• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Raffinement d'éléments propres approchés d'un opérateur compact

Ahues Blanchait, Mario Paul 06 June 1983 (has links) (PDF)
On propose quatre familles de méthodes itératives pour le raffinement d'éléments propres approches d'un opérateur compact dans un espace de Banach complexe. Ces méthodes sont de type Newton et le calcul de l'inverse de la dérivée de l'opérateur non linéaire dont on calcule un zéro est fait à l'aide de techniques fondées sur le principe de correction du résidu. Selon la précision de ce calcul, on peut atteindre une convergence quadratique, superlinéaire ou linéaire. On pressente des applications aux opérateurs intégraux à noyau continu ou faiblement singulier. Les discrétisations considérées sont les approximations de Galerkin, projection et Sloan avec ou sans quadrature - et les approximations de Fredholm et Nystroem. On donne des exemples numériques
2

Analyse de méthodes de résolution parallèles d'EDO/EDA raides

Guibert, David 10 September 2009 (has links) (PDF)
La simulation numérique de systèmes d'équations différentielles raides ordinaires ou algébriques est devenue partie intégrante dans le processus de conception des systèmes mécaniques à dynamiques complexes. L'objet de ce travail est de développer des méthodes numériques pour réduire les temps de calcul par le parallélisme en suivant deux axes : interne à l'intégrateur numérique, et au niveau de la décomposition de l'intervalle de temps. Nous montrons l'efficacité limitée au nombre d'étapes de la parallélisation à travers les méthodes de Runge-Kutta et DIMSIM. Nous développons alors une méthodologie pour appliquer le complément de Schur sur le système linéarisé intervenant dans les intégrateurs par l'introduction d'un masque de dépendance construit automatiquement lors de la mise en équations du modèle. Finalement, nous étendons le complément de Schur aux méthodes de type "Krylov Matrix Free". La décomposition en temps est d'abord vue par la résolution globale des pas de temps dont nous traitons la parallélisation du solveur non-linéaire (point fixe, Newton-Krylov et accélération de Steffensen). Nous introduisons les méthodes de tirs à deux niveaux, comme Parareal et Pita dont nous redéfinissons les finesses de grilles pour résoudre les problèmes raides pour lesquels leur efficacité parallèle est limitée. Les estimateurs de l'erreur globale, nous permettent de construire une extension parallèle de l'extrapolation de Richardson pour remplacer le premier niveau de calcul. Et nous proposons une parallélisation de la méthode de correction du résidu.
3

Analyse de méthodes de résolution parallèles d’EDO/EDA raides / Analysis of parallel methods for solving stiff ODE and DAE

Guibert, David 10 September 2009 (has links)
La simulation numérique de systèmes d’équations différentielles raides ordinaires ou algébriques est devenue partie intégrante dans le processus de conception des systèmes mécaniques à dynamiques complexes. L’objet de ce travail est de développer des méthodes numériques pour réduire les temps de calcul par le parallélisme en suivant deux axes : interne à l’intégrateur numérique, et au niveau de la décomposition de l’intervalle de temps. Nous montrons l’efficacité limitée au nombre d’étapes de la parallélisation à travers les méthodes de Runge-Kutta et DIMSIM. Nous développons alors une méthodologie pour appliquer le complément de Schur sur le système linéarisé intervenant dans les intégrateurs par l’introduction d’un masque de dépendance construit automatiquement lors de la mise en équations du modèle. Finalement, nous étendons le complément de Schur aux méthodes de type "Krylov Matrix Free". La décomposition en temps est d’abord vue par la résolution globale des pas de temps dont nous traitons la parallélisation du solveur non-linéaire (point fixe, Newton-Krylov et accélération de Steffensen). Nous introduisons les méthodes de tirs à deux niveaux, comme Parareal et Pita dont nous redéfinissons les finesses de grilles pour résoudre les problèmes raides pour lesquels leur efficacité parallèle est limitée. Les estimateurs de l’erreur globale, nous permettent de construire une extension parallèle de l’extrapolation de Richardson pour remplacer le premier niveau de calcul. Et nous proposons une parallélisation de la méthode de correction du résidu. / This PhD Thesis deals with the development of parallel numerical methods for solving Ordinary and Algebraic Differential Equations. ODE and DAE are commonly arising when modeling complex dynamical phenomena. We first show that the parallelization across the method is limited by the number of stages of the RK method or DIMSIM. We introduce the Schur complement into the linearised linear system of time integrators. An automatic framework is given to build a mask defining the relationships between the variables. Then the Schur complement is coupled with Jacobian Free Newton-Krylov methods. As time decomposition, global time steps resolutions can be solved by parallel nonlinear solvers (such as fixed point, Newton and Steffensen acceleration). Two steps time decomposition (Parareal, Pita,...) are developed with a new definition of their grids to solved stiff problems. Global error estimates, especially the Richardson extrapolation, are used to compute a good approximation for the second grid. Finally we propose a parallel deferred correction

Page generated in 0.0861 seconds