561 |
O papel da causalidade final na cosmologia de Charles Sanders Peirce / The role of final causality in the cosmology of Charles Sanders PeirceVicentini, Max Rogerio 27 February 2012 (has links)
Trata-se de uma proposta de investigação das ideias cosmológicas de Charles S. Peirce, particularmente das que dizem respeito à pertinência da inclusão de esquemas de explicação que façam uso da causalidade final como instância determinante do desenvolvimento dos fenômenos naturais. Anterior à avaliação desse tipo de explicação cabe uma investigação sobre as características mais relevantes de seu pensamento, que o próprio autor julgava construído arquitetonicamente. Com esse objetivo, centramos a análise no conceito de continuum, que pode ser visto como fundamental para o desenvolvimento da obra de Peirce. É o estudo do continuum que permitirá e conduzirá a investigação das categorias ontológicas peirceanas: acaso, existente e lei. A passagem do acaso à lei, isto é, a própria origem do cosmos, se dá por um processo evolutivo que tem na lei da mente seu principal motor. A lei da mente, por sua vez, atua de modo finalístico, tornando mais provável o desenvolvimento dos fenômenos em certas direções, restringindo, assim, o horizonte das possibilidades, sem, contudo, esgotá-lo. / This thesis is about the cosmological ideas of Charles S. Peirce, particularly those concerning the relevance of the inclusion of explanatory schemes that make use of final causality as an instance determinant of the development of natural phenomena. Before the evaluation of this type of explanation, it is important to perform an investigation into the most relevant features of his thought, which the author believed was architecturally built. With this aim, we focus on the concept of the continuum, which can be seen as fundamental to the development of the work of Peirce. It is the study of the continuum that will lead to investigation of Peirce\'s ontological categories: chance, existent and law. The passage of chance to law, that is, the very origin of the cosmos, is given by an evolutionary process in which the law of the mind is its main engine. The law of the mind, in turn, acts in a finalistic way, making more probable the development of phenomena in certain directions, thus restricting the horizon of possibilities, without, however, exhausting it.
|
562 |
Scalar fields in cosmology and black holesGraham, Alexander Alan Hewetson January 2016 (has links)
No description available.
|
563 |
Cosmological simulations of galaxy clustersHenson, Monique January 2018 (has links)
Galaxy clusters are the most massive collapsed structures in the Universe and their properties offer a crucial insight into the formation of structure. High quality observational data is forthcoming with ongoing and upcoming surveys, but simulations are needed to provide robust theoretical predictions for comparison, as well mock data for testing observational techniques. Numerical simulations are now able to accurately model a range of astrophysical processes. This is highlighted in the BAHAMAS and MACSIS simulations, which have successfully reproduced the observed scaling relations of galaxy clusters. We use these simulations to quantify the impact baryons have on the mass distribution within galaxy clusters, as well as the bias in X-ray and weak lensing mass estimates. It is shown that baryons have only a minor affect on the spins, shape and density profiles of galaxy clusters and they have no significant impact on the bias in weak lensing mass estimates. When using spectroscopic temperatures and densities, the X-ray hydrostatic mass bias decreases as a function of mass, leading to a bias of ~40% for clusters with M_500 > 10^15 solar masses. In the penultimate chapter, we use the EAGLE and C-EAGLE simulations to construct more realistic mock cluster observations. The EAGLE simulations have been shown to successfully reproduce the properties of field galaxies and they are complemented by the C-EAGLE project, which extends this work to the cluster scale. We use these simulations to construct a cluster lightcone that accounts for the impact of uncorrelated large scale structure on cluster observables, including weak lensing mass estimates, the Sunyaev-Zel'dovich parameter and X-ray luminosity.
|
564 |
Data analysis techniques useful for the detection of B-mode polarisation of the Cosmic Microwave BackgroundWallis, Christopher January 2016 (has links)
Asymmetric beams can create significant bias in estimates of the power spectra from cosmic microwave background (CMB) experiments. With the temperature power spectrum many orders of magnitude stronger than the B-mode power spectrum any systematic error that couples the two must be carefully controlled and/or removed. In this thesis, I derive unbiased estimators for the CMB temperature and polarisation power spectra taking into account general beams and scan strategies. I test my correction algorithm on simulations of two temperature-only experiments and demonstrate that it is unbiased. I also develop a map-making algorithm that removes beam asymmetry bias at the map level. I demonstrate its implementation using simulations. I present two new map-making algorithms that create polarisation maps clean of temperature-to-polarisation leakage systematics due to differential gain and pointing between a detector pair. Where a half wave plate is used, I show that the spin-2 systematic due to differential ellipticity can also be removed using my algorithms. The first algorithm is designed to work with scan strategies that have a good range of crossing angles for each map pixel and the second for scan strategies that have a limited range of crossing angles. I demonstrate both algorithms by using simulations of time ordered data with realistic scan strategies and instrumental noise. I investigate the role that a scan strategy can have in mitigating certain common systematics by averaging systematic errors down with many crossing angles. I present approximate analytic forms for the error on the recovered B-mode power spectrum that would result from these systematic errors. I use these analytic predictions to search the parameter space of common satellite scan strategies to identify the features of a scan strategy that have most impact in mitigating systematic effects.
|
565 |
Intensity mapping : a new approach to probe the large-scale structure of the UniverseCollis Olivari, Lucas January 2018 (has links)
Intensity mapping (IM) is a new observational technique to survey the large-scale structure of matter using emission lines, such as the 21 cm emission line of atomic hydrogen (HI) and the rotational lines of the carbon monoxide molecule (CO). Sensitive radio surveys have the potential to detect the HI power spectrum at low redshifts (z <1) in order to constrain the properties of dark energy and massive neutrinos. Observations of the HI signal will be contaminated by instrumental noise and, more significantly, by astrophysical foregrounds, such as the Galactic synchrotron emission, which is at least four orders of magnitude brighter than the HI signal. In this thesis, we study the ability of the Generalized Needlet Internal Linear Combination (GNILC) method to subtract radio foregrounds and to recover the cosmological HI signal for HI IM experiments. The GNILC method is a new technique that uses both frequency and spatial information to separate the components of the observed data. For simulated radio observations including HI emission, Galactic synchrotron, Galactic free-free, extragalactic point sources and thermal noise, we find that it can reconstruct the HI plus noise power spectrum with 7.0% accuracy for 0.13 <z <0.48 (960 - 1260 MHz) and l <400. In this work, GNILC is also applied to a particular CO IM experiment: the CO Mapping Array Pathfinder (COMAP). In this case, the simulated radio observations include CO emission, Galactic synchrotron, Galactic free-free, Galactic anomalous microwave emission, extragalactic point sources and thermal noise. We find that GNILC can reconstruct the CO plus noise power spectra with 7.3% accuracy for COMAP phase 1 (l <1800) and 6.3% for phase 2 (l <3000). In both cases, we have 2.4 <z <3.4 (26 - 34 GHz). In this work, we also forecast the uncertainties on cosmological parameters for the upcoming HI IM experiments BINGO (BAO from Integrated Neutral Gas Observations) and SKA (Square Kilometre Array) phase-1 dish array operating in auto-correlation mode. For the optimal case of BINGO with no foregrounds, the combination of the HI angular power spectra with Planck results allows w to be measured with a precision of 4%, while the combination of the BAO acoustic scale with Planck gives a precision of 7%. We consider a number of potentially complicating effects, including foregrounds and redshift dependent bias, which increase the uncertainty on w but not dramatically; in all cases the final uncertainty is found to be less than 8% for BINGO. For the combination of SKA-MID in auto-correlation mode (total-power) with Planck, we find that, in ideal conditions, w can be measured with a precision of 4% for the redshift range 0.35 <z <3 (350 - 1050 MHz) and 2% for 0 <z <0.49 (950 - 1421 MHz). Extending the model to include the sum of neutrino masses yields a 95% upper limit of less than 0.30 eV for BINGO and less than 0.12 eV for SKA phase 1, competitive with the current best constraints in the case of BINGO and significantly better in the case of SKA.
|
566 |
Cosmologia e o principio de Maupertuis-Jacobi / Cosmology and the Maupertuis-Jacobi principleElias, Luciana Aparecida 14 March 2008 (has links)
Orientador: Alberto Vazquez Saa / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-09-24T19:33:36Z (GMT). No. of bitstreams: 1
Elias_LucianaAparecida_D.pdf: 944370 bytes, checksum: 7dbca4d7a5a1d3081145a59e14a05b42 (MD5)
Previous issue date: 2008 / Resumo: Mostraremos que as equações de movimento de uma classe de modelos cosmológicos anisotrópicos envolvendo campos escalares com acoplamento não mínimo à gravitação são equivalentes ao fluxo geodésico em certas variedades estendidas munidas de uma métrica não-riemanniana, generalizando alguns trabalhos recentes e permitindo uma melhor classificação dinâmica do espaço de fase das soluções destes modelos cosmológicos. Essencialmente, as técnicas empregadas neste trabalho são uma generalização do conhecido Princípio de Maupertuis-Jacobi da Mecânica Clássica, o qual permite associar o fluxo geodésico de uma métrica particular (a métrica de Jacobi) às equações de movimento de um dado sistema mecânico, tipicamep.te Hamiltoniano. Mostraremos também que a abordagem geométrica baseada na métrica de Eisenhart da mecânica clássica pode ser generalizada de maneira análoga ao do Princípio de Maupertuis-Jacobi para o caso de equações cosmológicas, permitindo a introdução de um outro enfoque geométrico complementar àquele correspondente à generalização' do Princípio de Maupertuis-Jacobi. Estes resultados são aplicados a modelos cosmológicos de quintessência atuais e resultados interessantes e promissores são obtidos / Abstract: We will show that the equations of motion for a class of non-minimally coupled anisotropic scalar-tensorial cosmological models are equivalent to the geodesic fux on certain augmented manifold endowed with a non-Riemannian metric. This result generalizes some recent ones and provides a better dynamical classification of the phase space of such cosmological models. The
techniques employed in this work are, basically, a generalization of the well known Maupertuis- Jacobi Principle of Classical Mechanics, which allows us to associate the geodesic flux of a particular metric (the so called Jacobi Metric) to the equations of motion of a given mechanical system, typically a Hamiltonian one. We will show also that the classical geometrical approach based on the Eisenhart metric can be generalized in an analogous way for the cosmological case, leading to another complementary geometrical approach to that one corresponding to the generalization of the Maupertuis-Jacobi Principle. Such results are applied to certain quintessential cosmological models leading to some interesting and promising results / Doutorado / Fisica-Matematica / Doutor em Matemática Aplicada
|
567 |
Um estudo sobre a tensão supernova - radiação cósmica de fundo e decaimento do vácuo / A Study About the Supernovae - Cosmic Background Radiation Tension and Vacuum DecayGeorge José Martins Zilioti 28 June 2013 (has links)
Neste trabalho analisamos algumas consequências físicas de uma cosmologia acelerada com interação no chamado setor cósmico escuro (energia escura + matéria escura fria). A componente de energia escura é representada por uma densidade de energia do vácuo que varia com o tempo e cuja lei de decaimento tem a seguinte forma: $\\Lambda = \\Lambda_0 + {3\\alpha}/{a^{2}}$, onde $\\Lambda_0$ é o termo de vácuo usual, $\\alpha$ é um parâmetro livre e $a(t)$ o fator de escala. Nesse contexto discutimos a tensão existente entre os dados de Supernovas (que preferem um Universo fechado, $\\Omega_{\\kappa} > 0$) e os dados da radiação cósmica de fundo que favorecem um Universo espacialmente plano ($\\Omega_{\\kappa} = 0$). Considerando que o termo variável simula uma curvatura (pois ambos possuem a mesma dependência no fator de escala), mostramos que sua contribuição atua no sentido de aliviar a tensão SNe Ia-CMB existente no modelo de concordância cósmica padrão ($\\Lambda CDM$, $\\alpha=0$). O modelo resolve o problema da idade do Universo e para $a>>1$, tal como ocorre com $\\Lambda CDM$, também evolui para um estágio de Sitter. O parâmetro $\\alpha$ é limitado através de uma análise estatística conjunta envolvendo dados de Supernovas, CMB ({\\it shift parameter}) e oscilações acústicas dos bárions (BAO). Separando o termo de vácuo em duas componentes ($\\Omega_{\\Lambda 0}$ e $\\Omega_{\\alpha 0}$) um teste $\\chi^{2}$ fornece os seguintes valores para o modelo plano: $\\Omega_{m0} = 0,27 \\pm 0,02$, $\\Omega_{\\Lambda 0} = 0,74 \\pm 0,02$ e $\\Omega_{\\alpha 0} = -0,01 \\pm 0,03$. / In this work we analyze some physical consequences of an accelerating cosmology endowed with interaction in the cosmic dark sector (dark energy + cold dark matter). The dark energy component is represented by a time-dependent vacuum energy whose decay law has the following form: $\\Lambda = \\Lambda_0 + {3\\alpha}/{a^{2}}$, where $\\Lambda_0$ is the standard vacuum term, $\\alpha$ is a free parameter and $a(t)$ is the scale factor. In this context we discuss the existing tension between Supernovas (SNe Ia, which prefer a closed Universe, $\\Omega_{\\kappa} > 0$) and the cosmic background radiation (CMB) data (which are favoring a spatially flat Universe, $\\Omega_{\\kappa} = 0$). By considering that the variable $\\Lambda$-term mimics a curvature (since both terms have the same dependence on the scale factor), we show that its contribution helps to alleviate the tension SNe Ia-CMB existing in the standard cosmic concordance model. The present model solves the age of the Universe problem and for $a>>1$, it also evolves to a de Sitter model as occur with the $\\Lambda CDM$ scenario. The contribution of the $\\alpha$ parameter is limited through a joint statistical analysis involving Supernovas, CMB ({\\it shift parameter}) and baryon acoustic oscillations (BAO). By separating the variable vacuum term in two components ($\\Omega_{\\Lambda 0}$ e $\\Omega_{\\alpha 0}$), a $\\chi^{2}$ test furnishes the following values for the free parameters of the flat model: $\\Omega_{m0} = 0,27 \\pm 0,02$, $\\Omega_{\\Lambda 0} = 0,74 \\pm 0,02$ and $\\Omega_{\\alpha 0} = -0,01 \\pm 0,03$.
|
568 |
Modelling dark energyJackson, Brendan Marc January 2011 (has links)
One of the most pressing, modern cosmological mysteries is the cause of the accelerated expansion of the universe. The energy density required to cause this large scale opposition to gravity is known to be both far in excess of the known matter content, and remarkably smooth and unclustered across the universe. While the most commonly accepted answer is that a cosmological constant is responsible, alternatives abound. This thesis is primarily concerned with such alternatives; both their theoretical nature and observational consequences. In this thesis, we will dedicate Chapter 1 to a brief review on the fundamentals of general relativity, leading into the basics of theoretical cosmology. Following this we will recall some of the key observations that has lead to the standard CDM cosmology. The standard model has well known problems, many of which can be answered by the theoretical ideas of inflation. In Chapter 2 we explore these ideas, including a summary of classical field theory in the context of cosmology, upon which inflation is based. This also serves as the groundwork for Chapter 3, where the varied models of dark energy (and their motivations) are discussed - many of which are also reliant on field theory (such as quintessence). These notions are combined in a model described in Chapter 4, where we describe our own addition to a scenario that unifies dark energy and inflation. This addition - involving a coupling of the inflation field to an additional one - alter the way reheating takes place after inflation, removing some of the shortcomings of the original proposal. The analysis is extended in Chapter 5, to include the effect of quantum corrections. There we show that although a cursory analysis indicates a coupling between quintessence and some other field does not necessarily give rise to dangerously large quantum corrections, provided the effects of decoupling are taken into account. We move on in Chapter 6 to examine the basics of cosmological perturbation theory, and derive the general equations of motion for density and velocity perturbations for a system of fluids, allowing for the exchange of energy-momentum. We make use of this in Chapters 7 and 8, were we examine the growth of structure in a universe where energy is exchanged between dark matter and dark energy. In particular, in Chapter 7 we see that a particular form of the interaction can lead to an instability in the early universe, and we derive the condition for this to be the case. In Chapter 8, we discuss how a similar interaction can lead to a mimicry of modified gravity, and relate this directly to cosmological observations. Finally we summarise our conclusions and discuss avenues of future research in Chapter 9.
|
569 |
Um estudo sobre a tensão supernova - radiação cósmica de fundo e decaimento do vácuo / A Study About the Supernovae - Cosmic Background Radiation Tension and Vacuum DecayZilioti, George José Martins 28 June 2013 (has links)
Neste trabalho analisamos algumas consequências físicas de uma cosmologia acelerada com interação no chamado setor cósmico escuro (energia escura + matéria escura fria). A componente de energia escura é representada por uma densidade de energia do vácuo que varia com o tempo e cuja lei de decaimento tem a seguinte forma: $\\Lambda = \\Lambda_0 + {3\\alpha}/{a^{2}}$, onde $\\Lambda_0$ é o termo de vácuo usual, $\\alpha$ é um parâmetro livre e $a(t)$ o fator de escala. Nesse contexto discutimos a tensão existente entre os dados de Supernovas (que preferem um Universo fechado, $\\Omega_{\\kappa} > 0$) e os dados da radiação cósmica de fundo que favorecem um Universo espacialmente plano ($\\Omega_{\\kappa} = 0$). Considerando que o termo variável simula uma curvatura (pois ambos possuem a mesma dependência no fator de escala), mostramos que sua contribuição atua no sentido de aliviar a tensão SNe Ia-CMB existente no modelo de concordância cósmica padrão ($\\Lambda CDM$, $\\alpha=0$). O modelo resolve o problema da idade do Universo e para $a>>1$, tal como ocorre com $\\Lambda CDM$, também evolui para um estágio de Sitter. O parâmetro $\\alpha$ é limitado através de uma análise estatística conjunta envolvendo dados de Supernovas, CMB ({\\it shift parameter}) e oscilações acústicas dos bárions (BAO). Separando o termo de vácuo em duas componentes ($\\Omega_{\\Lambda 0}$ e $\\Omega_{\\alpha 0}$) um teste $\\chi^{2}$ fornece os seguintes valores para o modelo plano: $\\Omega_{m0} = 0,27 \\pm 0,02$, $\\Omega_{\\Lambda 0} = 0,74 \\pm 0,02$ e $\\Omega_{\\alpha 0} = -0,01 \\pm 0,03$. / In this work we analyze some physical consequences of an accelerating cosmology endowed with interaction in the cosmic dark sector (dark energy + cold dark matter). The dark energy component is represented by a time-dependent vacuum energy whose decay law has the following form: $\\Lambda = \\Lambda_0 + {3\\alpha}/{a^{2}}$, where $\\Lambda_0$ is the standard vacuum term, $\\alpha$ is a free parameter and $a(t)$ is the scale factor. In this context we discuss the existing tension between Supernovas (SNe Ia, which prefer a closed Universe, $\\Omega_{\\kappa} > 0$) and the cosmic background radiation (CMB) data (which are favoring a spatially flat Universe, $\\Omega_{\\kappa} = 0$). By considering that the variable $\\Lambda$-term mimics a curvature (since both terms have the same dependence on the scale factor), we show that its contribution helps to alleviate the tension SNe Ia-CMB existing in the standard cosmic concordance model. The present model solves the age of the Universe problem and for $a>>1$, it also evolves to a de Sitter model as occur with the $\\Lambda CDM$ scenario. The contribution of the $\\alpha$ parameter is limited through a joint statistical analysis involving Supernovas, CMB ({\\it shift parameter}) and baryon acoustic oscillations (BAO). By separating the variable vacuum term in two components ($\\Omega_{\\Lambda 0}$ e $\\Omega_{\\alpha 0}$), a $\\chi^{2}$ test furnishes the following values for the free parameters of the flat model: $\\Omega_{m0} = 0,27 \\pm 0,02$, $\\Omega_{\\Lambda 0} = 0,74 \\pm 0,02$ and $\\Omega_{\\alpha 0} = -0,01 \\pm 0,03$.
|
570 |
Formulação cinética para cosmologias com criação de matéria e aplicações / Kinetic Formulation for Cosmologies with Matter Creation and ApplicationsRaymundo, Iúri Baranov Pereira 23 November 2015 (has links)
Nesta tese, estudamos cosmologias com criação de matéria como alternativa ao modelo $\\Lambda$CDM. Generalizamos a equação de Boltzmann relativística com um termo de produção de partículas fenomenológico, de tal forma que a equação resultante seja capaz de reobter os resultados da termodinâmica de não-equilíbrio das equações de balanço e evolução de temperatura. Após obter o termo correto para a equação generalizada de Boltzmann, investigamos como o formalismo proposto altera a equação de evolução de relíquias cósmicas na presença de criação gravitacional de partículas. / In this thesis, we study matter creation cosmologies as an alternative to the $\\Lambda$CDM model. We generalize the relativistic Boltzmann equation with a phenomenological particle production term, in such a way that the resulting equation will be able to reproduce the non-equilibrium thermodynamics results of the balance equations and temperature evolution law. After obtaining the correct term to the generalized Boltzmann equation, we investigate how the proposed formalism changes the cosmic relic evolution equation in the presence of gravitational particle creation.
|
Page generated in 0.0558 seconds