• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 14
  • 3
  • Tagged with
  • 59
  • 59
  • 44
  • 27
  • 25
  • 20
  • 16
  • 14
  • 14
  • 14
  • 12
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modifications électro-physiologiques chez la personne aphasique : : de l’étude des réseaux du langage en TMS à la prédiction de la récupération de l’aphasie / Electrophysiological modification in people with apahsia: : from language networks to the prediction of recovery from aphasia

Glize, Bertrand 20 December 2017 (has links)
L’aphasie est un symptôme fréquent après un AVC et a un impact majeur social, économique, médical et psychologique sur les patients. Des études récentes ont tenté avec peu de succès de rechercher des critères pronostiques cliniques précoces de récupération d’une aphasie. L’enjeu de cette possibilité de prédiction est un enjeu majeur clinique et scientifique et peut influencer la prise en charge ré-éducative décidée dès les premiers jours après l’AVC. De plus, l’étude clinico-physiologique de la récupération du langage permettrait de mieux comprendre les mécanismes de plasticité cérébrale mis en jeux. Tout d’abord, nous allons nous intéresser chez le sujet sain à l’implication du cortex moteur dans des tâches de perception, renforçant l’idée que cette structure anatomique jouerait un rôle plus étendu que celui auquel elle a été reléguée pendant de nombreuses années, puis nous allons explorer des facteurs prédictifs de la récupération de l’aphasie, les facteurs langagiers dans un premier temps et des facteurs électrophysiologiques, notamment via la TMS explorant l’intégrité du cortex moteur, et leur contribution dans la prédiction de la récupération. / Considering the high incidence of post-stroke aphasia and its significant social and economic impact, better understanding the mechanisms of language recovery in order to predict patient’s outcome and to optimize rehabilitation is a clinical and scientific challenge. Here we aimed to study whether the motor cortex is involved in speech and language perception, suggesting this structure could play a crucial role. Then, we investigated whether some language features could contribute to the prognosis of aphasia recovery. Finally, we investigated whether the anatomofunctional evaluation of the corticomotor pathway using TMS could improve the prediction of post stroke aphasia recovery.
12

Fonctionnement cérébral et cognitif chez de jeunes adultes nés prématurément

Denis, Annabelle 24 April 2018 (has links)
Ce mémoire s’organise autour de trois études qui ont testé si les déficits corticomoteurs et cognitifs répertoriés dans la littérature pendant l’enfance et l’adolescence étaient observables à l’âge adulte. Pour ce faire, de jeunes adultes nés prématurément (PT, ≤ 33 semaines de gestation) ont été comparés à un groupe de jeunes adultes nés à terme (> 37 semaines de gestation, appariés pour l’âge et le sexe) au niveau du fonctionnement moteur cérébral (évalué par stimulations magnétiques transcrâniennes du cortex moteur primaire – TMS de M1) et cognitif (batterie standardisée électronique - TAP 2.3). L’étude 1 a révélé un fonctionnement sous-optimal des voies callosales reliant les deux aires motrices primaires (contrôle moteur des mains) pour le groupe PT qui se caractérise par un temps de transfert interhémisphérique plus long (latence plus longue pour le test de l’inhibition interhémisphérique) et une inhibition interhémisphérique plus courte. L’étude 2 a montré que le groupe PT présentait une asymétrie de l’excitabilité de base du M1 (testé par TMS) avec un hémisphère non dominant moins excitable (seuil moteur plus haut) que le dominant et que les deux hémisphères du groupe né à terme. Les résultats ont démontré également que les mécanismes inhibiteurs de planification motrice n’étaient pas fonctionnels chez une majorité de participants PT par rapport aux participants nés à terme, et ce, pour les deux hémisphères. Enfin, l’étude 3 (étude pilote) a détecté des difficultés d’attention soutenue plus marquées pour le groupe PT de même qu’une estime de soi fragilisée. L’ensemble de ces résultats suggère que le fonctionnement moteur cérébral des jeunes adultes PT demeure différent (tout comme cela est répertorié à l’enfance et à l’adolescence) et que cela peut s’accompagner d’un fonctionnement cognitif sous-optimal. Ce mémoire doctoral contribue à une meilleure compréhension des répercussions à long terme d’une naissance prématurée sur le développement. Les indicateurs cérébraux et cognitifs identifiés comme étant toujours déficitaires à l’âge adulte pourraient faire l’objet d’une attention particulière lors des programmes thérapeutiques à l’enfance afin d’éviter, ou du moins diminuer, les déficits à long terme. / The advent of technology in neonatal care units has increased the survival rate of premature infants. However, there is still room to better understand the deleterious impacts of prematurity on the brain and cognition over lifespan, including the early adulthood that has poorly been studied to date. This thesis tested the mechanism of interhemispheric inhibition by the ipsilateral silent period (iSP) (reflecting the integrity of callosal function) and intracortical inhibition (ICI reflecting synaptic organization for planning the action) along with the cognitive function in young adults born prematurely (PT). A group of young adults born prematurely (PT, ≤ 33 weeks gestation) were compared to a group of young adults born at term (Term> 37 weeks of gestation, matched for age and education). iSP and ICI were tested with transcranial magnetic stimulation of the primary motor cortex of hand. As compared to the term group, the study 1 showed that PT had fewer occurrences of iSP (p < 0.0001), longer iSP latency (interhemispheric transfer, p=0.004) and shorter iSP duration (p < 0.0001). In study 2, less excitability in the nondominant hemisphere (p=0.001), and less ICI (37.5% in PT group vs. 100% in terms) was observed. This suboptimal regulation between hemispheres and intracortical motor function was parallelled by difficulties to sustain attention in PT as assessed by neuropsychological testing in the 3rd study. This thesis suggests that brain function known to be impaired in PT children and adolescents remained suboptimal at early adulthood and may explain some minor cognitive impairments detected. These brain indicators of a long-term influence of prematurity should be used earlier to test the efficacity of rehab programs on modules recognized to be specifically impaired in adulthood.
13

Neurostimulation of the Rat Motor System

Ting, Windsor Kwan-Chun 17 May 2022 (has links)
Ce document fait la synthèse d'un ensemble de travaux concernant la nature de la plasticité neuronale et la manière dont la neurostimulation peut être utilisée pour améliorer la récupération motrice après une atteinte neurologique. Nous commençons par les principes fondamentaux généraux des neurosciences, la structure du système nerveux moteur chez l'homme et le rat, ainsi qu'une brève discussion sur les lésions neurologiques. Les sujets sont vastes et couverts avec la brièveté nécessaire, mais ils fournissent un contexte essentiel pour les chapitres suivants, présentés sous forme d'articles scientifiques. Dans le premier article, nous passons en revue le domaine de la neurostimulation sous ses aspects fondamental et clinique avec l'Accident Vasculaire Cerebral (AVC) en tant que maladie modèle pour les lésions neurologiques. Nous classifions les interventions de stimulation en trois modèles différents d'induction de la plasticité. Notre thèse centrale est qu'une meilleure compréhension des règles sous-jacentes de la plasticité, accompagnée de progrès dans une plus grande précision spatio-temporelle, est nécessaire pour faire avancer le domaine de la neurostimulation. Dans le deuxième article, nous décrivons, étape par étape, un nouveau protocole pour évaluer l'excitabilité corticospinale chez le rongeur éveillé pendant le comportement libre, ainsi que les plateformes matérielles et logicielles associées que notre équipe a développées à cette fin. L'une de ses principale caractéristique est la possibilité d'évaluer l'excitabilité corticomotrice en boucle fermée, en fonction de l'EMG, une nouvelle façon d'accroître l'uniformité des mesures sur des animaux en comportement. Cette plateforme de développement sera utile aux neuroscientifiques intéressés par l'évaluation de l'excitabilité du système nerveux chez les rongeurs éveillés par le biais d'une interrogation électrique ou optogénétique, un intermédiaire important avant les essais chez les primates non humains et éventuellement chez les humains. Dans le troisième article, nous avons utilisé cette plateforme prototype pour étudier la stimulation électrique associative appariée et le rôle de la plasticité dépendant de la synchronisation des potentiels d'action chez des rats implantés de façon chronique, sans l'influence de l'anesthésie. Nous nous sommes concentrés sur la variation systématique de l'intervalle entre la stimulation corticale et musculaire dans notre cohorte d'animaux afin de révéler l'effet de la synchronisation relative de l'activité aux niveaux cortical et spinal. Nous n'avons pas observé de potentialisation significative dans tous les intervalles de stimulation testés, mais plutôt des tendances vers des effets de type LTD dans la plupart des conditions de synchronisation. Nous discutons des raisons possibles pour lesquelles nous avons observé ces résultats. Dans le dernier article et dans le projet en cours, nous décrivons les premiers travaux prometteurs impliquant la neurostimulation optogénétique et électrique, ainsi que la réadaptation post-AVC comme tremplin pour des recherches futures. Nous concluons par une discussion générale et nous nous projetons dans l'avenir, tant à moyen qu'à long terme. La poursuite scientifique, tant sur le plan personnel que sur celui du domaine, se poursuivra, comme il se doit. Bien que ce travail soit conçu pour être lu dans un ordre séquentiel, chaque chapitre est indépendant. Collectivement, les travaux de cette thèse posent les bases et plaident en faveur d'une meilleure compréhension de la plasticité neuronale, du développement d'outils pour l'évaluer et de l'étude de ses applications pratiques pour parvenir à une meilleure récupération motrice après une lésion neurologique. / This document synthesizes a body of work concerning the nature of neural plasticity and how neurostimulation may be used to improve motor recovery after neurological insult. We begin with general foundational principles in neuroscience, the structure of the nervous and motor systems in humans and rats, and a brief discussion of neurological injury. The topics are broad and covered with the necessary brevity, but provides critical context for the following chapters. In the first paper, we review the fields of neurostimulation across the clinical and basic science domains in the service of stroke as a model disease for neurological injury, framing the field in terms of three different models of plasticity induction. Our central thesis here is that enhanced understanding of the underlying rules of plasticity, accompanied with advances in greater spatiotemporal precision is necessary to move the field of neurostimulation forward. In the second paper we describe a stable, novel step-by-step protocol to assess corticospinal excitability in the awake, freely behaving rodent, and the associated hardware and software platforms that our team has developed for this purpose. A core feature enables corticomotor excitability assessment in a closed-loop, Electromyogram (EMG)-dependent manner, a novel way of increasing consistency during free behavior in untrained animals. This development platform will be of use to neuroscientists interested in assessing the excitability of the nervous system in awake, unrestrained rodents via electrical or optogenetic interrogation, an important intermediary before trials in non-human primates and eventually humans. In the third paper, we used this prototype platform to investigate electrical paired associative stimulation and the role of spike-timing-dependent plasticity in chronically implanted rats, without the influence of anaesthesia. Our focus was on systematically varying the Inter-Stimulus Interval (ISI) between cortical and muscle stimulation in our animal cohort in order to reveal the effect of relative activity timing at both the cortical and spinal levels. We did not observe significant potentiation across all of the stimulus intervals we tested, but instead observed trends towards Long-Term Depression (LTD)-like effects in the short term across most timing conditions. We discuss possible reasons why we observed these results. In the final paper and project currently in progress, we describe early promising work involving optogenetic and electrical neurostimulation, and stroke recovery as a launchpad for future investigations. We conclude with a general discussion and peer into the future, both in the medium term and the long term. The scientific pursuit, both personally and as a field will continue, as it should. Although this work is designed to be read in sequential order, each chapter stands alone. Collectively, the work in this thesis lays the groundwork and argues for a greater understanding of neural plasticity, development of tools to assess it, and study of its practical applications to achieve enhanced motor recovery after neurological injury.
14

Propriétés fonctionnelles et organisation du cortex moteur chez le chat

Ethier, Christian 12 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2007-2008. / Le travail accompli au cours de mes études de doctorat permet de mieux comprendre l'organisation et le mode d'opération du cortex moteur. Les études rapportées dans cette thèse décrivent la relation entre l'activité du cortex moteur primaire et l'activité motrice qu'elle génère. Elles lèvent le voile sur certaines interactions intrinsèques du cortex moteur et apportent ainsi des éclaircissements importants sur son mode de fonctionnement. Cette thèse est d'abord constituée d'une introduction présentant l'organisation générale des structures impliquées dans le contrôle des mouvements. Elle comprend également quelques discussions sur des études antérieures pertinentes aux projets de recherches présentés par la suite. Ceux-ci constituent le corps de la thèse. Ils sont présentés sous forme de trois articles, rédigés en anglais. Le premier couvre plusieurs propriétés d'entrée-sortie du cortex moteur du chat sous anesthésie. Différentes conditions d'activation corticale sont analysées et mises en relation avec les réponses motrices afin d'évaluer les caractéristiques du contrôle corticomoteur. Le second article discute des interactions entre les sorties motrices de deux points du cortex moteur. Il y est démontré que l'activité musculaire et les mouvements évoqués par l'activation corticale simultanée de deux points corticaux se combinent de façon linéaire. Quant au troisième article, il traite d'un mécanisme de couplage fonctionnel entre les points corticaux impliquant la levée d'inhibition. Les résultats présentés prouvent qu'il est possible pour deux points corticaux contrôlant des muscles antagonistes d'interagir et de combiner leur sorties motrices. Le dernier chapitre de la thèse comprend d'abord la présentation de données anatomiques du cortex moteur permettant de mieux comprendre et d'évaluer les principaux résultats obtenus lors de mon doctorat. Il est complété par une discussion générale apportant une interprétation plus élaborée des résultats obtenus, tout en les plaçant dans un contexte plus large. Il s'en dégage une vue d'ensemble rassemblant toutes les observations rapportées dans cette thèse et résumant l'avancement scientifique qu'elle apporte.
15

Effets électrophysiologiques de la stimulation du cortex moteur sur les noyaux somatosensorielslatéraux du thalamus : étude expérimentale sur un modèle de stimulation du cortex moteur chez le chat / Electrophysiological effects of Motor Cortex stimulation on the ventro-postero-lateral nucleus of the somatosensory thalamus : an experimental study on a cat model of motor cortex stimulation

Kobaïter Maarawi, Sandra 02 July 2013 (has links)
La stimulation du cortex moteur (SCM) est une technique neurochirurgicale utilisée chez l'Homme comme traitement de dernier recours pour les douleurs neuropathiques rebelles. Elle a été développée sur des bases empiriques. Ce travail vise à une meilleure compréhension des mécanismes d'action de la SCM qui restent incomplètement élucidés à ce jour. L'objectif de cette thèse est d'étudier les effets électrophysiologiques de la SCM au niveau thalamique, chez un modèle de chat. La première partie de cette étude a consisté à établir une cartographie stéréotaxique du cortex moteur (CM) de cet animal, inexistante dans la littérature. À partir de cette cartographie, nous avons pu établir et valider un modèle de SCM chez cet animal, implanté de façon mini-invasive. La deuxième partie de ce travail a consisté à recueillir et analyser les changements électrophysiologiques de l'activité extracellulaire unitaire des cellules du noyau ventro-postéro-latéral (VPL) du thalamus, induits par différents protocoles de SCM. Nos résultats montrent une modulation de l'activité des cellules du VPL par la SCM, qui varie en fonction de la nature nociceptive ou non de la cellule thalamique. La SCM augmente l'activité des cellules non nociceptives et diminue celle des cellules nociceptives. Pour une cellule donnée, l'effet observé est indépendant de la correspondance somatotopique entre la région du CM stimulée et la localisation sur le corps du champ récepteur de la cellule enregistrée. Ce travail a ainsi permis de montrer l'existence d'une neuro-modulation différentielle du VPL par la SCM en fonction de la nature de la cellule thalamique / Motor cortex stimulation (MCS) is a neurosurgical technique developed on empirical basis and currently used as last solution for patients suffering from refractory neuropathic pain. The present work is a new attempt among other contemporary studies aiming to understand the mechanisms of action of MCS, which remain incompletely elucidated at that time. The main objective of this thesis is to study the electrophysiological effect of MCS at the thalamic level, in a cat model. The first part of this work aims to establish the stereotactic somatotopic map of the cat motor cortex (MC), not available so far in the literature. Based on this mapping, we created and validated a cat model of MCS, using a mini-invasive electrode implantation. The second part of this study included a recording and analysis of the potential changes of the unitary extracellular activity of cells located in the thalamic ventro-postero-lateral (VPL) nucleus, induced by different MCS protocols. Our results indicate a modulation of the VPL cells activity after MCS, depending on the nociceptive or non-nociceptive nature of the recorded thalamic cell. MCS increases the activity of non-nociceptive cells and decreases that of nociceptive cells. For a given cell the matching between the somatotopy of the MC stimulated region and the receptive field localization of the recorded thalamic cell is not a prerequisite for obtaining such a modulation. In conclusion, the present work has proven a neuro-modulatory differential effect of MCS on nociceptive and non-nociceptive cells in the thalamic VPL nucleus
16

Plasticité cérébrale associée à une lésion musculosquelettique

Ngomo, Suzy 11 July 2022 (has links)
Certains résultats récents de recherche suggèrent que les atteintes musculosquelettiques s'accompagnent de changements centraux qui pourraient contribuer à la chronicité des déficits. Dans cette thèse, la cartographie cérébrale par stimulation magnétique transcrânienne a été utilisée pour évaluer la présence de changements corticospinaux associés à un changement d'utilisation d'un membre, en contexte expérimental et en présence d'une lésion musculosquelettique réelle. Les résultats obtenus appuient l'existence d'une plasticité cérébrale motrice accompagnant une réduction de l'usage d'un membre. Spécifiquement, les résultats démontrent une diminution de l'excitabilité cortico-spinale dans l'hémisphère contrôlant le membre affecté et dont l'utilisation est réduite. Ce changement d'excitabilité chez les patients a été trouvé associé à la durée de la douleur, suggérant que la chronicité est un facteur d'impact au niveau corticospinal. En plus de ces observations importantes sur le plan clinique, les résultats de cette thèse ont permis certaines avancées sur le plan méthodologique. Ceux-ci démontrent que les cartes corticales de la représentation d'un muscle sont similaires, que celles-ci soient obtenues avec le muscle en actif ou avec le muscle au repos. De plus, la majorité des mesures issues de la stimulation magnétique présente une bonne fidélité test-retest à court- et long-terme. Par ailleurs, bien que la musculature proximale du membre supérieur soit importante du point de vue clinique, celle-ci a fait l'objet de très peu d'études au plan neurophysiologique. Dans cette thèse, cette représentation a été décrite chez des sujets sains aussi bien que chez des patients. Ces données constituent donc une référence importante pour des études subséquentes portant sur des problématiques spécifiques impliquant cette musculature. En somme, la présence d'altérations au sein des représentations centrales du mouvement, en lien avec une diminution d'utilisation d'un membre, suggère qu'une intervention visant les représentations centrales du mouvement, et non uniquement les structures périphériques, pourrait être utile en réadaptation.
17

Ré-agir vite et bien à une perturbation de mouvement : étude des mécanismes corticaux par couplage EEG-TMS chez l'homme. / Re-acting well and fast to a motor perturbation : cortical mechanisms studied with combined EEG-TMS

Spieser, Laure 26 October 2010 (has links)
Dans la vie de tous les jours, il arrive que nos actions soient perturbées par desvariations rapides des forces externes de notre environnement. Afin d'atteindre notre but, nousdevons alors réagir “vite et bien” à ces perturbations de mouvement, ce qui implique la mise enjeu à la fois de processus cognitifs et de processus sensori-moteurs. Nous nous sommesintéressés aux mécanismes corticaux (engagés notamment au niveau du cortex sensorimoteurprimaire) sous-tendant les interactions entre fonctions cognitive et sensorimotrice permettantd'adapter la réaction à la perturbation en fonction de notre intention, en nous efforçant de fairele lien entre les mécanismes impliqués au cours de la préparation et de la réalisation de laréaction. En utilisant le couplage EEG-TMS (avec enregistrement de l'EMG), nous avons menéune approche par stimulation-enregistrement, permettant d'observer simultanément lesmécanismes corticaux et corticospinaux précédant et suivant la stimulation, et ainsi de mieuxcomprendre le lien reliant l'activité cérébrale et le comportement.Dans l’étude 1, nous avons utilisé une perturbation motrice centrale, c'est-à-dire quenous avons demandé au sujet soit de résister soit d'assister un mouvement évoqué directementau niveau cortical par TMS. Ceci nous a permis de montrer que les processus cognitifs peuventinfluencer directement l'excitabilité corticale et corticospinale, avant la mise en jeu deprocessus sensorimoteurs impliqués dans l’exécution du mouvement. Lorsque le sujet s’estpréparé à résister au mouvement évoqué par TMS, l'augmentation anticipée de l'activité desréseaux intracorticaux inhibiteurs de M1 diminue l'excitabilité corticale, menant à une diminutionde l’excitabilité corticospinale, réduisant ainsi l’amplitude du mouvement évoqué par TMS.Dans les études suivantes (2, 3 et 4), nous nous sommes intéressés aux mécanismescorticaux et corticospinaux impliqués dans la préparation et la réaction rapide à uneperturbation périphérique du mouvement. Nous avons demandé au sujet soit de résister soitde se laisser-faire par une extension passive du poignet, et avons étudié les mécanismesimpliqués dans la modulation de la composante à longue latence du réflexe d'étirement (LLSR,qui débute environ 50 ms après la perturbation), en fonction de l'intention. Concernantl’excitabilité corticospinale, les résultats montrent que, lors de la préparation à uneperturbation périphérique, les phénomènes d'intégration sensori-motrice engendrés par lesafférences sensorielles dues à la perturbation sont pris en compte dans le réglage anticipé del'excitabilité corticospinale, afin que la réaction, déclenchée par les afférences sensorielles, soitadaptée à l'intention du sujet (étude 2). Au niveau cortical, une modification de l'activité desréseaux intracorticaux de M1 en fonction de l'intention précède la modulation de l'activitécorticale du cortex sensorimoteur primaire, liée à la genèse du LLSR, suggérant que desprocessus anticipateurs influencent l’activité du cortex sensorimoteur primaire afin que saréponse précoce à la perturbation soit adaptée à l'intention du sujet (étude 3). Enfin, dansl’étude 4, nous avons mis en évidence le rôle d'une aire motrice non primaire, la SMA proper,dans la modulation du réflexe d'étirement en fonction de l'intention.Ainsi, lorsque nous anticipons une perturbation motrice, des processus préparatoiresspécifiques (dépendants de notre intention), et différents de ceux impliqués avant la réalisationd’un mouvement sans variation des forces externes, sont mis en jeu dans la SMA proper et lecortex sensorimoteur primaire de manière à ce que la réaction rapide, déclenchée au niveau ducortex sensorimoteur par les afférences sensorielles induites par la perturbation, soit adaptée àl’intention du sujet. / In everyday life, our actions can be perturbed by rapid variations of environmentalexternal forces. In order to achieve our goals, we have to react “well and fast” to thesemovement perturbations. This reaction implies both cognitive and sensorimotor processes. Wewere interested in the cortical mechanisms (mainly involving the primary motor cortex, M1)underlying the interaction between cognitive and sensorimotor functions that allows theadaptation of the reaction to the perturbation according to the intention. We tried to relate themechanisms implicated during the preparation with those implicated during the realization ofthe reaction. With combined EEG-TMS (with EMG recording), we used a stimulation-recordingapproach, allowing simultaneous observation of cortical and corticospinal mechanisms, bothbefore and after the stimulation. This approach helps to obtain to a better understanding of therelationship between cerebral activity and behavior.In the first experiment, we used a central motor perturbation, i.e. subjects were asked toresist or to assist a movement evoked directly at the cortical level using TMS. We showed thatcognitive processes can directly influence cortical and corticospinal excitability before anyinvolvement of the sensorimotor processes related to the movement execution. When subjectsprepared to resist the TMS-evoked movement, the anticipatory increased activity of theintracortical inhibitory networks of M1 decreased the cortical excitability, leading to adecreased corticospinal excitability and thus to a reduced TMS-evoked movement.In the following experiments (2, 3 and 4), we were interested in cortical andcorticospinal mechanisms engaged during the preparation and the reaction to a peripheralmovement perturbation. We asked subjects either to resist or to not-react (to “let-go”) to apassive wrist extension, and we studied the mechanisms underlying the modulation of the longlatency stretch reflex (LLSR, starting about 50 ms after the perturbation) according to theintention. Concerning the corticospinal excitability, the results showed that, during thepreparation of a reaction to a peripheral perturbation, the anticipatory tuning of thecorticospinal excitability takes into account sensorimotor integrative phenomenons induced bythe afferent input due to the perturbation in such a way that the reaction, triggered by theafferent inputs, is adapted to the subject’s intention (experiment 2). At the cortical level, achange of M1 intracortical network activity (before the perturbation) precedes the modulationof the primary sensorimotor cortex activity that is linked to the LLSR generation (after theperturbation). This strongly suggests that anticipatory processes preset the primarysensorimotor cortex in order to adapt its early response to the perturbation according to thesubject’s intention (experiment 3). Finally, temporary inactivation of SMA proper (induced byTMS) showed that this non-primary motor area is also implicated in the modulation of thestretch reflex according to the intention (experiment 4).In conclusion, when we expect a motor perturbation, intention-specific preparatoryprocesses are engaged in SMA proper and the primary sensorimotor cortex that are differentfrom those involved in the realization of a movement without external force variations. Thesepreparatory processes allow the early motor reaction, generated by the primary sensorimotorcortex (triggered by the afferent input induced by the perturbation) to be adapted to thesubject’s intention.
18

Contrôle dopaminergique de la motricité au niveau cortical et striatal / Dopaminergic control of motor function in the cortex and the striatum

Vitrac, Clément 24 September 2014 (has links)
Le cortex moteur primaire et le striatum permettent la planification et la sélection de mouvements. La dopamine régule l'activité des neurones dans ces deux structures. La perte des neurones à dopamine projetant de la substance noire compacte vers le striatum est à l'origine de troubles moteurs observés dans la maladie de Parkinson. Nous avons caractérisé le contrôle par la dopamine des neurones du cortex moteur primaire chez la souris et avons démontré que les fibres dopaminergiques innervent préférentiellement la représentation des membres antérieurs dans les couches corticales profondes. Nous avons montré que la dopamine module localement l’activité électrophysiologique des neurones cortico-striataux via les récepteurs D2. Ces résultats montrent que la dopamine peut exercer un contrôle direct sur la motricité au niveau des neurones du cortex moteur primaire. Nous avons par la suite déterminé le potentiel des thérapies cellulaires dans un modèle animal de la maladie de Parkinson. Les approches actuelles privilégient la greffe ectopique de neurones à dopamine dans la région cible, le striatum. Nous avons choisi une approche alternative consistant à pratiquer la greffe au niveau de la région lésée, la substance noire compacte. Nous avons montré chez la souris que la lésion des neurones dopaminergiques altère les propriétés électrophysiologiques des neurones du striatum et que la greffe homotopique de neurones entraîne une meilleure récupération de ces caractéristiques électrophysiologiques que la greffe ectopique dans le striatum.Ces résultats ouvrent des perspectives d'étude des effets de la greffe homotopique sur l'activité des autres structures contrôlant la motricité. / Primary motor cortex and striatum are involved in movement planification and selection. Dopamine regulates the neuronal activity of these two structures. The motor impairments observed in Parkinson's disease originates from the loss of dopamine neurons projecting from the substantia nigra pars compacta to the striatum.We characterized the dopaminergic control of the neurons of primary motor cortex in mice and we demonstrated that dopaminergic fibers preferentially innervate the forelimb representation map in the deep cortical layers. Furthermore, we demonstrated that dopamine locally modulates the electrophysiological activity of the cortico-striatal neurons through D2 receptors. These results show that dopamine can directly control motor function by influencing neuronal activity in primary motor cortex.Thereafter, we determined the potential of cell replacement therapies in an animal model of Parkinson's disease. In most studies, the transplanted dopamine neurons have been placed within the striatum. We have chosen an alternative approach by grafting neurons into the lesioned nucleus, substantia nigra. We showed in mice that the lesion of dopaminergic neurons impaired the electrophysiological properties of the striatal neurons. Whereas these properties are not fully restored with an intra-striatal transplant, all the electrophysiological characteristics are recovered with an intra-nigral graft. This result opens new perspectives to study the homotopic graft effects on the activity of the other structures controlling motor function.
19

Effets fonctionnels de la stimulation électrique du cortex moteur dans un modèle primate de la maladie de Parkinson

Drouot, Xavier Palfi, Stéphane January 2007 (has links) (PDF)
Thèse de doctorat : Neurosciences : Paris 12 : 2005. / Thèse électronique uniquement consultable au sein de l'Université Paris 12 (Intranet). Titre provenant de l'écran-titre. Bibliogr. f. 189-216.
20

Timing dans le cortex moteur : de l'anticipation d'un indice spatial à la préparation du mouvement : =Timing in motor cortex : from cue anticipation to movement preparation / Timing in motor cortex : from cue anticipation to movement preparation

Confais, Joachim 27 March 2013 (has links)
Le contexte temporel influence profondément la façon dont nous nous comportons. De manière similaire, il donne forme à l'activité du cortex moteur (LFP et potentiels d'action), pendant la préparation motrice, mais aussi en absence de préparation d'un mouvement. / The temporal context deeply shapes the motor cortical activity (spikes and LFPs), during movement preparation but also outside movement preparation.

Page generated in 0.0424 seconds