• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 35
  • 35
  • 16
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

CFD MODELING OF MULTIPHASE COUNTER-CURRENT FLOW IN PACKED BED REACTOR FOR CARBON CAPTURE

Yang, Li 01 January 2015 (has links)
Packed bed reactors with counter-current, gas-liquid flows have been considered to be applicable in CO2 capture systems for post-combustion processing from fossil-fueled power production units. However, the hydrodynamics within the packing used in these reactors under counter-current flow has not been assessed to provide insight into design and operational parameters that may impact reactor and reaction efficiencies. Hence, experimental testing of a laboratory-scale spherical ball, packed bed with two-phase flow was accomplished and then a meso-scale 3D CFD model was developed to numerically simulate the conditions and outcomes of the experimental tests. Also, the hydrodynamics of two-phase flow in a packed bed with structured packing were simulated using a meso-scale, 3D CFD model and then validated using empirical models. The CFD model successfully characterized the hydrodynamics inside the packing, with a focus on parameters such as the wetted surface areas, gas-liquid interactions, liquid distributions, pressure drops, liquid holdups, film thicknesses and flow regimes. The simulation results clearly demonstrated the development of and changes in liquid distributions, wetted areas and film thicknesses under various gas and liquid flow rates. Gas and liquid interactions were observed to occur at the interface of the gas and liquid through liquid entrainment and droplet formation, and it became more dominant as the Reynolds numbers increased. Liquid film thicknesses in the structured packing were much thinner than in the spherical ball packing, and increased with increasing liquid flow rates. Gas flow rates had no significant effect on film thicknesses. Film flow and trickle flow regimes were found in both the spherical ball and structured packing. A macro-scale, porous model was also developed which was less computationally intensive than the meso-scale, 3D CFD model. The macro-scale model was used to study the spherical ball packing and to modify its closure equations. It was found that the Ergun equation, typically used in the porous model, was not suitable for multi-phase flow. Hence, it was modified by replacing porosity with the actual pore volume within the liquid phase; this modification successfully accounted for liquid holdup which was predicted via a proposed equation.
22

Rotační sušící a sintrovací pece / Rotary drying and sintering kilns

Rafaj, Svatomír January 2018 (has links)
This thesis deals with rotary drying and sintering kilns. The first part focused upon construction of the kilns, kiln processes and the options of technological arrangement of the kilns. The thesis second part presents two experiments. The first one is targeted to find the relation between residence time, kiln rotary speed and kiln slope in longitudinal direction. The examinations analysed individually the relation between kiln rotary speed and residence time and the relation between kiln slope and residence time. Finally, the regression equation describing the relation between holding time, kiln rotary speed and kiln rake was established. The results given by regression equation much closer to the real one then the results given by literature. The difference between real residence time and the regression one is about one minute. The second one is concerned with producing a set of equations with respect of mass and heat balance in case of drying process. The input material was wet crushed tetra packs. There were established technological conditions of the material, necessary burner energy input, heat losses and distribution of heat between material and flue gas. There were taken away almost 80 percent of heat energy by flue gases. The remaining 20 percent was divided between latent heat, material and heat losses through the shell of the rotary kiln.
23

Two-phase flow experiments in a model of the hot leg of a pressurised water reactor

Seidel, Tobias, Vallée, Christoph, Lucas, Dirk, Beyer, Matthias, Deen, Darlianto January 2010 (has links)
In order to investigate the two-phase flow behaviour in a complex reactor-typical geometry and to supply suitable data for CFD code validation, a model of the hot leg of a pressurised water reactor was built at FZD. The hot leg model is operated in the pressure chamber of the TOPFLOW test facility, which is used to perform high-pressure experiments under pressure equilibrium with the inside atmosphere of the chamber. This technique makes it possible to visualise the two-phase flow through large windows, also at reactor-typical pressure levels. In order to optimise the optical observation possibilities, the test section was designed with a rectangular cross-section. Experiments were performed with air and water at 1.5 and 3.0 bar at room temperature as well as with steam and water at 15, 30 and 50 bar and the corresponding saturation temperature (i.e. up to 264°C). The total of 194 runs are divided into 4 types of experiments covering stationary co-current flow, counter-current flow, flow without water circulation and transient counter-current flow limitation (CCFL) experiments. This report provides a detailed documentation of the experiments including information on the experimental setup, experimental procedure, test matrix and on the calibration of the measuring devices. The available data is described and data sheets were arranged for each experiment in order to give an overview of the most important parameters. For the cocurrent flow experiments, water level histograms were arranged and used to characterise the flow in the hot leg. In fact, the form of the probability distribution was found to be sensitive to the boundary conditions and, therefore, is useful for the CFD comparison. Furthermore, the flooding characteristics of the hot leg model plotted in terms of the classical Wallis parameter or Kutateladze number were found to fail to properly correlate the data of the air/water and steam/water series. Therefore, a modified Wallis parameter is proposed, which takes the effect of viscosity into account.
24

Two-phase flow experiments in a model of the hot leg of a pressurised water reactor

Seidel, T., Beyer, M. January 2011 (has links)
In order to investigate the two-phase flow behaviour in a complex reactor-typical geometry and to supply suitable data for CFD code validation, a model of the hot leg of a pressurised water reactor was built at FZD. The hot leg model is operated in the pressure chamber of the TOPFLOW test facility, which is used to perform high-pressure experiments under pressure equilibrium with the inside atmosphere of the chamber. This technique makes it possible to visualise the two-phase flow through large windows, also at reactor-typical pressure levels. In order to optimise the optical observation possibilities, the test section was designed with a rectangular cross-section. Experiments were performed with air and water at 1.5 and 3.0 bar at room temperature as well as with steam and water at 15, 30 and 50 bar and the corresponding saturation temperature (i.e. up to 264°C). The total of 194 runs are divided into 4 types of experiments covering stationary co-current flow, counter-current flow, flow without water circulation and transient counter-current flow limitation (CCFL) experiments. This report provides a detailed documentation of the experiments including information on the experimental setup, experimental procedure, test matrix and on the calibration of the measuring devices. The available data is described and data sheets were arranged for each experiment in order to give an overview of the most important parameters. For the cocurrent flow experiments, water level histograms were arranged and used to characterise the flow in the hot leg. In fact, the form of the probability distribution was found to be sensitive to the boundary conditions and, therefore, is useful for the CFD comparison. Furthermore, the flooding characteristics of the hot leg model plotted in terms of the classical Wallis parameter or Kutateladze number were found to fail to properly correlate the data of the air/water and steam/water series. Therefore, a modified Wallis parameter is proposed, which takes the effect of viscosity into account.
25

Two-Phase Flow Experiments on Counter-Current Flow Limitation in a model of the Hot Leg of a Pressurized Water Reactor (2015 test series): Two-Phase Flow Experiments on Counter-Current Flow Limitation in a model of the Hot Leg of a Pressurized Water Reactor (2015 test series)

Beyer, Matthias, Lucas, Dirk, Pietruske, Heiko, Szalinski, Lutz 15 February 2017 (has links)
Counter-Current Flow Limitation (CCFL) is of importance for PWR safety analyses in several accident scenarios connected with loss of coolant. Basing on the experiences obtained during a first series of hot leg tests now new experiments on counter-current flow limitation were conducted in the TOPFLOW pressure vessel. The test series comprises air-water tests at 1 and 2 bar as well as steam-water tests at 10, 25 and 50 bar. During the experiments the flow structure was observed along the hot leg model using a high-speed camera and web-cams. In addition pressure was measured at several positions along the horizontal part and the water levels in the reactor-simulator and steam-generator-simulator tanks were determined. This report documents the experimental setup including the description of operational and special measuring techniques, the experimental procedure and the data obtained. From these data flooding curves were obtained basing on the Wallis parameter. The results show a slight shift of the curves in dependency of the pressure. In addition a slight decrease of the slope was found with increasing pressure. Additional investigations concern the effects of hysteresis and the frequencies of liquid slugs. The latter ones show a dependency on pressure and the mass flow rate of the injected water. The data are available for CFD-model development and validation.
26

Etude du comportement de mousse céramique comme contacteur Gaz/Liquide à contre courant : application à la distillation et à la distillation réactive / Study of the behaviour of ceramic foam as gas/liquid contactor at counter current : application in distillation and reactive distillation

Lévêque, Julien 05 November 2010 (has links)
Ces travaux de thèse abordent la problématique du développement d'internes destinés à la distillation réactive. La méthodologie à suivre est appliquée dans le cas des mousses céramiques en Carbure de Silicium. Le comportement hydrodynamique a été étudié ainsi que la capacité en transfert de matière validant la possible application des mousses en tant que garnissage destiné à la distillation. L'activation catalytique du support a ensuite été développée afin de dégager la méthode la plus intéressante permettant d'approcher le garnissage de référence, le KATAPAK, en termes d'activité catalytique. Le greffage d'Amberlyst 15 est alors apparu comme la voie la plus intéressante pour la possible application des mousses greffées comme interne catalytique destiné à la distillation réactive. / This work of thesis approaches the problems of the development of packings intended for reactive distillation. Methodology to be followed is so applied in the case of ceramic foam in Silicon Carbide. The hydrodynamic behaviour was studied as well as the mass transfer efficiency demonstrating the possible application of ceramic foam as a packing for distillation. The aspect of the catalytic activation of the support was then developed in order to determine the most efficiency method in terms of catalytic activity making it possible to approach reference packing, the KATAPAK. The coating of Amberlyst 15 then appeared as the most interesting way for the possible application of coating foam as catalytic packing for reactive distillation.
27

Dynamics of the free surface of stratified two-phase flows in channels with rectangular cross-sections

Vallée, Christophe 24 April 2012 (has links) (PDF)
Stratified two-phase flows were investigated at different test facilities with horizontal test sections in order to provide an experimental database for the development and validation of computational fluid dynamics (CFD) codes. These channels were designed with rectangular cross-sections to enable optimal observation conditions for the application of optical measurement techniques. Consequently, the local flow structure was visualised with a high-speed video camera, delivering data with high-resolution in space and time as needed for CFD code validation. Generic investigations were performed at atmospheric pressure and room temperature in two air/water channels made of acrylic glass. Divers preliminary experiments were conducted with various measuring systems in a test section mounted between two separators. The second test facility, the Horizontal Air/Water Channel (HAWAC), is dedicated to co-current flow investigations. The hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was studied in this closed channel. Moreover, the instable wave growth leading to slug flow was investigated from the test section inlet. For quantitative analysis of the optical measurements, an algorithm was developed to recognise the stratified interface in the camera frames, allowing statistical treatments for comparison with CFD calculation results. The third test apparatus was installed in the pressure chamber of the TOPFLOW test facility in order to be operated at reactor typical conditions under pressure equilibrium with the vessel atmosphere. The test section representing a flat model of the hot leg of the German Konvoi pressurised water reactor (PWR) scaled at 1:3 is equipped with large glass side walls in the region of the elbow and of the steam generator inlet chamber to allow visual observations. The experiments were conducted with air and water at room temperature and maximum pressures of 3 bar as well as with steam and water at boundary conditions of up to 50 bar and 264°C. Four types of experiments were performed, including generic test cases as well as transient validation cases of typical nuclear reactor safety issues. As an example, the co-current flow experiments simulate the two-phase natural circulation in the primary circuit of a PWR. The probability distribution of the water level measured in the reactor pressure vessel simulator was used to characterise the flow in the hot leg. Moreover, the flooding behaviour in this conduit was investigated with dedicated counter-current flow limitation experiments. A comparison of the flooding characteristics with similar experimental data and correlations available in the literature shows that the channel height is the characteristic length to be used in the Wallis parameter for channels with rectangular cross-sections. Furthermore, for the analysis of steam/water experiments, condensation effects had to be taken into account. Finally, the experimental results confirm that the Wallis similarity is appropriate to scale flooding in the hot leg of a PWR over a large range of pressure and temperature conditions. Not least, different examples of comparison between experiment and simulation demonstrate the possibilities offered by the data to support the development and validation of CFD codes. Besides the comparison of qualitative aspects, it is shown exemplarily how to treat the CFD results in order to enable quantitative comparisons with the experiments.
28

Contribution à l'étude de la chromatographie à contre-courant : partage de composés ionisables, nouvelles colonnes et purification séquentielles / New Trends in counter-current chromatography : ionisable compounds partition, new columns and sequential purification

Mekaoui, Nazim 29 November 2012 (has links)
La chromatographie à contre courant (CCC) est une technique de purification chimique préparative quitravaille avec un système biphasique liquide. Une phase est la phase mobile, l'autre phase est la phasestationnaire. Il n'y a aucun support solide: un champ de force centrifuge est utilisé pour maintenir en place laphase stationnaire. Ce travail est une contribution à l'étude de la purification préparative par CCC. Après uneimportante étude bibliographique des procédés de purification en continu tant en CCC qu'autres, il est montréque la méthode dite "multi-dual-mode", ou MDM, est une solution possible. Elle consiste à utiliser le fait queles deux phases liquides peuvent servir de phase stationnaire: il suffit d'inverser le sens de circulation et lanature de la phase mobile (méthode dual-mode). Le mélange est séparé de façon classique pendant untemps chronométré, puis on inverse le rôle des phases: la phase mobile devient stationnaire et vice versa eton inverse également le sens de circulation (ascendant devient descendant ou vice versa). On sort lescomposants du mélange soit d'un coté de la colonne CCC, soit de l'autre. La méthode est mise en oeuvrepour purifier le Bleu de Coomassie en le débarassant des ses composés polaires (d'un coté) et apolaire (del'autre coté de la colonne et en accumulant dans la colonne la fraction de polarité intermédiaire, fractiond'intérêt. Une nouvelle colonne hydrostatique de petit volume (30 mL) a également été testée: elle permetde tester un nouveau système liquide très rapidement. / Counter-current chromatography (CCC) is a preparative purification technique that works with the twoliquid phases of a biphasic liquid system. One phase is used as the mobile phase when the other phase isused as the stationary phase. There is no solid support: centrifugal fields are used to obtain a support-freeliquid stationary phase. This work contains an exhaustive bibliographic study of what can be found in theliterature concerning continuous chromatographic processes. The multi-dual-mode (MDM) process was foundto be the best one able to purify large amount of crude mixtures. The MDM method starts with a classicalseparation of the mixture followed by a switch of both the liquid phase nature and the flowing direction. Themobile phase flowing e.g. in a descending direction becomes the stationary phase. The previous stationaryphase becomes the mobile phase flowing in the ascending direction (or vice versa). The purified compoundsof the introduced mixture are eluted at one side of the column or the other according to their polarity. TheMDM method was used to purify a crude sample of Coomassie Blue: the polar part of the dye was eluted atthe column top (or head) and the apolar part at the column bottom (or tail) while the essential part of the dyewas trapped inside the CCC column. The work also presents a new small volume (30 mL) hydrostatic CCCcolumn. It is shown that this column could be used to test quickly the potential of a given biphasic liquidsystem.
29

Energetické využití komunálního odpadu / Recovery of Energy from Municipal Wastes

Šíma, Kamil January 2010 (has links)
The topic of the diplome thesis is draft of the waste-to-energy plant for municipal waste with cogeneration of heat. Basic specification of project: Waste-to-Energy plant is facilitated by two rotary kilns of type operating in parallel. Further flue gas leaving the post-combustor enters a multicyclone unit to separate substatial portion of fly-ash. Heat of flue gas at the temperature of 1000°C generates superheated steam in a Heat Recovery Steam Generator (HRSG). Dry sorption process is appllied for flue gas treatment. Specifically sodium bi-carbonate is used for it. Products of reactions and remnants of dust are separated by a baghouse. Superheated steam, generated by two HRSG, presents the inlet stream of a condensing steam turbine with steam extraction. The diploma thesis contains calculation of major devices and basic economical and financial statement of project.
30

Dynamics of the free surface of stratified two-phase flows in channels with rectangular cross-sections

Vallée, Christophe 24 April 2012 (has links)
Stratified two-phase flows were investigated at different test facilities with horizontal test sections in order to provide an experimental database for the development and validation of computational fluid dynamics (CFD) codes. These channels were designed with rectangular cross-sections to enable optimal observation conditions for the application of optical measurement techniques. Consequently, the local flow structure was visualised with a high-speed video camera, delivering data with high-resolution in space and time as needed for CFD code validation. Generic investigations were performed at atmospheric pressure and room temperature in two air/water channels made of acrylic glass. Divers preliminary experiments were conducted with various measuring systems in a test section mounted between two separators. The second test facility, the Horizontal Air/Water Channel (HAWAC), is dedicated to co-current flow investigations. The hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was studied in this closed channel. Moreover, the instable wave growth leading to slug flow was investigated from the test section inlet. For quantitative analysis of the optical measurements, an algorithm was developed to recognise the stratified interface in the camera frames, allowing statistical treatments for comparison with CFD calculation results. The third test apparatus was installed in the pressure chamber of the TOPFLOW test facility in order to be operated at reactor typical conditions under pressure equilibrium with the vessel atmosphere. The test section representing a flat model of the hot leg of the German Konvoi pressurised water reactor (PWR) scaled at 1:3 is equipped with large glass side walls in the region of the elbow and of the steam generator inlet chamber to allow visual observations. The experiments were conducted with air and water at room temperature and maximum pressures of 3 bar as well as with steam and water at boundary conditions of up to 50 bar and 264°C. Four types of experiments were performed, including generic test cases as well as transient validation cases of typical nuclear reactor safety issues. As an example, the co-current flow experiments simulate the two-phase natural circulation in the primary circuit of a PWR. The probability distribution of the water level measured in the reactor pressure vessel simulator was used to characterise the flow in the hot leg. Moreover, the flooding behaviour in this conduit was investigated with dedicated counter-current flow limitation experiments. A comparison of the flooding characteristics with similar experimental data and correlations available in the literature shows that the channel height is the characteristic length to be used in the Wallis parameter for channels with rectangular cross-sections. Furthermore, for the analysis of steam/water experiments, condensation effects had to be taken into account. Finally, the experimental results confirm that the Wallis similarity is appropriate to scale flooding in the hot leg of a PWR over a large range of pressure and temperature conditions. Not least, different examples of comparison between experiment and simulation demonstrate the possibilities offered by the data to support the development and validation of CFD codes. Besides the comparison of qualitative aspects, it is shown exemplarily how to treat the CFD results in order to enable quantitative comparisons with the experiments.

Page generated in 0.0649 seconds