• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 158
  • 83
  • 80
  • 33
  • 20
  • 14
  • 9
  • 6
  • 5
  • 5
  • 3
  • 1
  • Tagged with
  • 450
  • 316
  • 315
  • 201
  • 201
  • 102
  • 57
  • 56
  • 52
  • 51
  • 50
  • 49
  • 41
  • 41
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Studies of broad-spectrum inhibitors against main protease of SARS-CoV-2 and other Coronaviruses

Stanciu, Alexandra January 2023 (has links)
Coronaviruses have caused three large outbreaks in the past century. The most recent one, also still ongoing, is represented by the SARS-CoV-2/Covid-19 pandemic. Efforts have been taken to develop efficient vaccines and antivirals and one of the major virus-based targets in drug development is represented by the main protease of these viruses. Main proteases are proteins (cysteine hydrolases) with high level of conservation among different coronaviruses and have an important role in the virus life cycle. Due to the need of developing broad-spectrum antivirals against Coronaviruses, this study aimed to set up a CPE-based assay for testing compounds against the main protease of human coronavirus 229E. An optimized TCID50 protocol was established by using MRC-5 cells, at a density of 1x104 cells/ml with a 3h incubation prior infection with a concentration of 10-1 of HCoV-229E. The cell viability was assessed through MTT assay. Using reference compounds, with previously demonstrated antiviral potency against the main protease of different coronaviruses (GC-376, Nirmatrelvir), the efficiency of the conceived assay was validated (GC-376 EC50 = 1.24 μM; Nirmatrelvir Ec50= 0.72 μM). Compound 19 was proved to also be active against the main protease of HCoV-229E (EC50 = 0.22 μM), and together with previous findings, it was concluded that this compound has a broad-spectrum activity. Newly developed compounds MP17 and MP19 were also demonstrated to be efficient against HCoV-229E. As a future perspective, further investigations of these compounds should take place for the identification of EC50 values.
372

Towards time-resolved cryo-EM of SARS-CoV-2 replication-transcription complex and Staphylococcus aureus DNA gyrase

Králová, Anna January 2023 (has links)
Time-resolved cryo-EM has already provided ground-breaking discoveries in various fields, including structural biology, biochemistry, and drug development. Compared to traditional structural biology methods where mostly stabilized conformations are reconstructed, the main advantage of time-resolved cryo-EM is its ability to capture dynamic processes in biological samples at near-atomic resolution, which allows for studying biological structures as they change and interact in real-time. In this project, I focused on the expression and purification of the individual proteins of two dynamic molecular complexes – Staphylococcus aureus (S. aureus) DNA gyrase and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) replication-transcription complex – and attempted to assemble them into their functional forms for cryo-EM imaging.  Both of these complexes are interesting drug targets as they play an essential role in nucleic acid replication. The function of DNA gyrase is to modulate DNA supercoiling, facilitate DNA replication, and resolve intertwined DNA molecules. The replication-transcription complex of SARS-CoV-2 comprises, among other proteins, the RNA-dependent RNA polymerase, which, together with non-structural proteins 7 and 8, is responsible for the replication of the viral genome. There are still many questions about the underlying mechanisms of these key processes, and time-resolved cryo-EM studies will provide valuable information to advance our understanding of them. Here I present expression and purification protocols for S. aureus DNA gyrase subunits A and B and SARS-CoV-2 non-structural proteins 7, 8 and 12. DNA gyrase subunits A and B were expressed in Escherichia coli (E. coli) and purified in several steps, including affinity chromatography (His-Trap), ion exchange chromatography (IEX) and size exclusion chromatography (SEC). Despite many challenges with gyrase A precipitation, I obtained enough of both subunits for the intended cryo-EM. Different strategies to assemble them into a functional tetramer were tested but did not result in the expected outcome. The gained knowledge about the behaviour of the subunits in solution will serve as a basis for further optimization of the protocols before the assembly of the complex can be attempted again. Non-structural proteins 7 and 8 were expressed in E. coli as a polyprotein and successfully purified using His-Trap and SEC. I obtained a great amount of the polyprotein and established a protocol for its cleavage. Nsp12 was expressed using the baculovirus-insect cell expression system. The immunofluorescence assay data showed that the tested lipofection protocol works, and nsp12 is being produced in sufficient quantities. This result provides a solid base for further experiments to establish a purification method and assemble the nsp12-nsp7-nsp8 complex for cryo-EM imaging.
373

The Physicochemical Characterization of Proteins and RNA in Positive Strand RNA Viruses

Haddad, Christina 26 May 2023 (has links)
No description available.
374

Business analytics tools for data collection and analysis of COVID-19

Widing, Härje January 2021 (has links)
The pandemic that struck the entire world 2020 caused by the SARS-CoV-2 (COVID-19) virus, will have an enormous interest for statistical and economical analytics for a long time. While the pandemic of 2020 is not the first that struck the entire world, it is the first pandemic in history where the data were gathered to this extent. Most countries have collected and shared its numbers of cases, tests and deaths related to the COVID-19 virus using different storage methods and different data types. Gaining quality data from the COVID-19 pandemic is a problem most countries had during the pandemic, since it is constantly changing not only for the current situation but also because past values have been altered when additional information has surfaced. The importance of having the latest data available for government officials to make an informed decision, leads to the usage of Business Intelligence tools and techniques for data gathering and aggregation being one way of solving the problem. One of the mostly used software to perform Business Intelligence is the Microsoft develop Power BI, designed to be a powerful visualizing and analysing tool, that could gather all data related to the COVID-19 pandemic into one application. The pandemic caused not only millions of deaths, but it also caused one of the largest drops on the stock market since the Great Recession of 2007. To determine if the deaths or other reasons directly caused the drop, the study modelled the volatility from index funds using Generalized Autoregressive Conditional Heteroscedasticity. One question often asked when talking of the COVID-19 virus, is how deadly the virus is. Analysing the effect the pandemic had on the mortality rate is one way of determining how the pandemic not only affected the mortality rate but also how deadly the virus is. The analysis of the mortality rate was preformed using Seasonal Artificial Neural Network. Forecasting deaths from the pandemic using the Seasonal Artificial Neural Network on the COVID-19 daily deaths data.
375

Trained Immunity: An Overview and the Impact on COVID-19

Brueggeman, Justin M., Zhao, Juan, Schank, Madison, Yao, Zhi Q., Moorman, Jonathan P. 01 January 2022 (has links)
Effectively treating infectious diseases often requires a multi-step approach to target different components involved in disease pathogenesis. Similarly, the COVID-19 pandemic has become a global health crisis that requires a comprehensive understanding of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) infection to develop effective therapeutics. One potential strategy to instill greater immune protection against COVID-19 is boosting the innate immune system. This boosting, termed trained immunity, employs immune system modulators to train innate immune cells to produce an enhanced, non-specific immune response upon reactivation following exposure to pathogens, a process that has been studied in the context of and clinical studies prior to the COVID-19 pandemic. Evaluation of the underlying pathways that are essential to inducing protective trained immunity will provide insight into identifying potential therapeutic targets that may alleviate the COVID-19 crisis. Here we review multiple immune training agents, including Bacillus Calmette-Guérin (BCG), β-glucan, and lipopolysaccharide (LPS), and the two most popular cell types involved in trained immunity, monocytes and natural killer (NK) cells, and compare the signaling pathways involved in innate immunity. Additionally, we discuss COVID-19 trained immunity clinical trials, emphasizing the potential of trained immunity to fight SARS-CoV-2 infection. Understanding the mechanisms by which training agents activate innate immune cells to reprogram immune responses may prove beneficial in developing preventive and therapeutic targets against COVID-19.
376

Comparing Immune Responses to Inactivated Vaccines Against SARS-CoV-2 Between People Living With HIV and HIV-Negative Individuals: A Cross-Sectional Study in China

Huang, Xiaojie, Yan, Ying, Su, Bin, Xiao, Dong, Yu, Maohe, Jin, Xia, Duan, Junyi, Zhang, Xiangjun, Zheng, Shimin, Fang, Yuan, Zhang, Tong, Tang, Weiming, Wang, Lunan, Wang, Zixin, Xu, Junjie 28 January 2022 (has links)
This study compared the immunogenicity of inactivated SARS-CoV-2 vaccines between people living with HIV (PLWH) and HIV-negative individuals. We recruited 120 PLWH and 53 HIV-negative individuals aged 18-59 years who had received an inactivated SARS-CoV-2 vaccine in two Chinese cities between April and June 2021. Blood samples were tested for immunogenicity of the inactivated SARS-CoV-2 vaccines. The prevalence and severity of adverse events associated with SARS-CoV-2 vaccines were similar between PLWH and HIV-negative individuals. The seropositivity of neutralizing activity against authentic SARS-CoV-2, of the total amount of antibody (total antibody) and of S-IgG were 71.3%, 81.9%, and 92.6%, respectively, among fully vaccinated PLWH. Among all participants, PLWH had lower neutralizing activity, total antibody, S-IgG, and T-cell-specific immune response levels, compared to HIV-negative individuals, after controlling for types of vaccine, time interval between first and second dose, time after receiving the second dose, and sociodemographic factors. PLWH with a longer interval since HIV diagnosis, who received their second dose 15-28 days prior to study commencement, and who had an interval of ≥21 days between first and second dose had higher neutralizing activity levels. The immunogenicity of the inactivated SARS-CoV-2 vaccines was lower among PLWH as compared to HIV-negative individuals. Vaccination guideline specific for PLWH should be developed.
377

Autoimmune Hemolytic Anemia After mRNA COVID Vaccine

Fatima, Zainab, Reece, Blair R., Moore, J S., Means, Robert T. 01 January 2022 (has links)
Discussion of the hematologic complications of vaccination for severe acute respiratory syndrome coronavirus-2 (COVID-19) has primarily focused on the development of vaccine-associated immune thrombosis with thrombocytopenia (VITT). Other hematologic complications are uncommon. We report the case of a patient who developed immunoglobulin G (IgG)-mediated autoimmune hemolytic anemia (AIHA) after the Moderna COVID-19 messenger ribonucleic acid (mRNA) vaccine.
378

An Adjuvant Strategy Enabled by Modulation of the Physical Properties of Microbial Ligands Expands Antigen Immunogenicity

Borriello, Francesco, Poli, Valentina, Shrock, Ellen, Spreafico, Roberto, Liu, Xin, Pishesha, Novalia, Carpenet, Claire, Chou, Janet, Di Gioia, Marco, McGrath, Marisa E., Dillen, Carly A., Barrett, Nora A., Lacanfora, Lucrezia, Franco, Marcella E., Marongiu, Laura, Iwakura, Yoichiro, Pucci, Ferdinando, Kruppa, Michael D., Ma, Zuchao, Lowman, Douglas W. 17 February 2022 (has links)
Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.
379

L’impact des mutations récurrentes du SARS-CoV-2 sur l’évasion immunitaire

Fournelle, Dominique 08 1900 (has links)
Nous sommes toujours aux prises avec la pandémie de SARS-CoV-2 plus de deux ans après son début. Le virus a depuis accumulé de nombreuses mutations qui ont mené à différentes souches virales au long de la pandémie. Plusieurs de ces mutations sont récurrentes: il y a un excès de mutations C > U dans les génomes viraux, certains codons sont fréquemment mutés vers différents acides aminés et certaines mutations sont convergentes, c’est-à-dire que la même substitution est apparue de manière indépendante sur différentes lignées. Dans ce mémoire, nous avons identifiés différentes manières par lesquelles le SARS-CoV-2 évolue à travers l’étude de ces mutations récurrentes et évaluons leur impact sur l’évasion immunitaire. Premièrement, nous avons déterminés que les mutations C > U sont responsable de l’introduction et du retrait préférentiel d’acides aminés spécifiques dans les épitopes viraux. Nous avons déterminé la significativité statistique de ces patrons de mutation à l’aide de simulations génomiques virales. Deuxièmement, nous avons participé à la surveillance des variants au Québec durant la deuxième vague de la pandémie, qui s’est déroulée d’août 2020 à mars 2021. C’était une période intéressante pour la diversité virale, puisque les restrictions de déplacement ont créé de multiples poches de variants locaux en compétition les uns avec les autres qui partagent des mutations convergentes. Notamment, nous reportons que les lignées B.1.160 et B.1.1.176 comptaient pour 50% des échantillons séquencés au sommet de la deuxième vague dans la province. Finalement, nous avons analysé les patrons mutationnels intra-hôte qui sont apparus de novo dans le contexte d’infections au SARS-CoV-2 de longue durée chez des patients atteints de cancers hématologiques. Une de ces patientes est une patiente québécoise infectée par B.1.160 et dans laquelle nous avons identifié la présence d’un réservoir viral. Nous avons également trouvé des éléments probants montrant différentes quasiespèces virales avec des propriétés d’évasion immunitaire. Nos résultats permettent de mieux comprendre les différentes manières dont les pressions sélectives façonnent l’évolution virale. / We are still living in the SARS-CoV-2 pandemic over two years after its start. The virus has since accumulated many mutations that have led to different viral strains throughout the pandemic. Several of these mutations are recurrent: there is an excess of C > U substitutions in viral genomes, some codons are frequently mutated to different amino acids, and some mutations are convergent, meaning that the same substitution has occurred independently on different lineages. In this thesis, we identified different ways in which SARS-CoV-2 evolves through these recurrent mutations and assess their impact on immune escape. First, we determined that C > U mutations drive the preferential introduction and removal of specific amino acids in viral epitopes. Using genetic simulations, we determined the statistical significance of these patterns. Second, we participated in the surveillance of variants in Quebec during the second wave of the pandemic that went from the end of August 2020 to the end of March 2021. This was an interesting period of viral diversity owing to imposed travel restrictions that created competition between multiple pockets of local strains that share convergent mutations. Notably, we found that lineages B.1.160 and B.1.1.176 account for 50% of samples sequenced at the height of the second wave in the province. Finally, we analyzed intra-host mutational patterns that arose de novo in the context of long-term infections of patients with hematological cancers, one of which was from Québec and infected by B.1.160. We have identified a pattern consistent with the presence of a viral reservoir in this patient. We have also found evidence of different viral quasispecies with immune escape properties. These results shed light on different ways in which selective pressures shape the evolution of SARS-CoV-2.
380

Retinal Vascular Occlusion after COVID-19 Vaccination: More Coincidence than Causal Relationship? Data from a Retrospective Multicentre Study

Feltgen, Nicolas, Ach, Thomas, Ziemssen, Focke, Quante, Carolin Sophie, Gross, Oliver, Din Abdin, Alaa, Aisenbrey, Sabine, Bartram, Martin C., Blum, Marcus, Brockmann, Claudia, Dithmar, Stefan, Friedrichs, Wilko, Guthoff, Rainer, Hattenbach, Lars-Olof, Herrlinger, Klaus R., Kaskel-Paul, Susanne, Khoramnia, Ramin, Klaas, Julian E., Krohne, Tim U., Lommatzsch, Albrecht, Lueken, Sabine, Maier, Mathias, Nassri, Lina, Nguyen-Dang, Thien A., Radeck, Viola, Rau, Saskia, Roider, Johann, Sandner, Dirk, Schmalenberger, Laura, Schmidtmann, Irene, Schubert, Florian, Siegel, Helena, Spitzer, Martin S., Stahl, Andreas, Stingl, Julia V., Treumer, Felix, Viestenz, Arne, Wachtlin, Joachim, Wolf, Armin, Zimmermann, Julian, Schargus, Marc, Schuster, Alexander K. 07 February 2024 (has links)
Background: To investigate whether vaccination against SARS-CoV-2 is associated with the onset of retinal vascular occlusive disease (RVOD). Methods: In this multicentre study, data from patients with central and branch retinal vein occlusion (CRVO and BRVO), central and branch retinal artery occlusion (CRAO and BRAO), and anterior ischaemic optic neuropathy (AION) were retrospectively collected during a 2-month index period (1 June–31 July 2021) according to a defined protocol. The relation to any previous vaccination was documented for the consecutive case series. Numbers of RVOD and COVID-19 vaccination were investigated in a case-by-case analysis. A case– control study using age- and sex-matched controls from the general population (study participants from the Gutenberg Health Study) and an adjusted conditional logistic regression analysis was conducted. Results: Four hundred and twenty-one subjects presenting during the index period (61 days) were enrolled: one hundred and twenty-one patients with CRVO, seventy-five with BRVO, fifty-six with CRAO, sixty-five with BRAO, and one hundred and four with AION. Three hundred and thirty-two (78.9%) patients had been vaccinated before the onset of RVOD. The vaccines given were BNT162b2/BioNTech/Pfizer (n = 221), followed by ChadOx1/AstraZeneca (n = 57), mRNA- 1273/Moderna (n = 21), and Ad26.COV2.S/Johnson & Johnson (n = 11; unknown n = 22). Our case–control analysis integrating population-based data from the GHS yielded no evidence of an increased risk after COVID-19 vaccination (OR = 0.93; 95% CI: 0.60–1.45, p = 0.75) in connection with a vaccination within a 4-week window. Conclusions: To date, there has been no evidence of any association between SARS-CoV-2 vaccination and a higher RVOD risk.

Page generated in 0.055 seconds