracterized by various spectroscopic and X-ray diffraction techniques. Complexes 1 and 2 crystallize in the monoclinic space groups Cc and C2/c, respectively with eight molecules in the unit cell. All the complexes 1-3 adopt distorted trigonal bipyramidal geometry. Surprisingly, most potent coordination sites of sulfur in 6-MP and acetato in uracil-1-acetato did not participate in coordination with copper. In complexes 1 and 2, the N(7) position of purine and the N(3) position of pyrimidine in complex 3 are coordinated with copper. All these complexes 1-3 are stabilized by non-covalent interactions in solidstate. Anticancer studies showed better cytotoxicity for copper complexes than cisplatin, 6-meracptopurine and temozolomide in various cell lines. Interestingly, copper complexes of 6-MP and hypoxanthine showed antioxidant activity and reduced ROS level in cells. In contrast, copper complex of uracil-1-acetic acid produced ROS in cells. In contrast, copper hypoxanthine showed better cytotoxicity than cisplatin in HeLa-Dox cells. All these complexes induced apoptotic cell death. In summary, we studied the interaction of metal-nucleic acid constituents and derivatives by X-ray crystallography. We found new coordination modes for Ni, Cu and Zn towards various nucleic acid constituents and derivatives. Some of these complexes showed better cytotoxicity than well known anticncer drugs cisplatin, 6-meracptopurine and temozolomide. Complex [Cu (hx) (phen) Cl2].H2O showed better cytotoxicity than cisplatin in doxorubicin resistant (HeLa-Dox) cells. These complexes induced apoptotic cell death in various cancer cells. All in all, the results of present studies/findings could form a potential lead for the development of newer anticancer therapeutics.
13

[pt] ESTUDO DA FORMAÇÃO DE COMPLEXOS BINÁRIOS E TERNÁRIOS DO ÍON CU(II) COM ALGUNS DIPEPTÍDEOS E AMINOÁCIDOS / [en] STUDY OF THE FORMATION OF BINARY AND TERNARY COMPLEXES OF CU(II) ION WITH SOME DIPEPTIDES AND AMINO ACIDS

FELIPE DE SOUZA DIAS DOS SANTOS VILHENA 08 November 2021 (has links)
[pt] Um grande número de complexos de cobre(II) tendo como ligantes compostos biológicos têm sido utilizados como modelos para o entendimento das diversas reações que ocorrem in vivo. Diversas desordens neurodegenerativas são caracterizadas pela presença anormal de proteínas no sistema nervoso central que possuem uma alta afinidade pelo íon cobre(II). Essa coordenação do metal à proteínas favorece o processo de deposição e associado ocorre a produção em excesso de espécies reativas de oxigênio (ROS - reactive oxygen species). A metionina é um antioxidante presente no meio biológico que pode se ligar ao cobre e prevenir os danos oxidativos. No presente trabalho, estudamos em solução aquosa, os complexos binários Cu(II):L1 e Cu(II):L2 e o complexo ternário Cu(II):L1:L2 (L1 = GlyGly e L2 = Met) a 25 °C e μ = 0,1 mol L-1. As constantes de formação dos complexos foram calculadas utilizando o programa BEST7. Os modos de coordenação dos ligantes nos complexos de Cu(II) foram investigados por cálculos DFT utilizando o programa TURBOMOLE 6.1. Foi utilizado o funcional PBE empregando a aproximação da resolução da identidade (RI-J) e com o conjunto de bases def2-SVP. Os efeitos do solvente foram incluídos através do modelo de solvatação COSMO. Os resultados DFT mostraram comportamento bidentado da glicilglicina na espécie Cu(H-1GlyGly), sem a participação do oxigênio do grupo carboxílico na esfera de coordenação do metal. O modelo de cluster-contínuo foi utilizado para obter, para os complexos mais estáveis, as energias livres em fase gasosa e em solução aquosa através dos métodos DFT: B3LYP/def2/TZVP e PBE0/def2-TZVP. Para os complexos mais estáveis foi incluída a segunda camada de solvatação (36 moléculas de água) para verificar a interferência de moléculas explícitas do solvente nos cálculos. Os resultados mostraram comportamento monodentado do ligante glicilglicina no complexo [Cu(GlyGly)(H2O)36]+, sem a participação do oxigênio peptídico na esfera de coordenação do centro metálico. Observou-se que os clusters assumem diferentes geometrias: octaédrica ([Cu(Met)(H2O)36]+), pirâmide de base quadrada ([Cu(GlyGly)(H2O)36]+, [Cu(H-1GlyGly)(H2O)36], [Cu(Met)(OH)(H2O)36], [Cu(Met)(OH)2(H2O)36]-, [Cu(HGlyGly)(Met)(H2O)36], [Cu(GlyGly)(Met)(H2O)36]- e [Cu(GlyGly)(Met)(OH)(H2O)35]2-) e quadrado distorcido ([Cu(GlyGly)(OH)(H2O)35]-). Todos os clusters apresentaram uma configuração eletrônica do estado fundamental t6 2g d22 d1 x2-y2 o que concorda com a distorção Jahn-Teller. Nas doenças neurodegenerativas o pH fisiológico é levemente acidificado. Na espécie ternária [Cu(GlyGly)(Met)(H2O)36]-, que é formada em pH 7, o enxofre não faz parte da esfera de coordenação do cobre, indicando que ele pode exercer uma ação antioxidante em sistemas biológicos sob condições de estresse oxidativo. / [en] A great number of copper(II) complexes that have as ligands biological compounds have been used as models for the understanding of several reactions that occur in vivo. Several neurodegenerative disorders are characterized by the abnormal presence of proteins in the central nervous system that have a high affinity for the copper(II) ion. This coordination of metal to proteins favor the deposition process and associated the production in excess of reactive oxygen species (ROS) occurs. The methionine is an antioxidant present in the biological medium that could bind to copper and prevent the oxidative damages. In the present work we studied in aqueous solution the binary complexes Cu(II):L1 and Cu(II):L2 and the ternary complex Cu(II):L1:L2 (L1 = GlyGly and L2 = Met) at 25C and μ = 0.1 mol L-1. The binding constants of the complexes were determined using the BEST7 program. The coordination modes of the ligands in the Cu(II) complexes were investigated by DFT calculation using the TURBOMOLE 6.1 program. The PBE functional was used employing the resolution of identity approximation (RI-J) and with the def2-SVP basis set. The solvent effects were included through the COSMO solvation model. The DFT results showed bidentate behavior of the glycylglycine in the Cu(H-1GlyGly) species without the participation of the oxygen from the carboxylic group in the metal coordination sphere. The cluster-continuum model was used to obtain for the more stable complexes the free energies in gas phase and in the aqueous solution through DFT methods: B3LYP/def2/TZVP and PBE0/def2-TZVP. The second solvation shell (36 water molecules) was included in the more stable complexes to verify the interference of solvent explicit molecules in the calculation. The results showed monodentate behavior of the glycylglycine ligand in the complex [Cu(GlyGly)(H2O)36]+, without the participation of the peptidic oxygen in coordination sphere of metallic centre. It was observed that the clusters assume different geometries: octahedral ([Cu(Met)(H2O)36]+), square pyramid ([Cu(GlyGly)(H2O)36]+, [Cu(H-1GlyGly)(H2O)36], [Cu(Met)(OH)(H2O)36], [Cu(Met)(OH)2(H2O)36]-, [Cu(HGlyGly)(Met)(H2O)36], [Cu(GlyGly)(Met)(H2O)36]- and [Cu(GlyGly)(Met)(OH)(H2O)35]2-) and distorted square ([Cu(GlyGly)(OH)(H2O)35]-). All the clusters presented an electronic configuration of ground state t6 2g d22 d1 x2-y2 that agree with the Jahn-Teller distortion. In the neurodegenerative diseases the physiologic pH is slightly acidified. In the ternary species [Cu(GlyGly)(Met)(H2O)36]-, that is formed in pH 7, the sulfur is not part of the coordination sphere of copper, indicating that it could exert an antioxidant action in biological systems under oxidative stress conditions.
14

Studies On The Photocytotoxic Effect Of Ferrocene-Conjugated Copper(II) Complexes

Goswami, Tridib Kumar 12 1900 (has links) (PDF)
The present thesis deals with different aspects of the chemistry and photo-biology of various ferrocene-conjugated metal complexes, their interaction with double helical DNA, DNA photocleavage and photo-enhanced cytotoxicity in visible light. Phenyl analogues of the active complexes have been synthesized and used for comparison in biological assays. Chapter I provides an introduction to the potential of metal complexes as photochemotherapeutic agents with special reference to organometallic compounds. A brief overview of Photodynamic Therapy (PDT) as a new modality of cancer treatment has been given. Various modes of non-covalent interactions of small molecules with duplex DNA are mentioned. Recent reports on the metal-based photocytotoxic and DNA cleaving agents including photoactivatable organometallic compounds are discussed. The objective of the present investigation is also presented in this chapter. Chapter II presents the synthesis, characterization, structure, DNA binding, DNA photocleavage, photocytotoxicity, mechanism of cell death and cellular localization of ferrocene-conjugated L-methionine reduced Schiff base Cu(II) complexes of phenanthroline bases. To explore the role of the ferrocenyl moiety the phenyl analogues of the ferrocenyl complexes are synthesized and used as controls for comparison purpose. Chapter III deals with the photo-induced DNA cleavage and photo-enhanced cytotoxicity of ferrocene-appended L-tryptophan Cu(II) complexes of heterocyclic bases. The synthesis, characterization, structural comparisons, DNA binding, DNA photocleavage, photocytotoxic activity and cell death mechanism in visible light are discussed in detail. Chapter IV describes the synthesis, characterization and structure of ferrocenylmethyl-L-tyrosine Cu(II) complexes of phenanthroline bases. The complexes are evaluated for DNA binding, DNA photocleavage and photocytotoxic activity in visible light. The cellular localization of the complexes and the mechanism of cell death induced by the complexes are also discussed. Chapter V presents the photocytotoxic effect of ferrocene-conjugated L-amino acid reduced Schiff base Cu(II) complexes of anthracenyl/pyrenyl imidazophenanthroline. The ability of the complexes to bind to double helical DNA and cleave it under photo-illumination conditions is described. Evaluation of the complexes as photochemotherapeutic agents and comparison with currently clinically available drug Photofrin are presented. The mechanism of cancer cell death and cellular localization of the complexes are studied by fluorescence microscopy. Chapter VI describes the synthesis, characterization and photochemotherapeutic efficacy of Cu(II) complexes having ferrocene-appended L-amino acid reduced Schiff base ligands and the naturally occurring polyphenol curcumin. Stabilization of curcumin by complexation to metal for improved photodynamic effect in cancer cells is described with comparison to the parent dye and clinically used drug Photofrin. The mechanism of cell death induced by the copper complexes and their localization in cancer cells are also presented. Finally, the summary of the dissertation and conclusions drawn from the present investigations are presented. The references in the text have been indicated as superscript numbers and compiled at the end of each chapter. The complexes presented in this thesis are represented by bold-faced numbers. Crystallographic data of the structurally characterized complexes are given in CIF format in the enclosed CD (Appendix-I). Due acknowledgements have been made wherever the work described is based on the findings of other investigators. Any unintentional omission that might have happened due to oversight or mistake is regretted.
15

Komplexy 2,6-bis[(N-methylpiperazin-1-yl)methyl]-4-formyl fenolu / Complexes of 2,6-bis[(N-methylpiperazine-1-yl)methyl]-4-formyl phenol

Marečková, Vendula January 2012 (has links)
Thirteen new dinuclear complexes of ligand 2,6-bis[(N-methylpiperazine-1- yl)methyl]-4-formyl phenol (L1) were prepared. Copper(II) and palladium(II) salts were used for the syntheses. Following compounds were prepared: [Cu2L1(CH3COO)2]ClO4, [Cu2L1(CF3COO)2(ClO4)][Cu2L1(CF3COO)2]ClO4, [Pd2L1(CH3COO)3], [Pd2L1(CF3COO)3], [Pd2L1(Cl)4]. These ones should act as anion receptors. The acetates were exchanged for phenylphosphinates in the case of the complex cation [Cu2L1(CH3COO)2]+ and the structure of [Cu2L1(phPO2H)2]ClO4 was obtained. Geometry of coordination shell of Cu2+ - ions in prepared complexes is tetragonal pyramid. The UV-VIS spectroscopy was used for study of interactions in system of the ligand - metal - anion. Interactions between the ligand and metals in oxidation state 2 were observed as well as interactions between the complex [Cu2L1(CH3COO)2]ClO4 and sodium salts.
16

An interplay between the spin density distribution and magnetic superexchange interactions: a case study of mononuclear [nBu4N]2[Cu(opooMe)] and novel asymmetric trinuclear [Cu3(opooMe)(pmdta)2](NO3)2·3MeCN

Abdulmalic, Mohammad A., Aliabadi, Azar, Petr, Andreas, Krupskaya, Yulia, Kataev, Vladislav, Büchner, Bernd, Hahn, Torsten, Kortus, Jens, Rüffer, Tobias 08 April 2014 (has links) (PDF)
Treatment of the diethyl ester of o-phenylenebis(oxamic acid) (opbaH2Et2, 1) with 5/6 equivalent of MeNH2 in abs. EtOH results in the exclusive formation of the ethyl ester of o-phenylene(N′-methyl oxamide)(oxamic acid) (opooH3EtMe, 2) in ca. 50% yield. Treatment of 2 with four equivalents of [Me4N]OH followed by the addition of Cu(ClO4)2·6H2O gave [Me4N]2[Cu(opooMe)]·H2O (3A) in ca. 80% yield. As 3A appears to be a hygroscopic solid, the related [nBu4N]+ salts [nBu4N]2[M(opooMe)]·H2O (M = Cu (3B), Ni (4)) have been synthesized. By addition of two equivalents of [Cu(pmdta)(NO3)2] to a MeCN solution of 3B the novel asymmetric trinuclear complex [Cu3(opooMe)(pmdta)2](NO3)2 (5) could be obtained in ca. 90% yield. Compounds 2, 3A, 3B, 4 and 5 have been characterized by elemental analysis and NMR/IR spectroscopy. Furthermore, the solid state structures of 3A in the form of [Me4N]2[Cu(opooMe)]·MeOH (3A′), 3B in the form of [nBu4N]2[Cu(opooMe)] (3B′), 4 in the form of [nBu4N]2[Ni(opooMe)]·1.25H2O (4′) and 5 in the form of [Cu3(opooMe)(pmdta)2] (NO3)2·3MeCN (5′), respectively, have been determined by single-crystal X-ray diffraction studies. By controlled cocrystallization, diamagnetically diluted 3B (1%) in the host lattice of 4 (99%) in the form of single crystals have been made available, allowing single crystal EPR studies to extract all components of the g-factor and the tensors of onsite CuA and transferred NA hyperfine interaction. Out of these studies the spin density distribution of the [Cu(opooMe)]2− complex fragment could be determined. The magnetic properties of 5 were studied by susceptibility measurements versus temperature. An intramolecular J parameter of −65 cm−1 has been obtained, unexpectedly, as 5 should possess two different J values due to its two different spacers between the adjacent CuII ions, namely an oxamate (C2NO3) and an oxamidate (C2N2O2) fragment. This unexpected result is explained by a summarizing discussion of the experimentally obtained EPR results (spin density distribution) of 3B, the geometries of the terminal [Cu(pmdta)]2+ fragments of 5 determined by X-ray crystallographic studies and accompanying quantum chemical calculations of the spin density distribution of the mononuclear [Cu(opooMe)]2− and of the magnetic exchange interactions of trinuclear [Cu3(opooMe)(pmdta)2]2+ complex fragments. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
17

Investigação computacional do mecanismo de quebra hidrolítica de ésteres de fosfato catalisado por um modelo biomimético da catecol oxidase

Esteves, Lucas Fagundes 29 February 2016 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-05-04T19:26:38Z No. of bitstreams: 1 lucasfagundesesteves.pdf: 10750065 bytes, checksum: 8871e6f0092a5a329a1cc8099f9a0382 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-05-17T13:33:34Z (GMT) No. of bitstreams: 1 lucasfagundesesteves.pdf: 10750065 bytes, checksum: 8871e6f0092a5a329a1cc8099f9a0382 (MD5) / Made available in DSpace on 2017-05-17T13:33:34Z (GMT). No. of bitstreams: 1 lucasfagundesesteves.pdf: 10750065 bytes, checksum: 8871e6f0092a5a329a1cc8099f9a0382 (MD5) Previous issue date: 2016-02-29 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Esta tese propõe uma investigação teórica do mecanismo de quebra hidrolítica de um modelo para diésteres de fosfato, o íon BDNPP [bis(2,4-dinitrofenil)fosfato], catalisada por um complexo dinuclear de cobre(II) (R1). Esse complexo metálico foi originalmente planejado para mimetizar a estrutura e as propriedades catalíticas do sítio ativo das catecóis oxidases (COs), revelando um caso interessante de promiscuidade catalítica em sistemas biomiméticos. As possibilidades de mecanismo foram cuidadosamente avaliadas através de cálculos de Teoria do Funcional da Densidade (DFT) em fase gás e em fase aquosa com cálculos no ponto dentro do modelo contínuo polarizável (PCM). Dois mecanismos principais foram encontrados. O Mecanismo 1 (Concertado) corresponde a uma reação do tipo SN2 que envolve o ataque da ponte µOH, situada entre os íons Cu(II), ao centro fosfórico da molécula de BDNPP, enquanto que o Mecanismo 2 (Associativo) ocorre através de sucessivas transferências de próton entre o átomo de oxigênio desta mesma ponte com o átomo de oxigênio terminal do grupo fosfato, passando pela formação de um intermediário pentacoordenado estável. O Mecanismo 1 envolve dois possíveis caminhos reacionais para a liberação do íon DNPP [(2,4-dinitrofenil)fosfato] gerado após a quebra hidrolítica. O primeiro caminho reacional (p1) envolve uma transferência de próton – que ocorre entre o átomo de oxigênio que compunha a ponte µ-OH e o átomo de oxigênio terminal do grupo fosfato – imediatamente após a quebra hidrolítica, seguido pela entrada de duas moléculas de água, sendo a etapa de transferência de próton determinante da velocidade. O segundo caminho reacional (p2) envolve a entrada de duas moléculas de água imediatamente após a quebra hidrolítica sem que haja a reação de transferência de próton, sendo a etapa de quebra hidrolítica a etapa determinante da velocidade. Dentre as propostas de mecanismo estudadas o caminho reacional p2 dentro do Mecanismo 1 corresponde ao mais provável, uma vez que possui a menor barreira de reação (ΔG‡ = 23,7 kcal mol-1, em solução aquosa). A constante de velocidade observada experimentalmente, Kobs, vale 1,7 × 10-5 s-1, indicando que o valor calculado teoricamente (K1 = 2.6 × 10-5 s-1) está em excelente acordo com o valor experimental. O efeito isotópico cinético (KIE) foi avaliado para o caminho reacional p2 dentro do Mecanismo 1 com o intuito de entender as alterações estruturais envolvidas na formação do TS1-i (Estado de transição para o Mecanismo 1), caracterizando perfeitamente o mecanismo descrito. O efeito explícito da inclusão de moléculas do solvente foi avaliado de maneira preliminar para apenas uma estrutura do ciclo catalítico para a quebra hidrolítica de ésteres de fosfato, através da utilização do método de Monte Carlo. Os resultados permitem uma análise detalhada da organização das moléculas de solvente ao redor do complexo, podendo servir de ponto de partida para uma análise mais elaborada dos mecanismos reacionais utilizando modelos explícitos para o solvente. O mecanismo de oxidação de catecóis – representado pelo substrato modelo, o 3,5-di-tercbutilcatecol (DTBC) – no sítio ativo do complexo R1 foi avaliado através de cálculos quanto-mecânicos. Embora não tenham sido obtidos resultados conclusivos acerca da cinética da reação, os aspectos estruturais das principais espécies envolvidas no ciclo catalítico foram analisados. / In this thesis the theoretical investigation of the hydrolytic cleavage mechanism of a phosphate diester, BDNPP [bis(2,4-dinitrophenyl)phosphate] in the active site of the dinuclear copper complex, labelled as R1, has been proposed. The metal complex was originally designed to mimic the active site structure as well the catalytic properties of catechol oxidase, revealing an interesting case of catalytic promiscuity in biomimetic systems. The mechanistic possibilities have been carefully evaluated through Density Functional Theory (DFT) calculations in gas phase and in aqueous solution using continuum solvation models with single point calculations within the Polarizable continuum model (PCM). Two reaction mechanisms have been proposed. The Mechanism 1 (Concerted) is a SN2 type mechanism which involves the direct attack of the µ-OH bridge between the two copper(II) ions towards the phosphorus center whereas, the Mechanism 2 (Associative) occurs through two successive proton transferences between the oxygen atom of the bridging hydroxo ligand and another oxygen atom of the phosphate model forming a stable pentacoordinate intermediate. There are two reactions paths for Mechanism 1 to release the DNPP (2,4-dinitrophenylphosphate) ion generated after the hydrolytic cleavage. The first reaction path (p1) involves a proton transfer immediately after the hydrolytic cleavage, being the proton transfer the rate-determining step, followed by the entry of two water molecules. The second reaction path (p2) comprises the entry of two water molecules just after the hydrolytic cleavage without any proton transfer, being the hydrolytic cleavage the rate limiting step. The most probable catalytic path occurs via Mechanism 1, following the second reaction path (p2) once it involves the lowest free energies activation barrier (ΔG‡ = 23.7 kcal mol-1, in aqueous solution). The experimental rate constant, Kobs is 1.7 × 10-5 s-1, indicating that the calculated value, (K1 = 2.6 × 10-5 s-1) is in a very good accordance with the experimental value. Kinetic Isotope Effect (KIE) analysis for the second reaction path (p2) within the Mechanism 1 has also been considered in order to understand the changes taking place in TS1-i (transition state of Mechanism 1) and perfectly characterize the mechanism here described. The solvent effect using explicit water molecules were evaluated in a preliminary fashion for one structure within the catalytic cycle of hydrolytic cleavage of phosphate ester, using the Monte Carlo method. The obtained results allows a detailed analysis of the water molecules organization around the complex, serving as a starting point for an more elaborated study of the reaction mechanisms by using explicit solvent models. The oxidation of catechols – represented herein by the model substrate, 3,5-di-tercbuthylcatechol (DTBC) – in the active site of the R1 complex were evaluated by using quantum-mechanical calculations. The results are not conclusive for the kinetic, but the structural aspects for the main species in the catalytic cycle were studied.
18

Photocytotoxicity And DNA Cleavage Activity Of Metal Scorpionates And Terpyridine Complexes

Roy, Sovan 08 1900 (has links) (PDF)
Scorpionate and terpyridine ligands are of importance in inorganic chemistry for their metal-binding properties. Tris-pyrazolylborate (Scorpionate) ligands that show facial binding mode and steric protection have been extensively used to synthesize complexes modeling the active site structure and biological function of various metalloproteins and as catalysts in C-H and NO activation and carbine transfer reactions. Terpyridine and modified terpyridine ligands showing meridional binding mode have been used in bioinorganic chemistry where Pt-terpyridine complexes are known to inhibit the activity of thiordoxin reductase (TrxR) besides showing interaction with G-quadruplex. The thesis work stems from our interest to use these ligand systems to design and prepare new 3-d metal-based photodynamic therapeutic (PDT) agents to explore their visible light-induced DNA cleavage activity and photocytotoxicity. Efforts have been made in this thesis work to design and synthesize Co(II) and Cu(II) complexes having scorpionate (Tpph) abd terpyridine (tpy) ligands. Ternary 3d-metal complexes having Tpph and planar phenanthroline bases have been synthesized and structurally characterized. The steric encumbrance of Tpph has led to the reduction in chemical nuclease activity along with enhanced photo-induced DNA cleavage activity, particularly of the Cu(II) and Co(II) complexes. The Co(II), Cu(II) and Zn(II) complexes of Tpph and a pyridyl ligand having a photoactive naphthalilmide moiety show molecular light-switch effect on binding to calf thymus DNA or BSA protein. The complexes do not show any chemical nuclease activity. The Cu(II) complex shows significant DNA cleavage activity in red light. The Co(II) complex displays significant photocytotoxicity in UV-A light. Ternary Cu(II) complexes of ph-tpy and heterocycylic bases are prepared and their DNA binding and cleavage activity studied. The complexes are avid binders to CT-DNA. The dipyridoquinoxaline (dpq) and dipyridophenazine (dppz) complexes are photocleavers of DNA in visible light. A significant enhancement in cytotoxicity in HeLa cancer cells is observed on exposure of the dppz complex to light. The binary Cu(II) complexes are also prepared to reduce the dark toxicity using phenyl and pyrenyl substituted terpyridine ligands. The pyrenyl substituted complex shows DNA cleavage activity in the visible light, low dark toxicity and unprecedented photocytotoxicity in visible light. The copper(II) complexes generally show dark cellular toxicity due to the presence of reducing thiols. The present terpyridine copper(II) complex having pendant pyrenyl moiety shows significant PDT effect that is similar to that of the PDT drug Photofrin. Binary Co(II) complexes show efficient DNA cleavage activity in visible light, significant photocytotoxicity in visible light and cytosolic uptake behaviour. Considering the bio-essential nature of the cobalt and copper ions, the present study opens up new strategies for designing and developing 3d-metal-based photosensitizers for their potential applications in PDT.
19

Chemistry Of Ferrocene Conjugates Showing DNA Cleavage And Photocytotoxic Activity

Maity, Basudev 07 1900 (has links) (PDF)
Ferrocene is an important molecule in the field of chemical biology due to its stability, unique redox property and significant lipophilicity for better cellular delivery. The medicinal importance of ferrocene is well recognized after its successful incorporation into breast cancer drug tamoxifen and antimalarial drug chloroquin. Designing ferrocene conjugated transition metal complexes is an interesting area of research in the field of photodynamic therapy, a new modality of light activated cancer treatment. The objective of the present thesis work is to develop photoactive ferrocene conjugates showing DNA photocleavage and photocytotoxic activity. We have synthesized the ferrocene conjugated imidazophenanthroline derivative which exhibits visible light induced DNA photocleavage activity and photocytotoxicity in HeLa cell line. The corresponding phenyl analogue is found to be inactive. Polypyridyl platinum(II) complexes of ferrocenyl as well as phenyl moiety are prepared and studied their interactions with calf thymus DNA. The cytotoxicity of the complexes enhance significantly upon irradiation of UV-A light of 365 nm. To enhance the photodynamic potential and to understand the role of organometallic ferrocenyl moiety, ferrocene conjugated terpyridyl copper(II) complexes having planar phenanthroline bases are prepared. The interaction of these complexes with duplex DNA and their photo-induced DNA cleavage and anticancer activity in HeLa cancer cells are studied. The complexes are able to generate ROS in the presence of visible light which causes DNA damage as well as cell death. The importance of ferrocenyl moiety is evidenced from the less activity of the corresponding phenyl analogues complex. We have prepared copper(II) complexes of ferrocenyl methyl dipicolylamine ligand to understand the role of terpyridyl moiety. These complexes lacking any conjugation between the copper(II) and the ferrocenyl moiety are found to be less active compared to the terpyridyl conjugated system. The copper(II) complexes are found to show undesirable dark cytotoxicity in the presence of cellular thiols like GSH. To overcome the dark toxicity problem and to understand the mechanistic aspects of DNA photocleavage and photocytotoxicity, a series of binary ferrocene conjugated terpyridyl complexes of Fe(II), Co(II), Cu(II) and Zn(II) are prepared and their DNA photocleavage and anticancer activity studied. The zinc(II) complex having redox-active ferrocenyl moiety and redox-inactive zinc(II) center exhibits significant PDT effect with low dark toxicity compared to its copper(II) analogue. The ferrocenyl moiety plays an important role towards showing photocytotoxic activity since its phenyl analogue is inactive in nature. Finally, the present thesis work opens up a new strategy for designing and developing new ferrocene based metal complexes as novel photosensitizers for PDT applications.
20

An interplay between the spin density distribution and magnetic superexchange interactions: a case study of mononuclear [nBu4N]2[Cu(opooMe)] and novel asymmetric trinuclear [Cu3(opooMe)(pmdta)2](NO3)2·3MeCN

Abdulmalic, Mohammad A., Aliabadi, Azar, Petr, Andreas, Krupskaya, Yulia, Kataev, Vladislav, Büchner, Bernd, Hahn, Torsten, Kortus, Jens, Rüffer, Tobias January 2012 (has links)
Treatment of the diethyl ester of o-phenylenebis(oxamic acid) (opbaH2Et2, 1) with 5/6 equivalent of MeNH2 in abs. EtOH results in the exclusive formation of the ethyl ester of o-phenylene(N′-methyl oxamide)(oxamic acid) (opooH3EtMe, 2) in ca. 50% yield. Treatment of 2 with four equivalents of [Me4N]OH followed by the addition of Cu(ClO4)2·6H2O gave [Me4N]2[Cu(opooMe)]·H2O (3A) in ca. 80% yield. As 3A appears to be a hygroscopic solid, the related [nBu4N]+ salts [nBu4N]2[M(opooMe)]·H2O (M = Cu (3B), Ni (4)) have been synthesized. By addition of two equivalents of [Cu(pmdta)(NO3)2] to a MeCN solution of 3B the novel asymmetric trinuclear complex [Cu3(opooMe)(pmdta)2](NO3)2 (5) could be obtained in ca. 90% yield. Compounds 2, 3A, 3B, 4 and 5 have been characterized by elemental analysis and NMR/IR spectroscopy. Furthermore, the solid state structures of 3A in the form of [Me4N]2[Cu(opooMe)]·MeOH (3A′), 3B in the form of [nBu4N]2[Cu(opooMe)] (3B′), 4 in the form of [nBu4N]2[Ni(opooMe)]·1.25H2O (4′) and 5 in the form of [Cu3(opooMe)(pmdta)2] (NO3)2·3MeCN (5′), respectively, have been determined by single-crystal X-ray diffraction studies. By controlled cocrystallization, diamagnetically diluted 3B (1%) in the host lattice of 4 (99%) in the form of single crystals have been made available, allowing single crystal EPR studies to extract all components of the g-factor and the tensors of onsite CuA and transferred NA hyperfine interaction. Out of these studies the spin density distribution of the [Cu(opooMe)]2− complex fragment could be determined. The magnetic properties of 5 were studied by susceptibility measurements versus temperature. An intramolecular J parameter of −65 cm−1 has been obtained, unexpectedly, as 5 should possess two different J values due to its two different spacers between the adjacent CuII ions, namely an oxamate (C2NO3) and an oxamidate (C2N2O2) fragment. This unexpected result is explained by a summarizing discussion of the experimentally obtained EPR results (spin density distribution) of 3B, the geometries of the terminal [Cu(pmdta)]2+ fragments of 5 determined by X-ray crystallographic studies and accompanying quantum chemical calculations of the spin density distribution of the mononuclear [Cu(opooMe)]2− and of the magnetic exchange interactions of trinuclear [Cu3(opooMe)(pmdta)2]2+ complex fragments. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.

Page generated in 0.0706 seconds