11 |
Non-Isotopic Symplectic Surfaces in Products of Riemann SurfacesHays, Christopher January 2006 (has links)
<html> <head> <meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1"> </head>
Let Σ<em><sub>g</sub></em> be a closed Riemann surface of genus <em>g</em>. Generalizing Ivan Smith's construction, for each <em>g</em> ≥ 1 and <em>h</em> ≥ 0 we construct an infinite set of infinite families of homotopic but pairwise non-isotopic symplectic surfaces inside the product symplectic manifold Σ<em><sub>g</sub></em> ×Σ<em><sub>h</sub></em>. In particular, we achieve all positive genera from these families, providing first examples of infinite families of homotopic but pairwise non-isotopic symplectic surfaces of even genera inside Σ<em><sub>g</sub></em> ×Σ<em><sub>h</sub></em>.
|
12 |
Non-Isotopic Symplectic Surfaces in Products of Riemann SurfacesHays, Christopher January 2006 (has links)
<html> <head> <meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1"> </head>
Let Σ<em><sub>g</sub></em> be a closed Riemann surface of genus <em>g</em>. Generalizing Ivan Smith's construction, for each <em>g</em> ≥ 1 and <em>h</em> ≥ 0 we construct an infinite set of infinite families of homotopic but pairwise non-isotopic symplectic surfaces inside the product symplectic manifold Σ<em><sub>g</sub></em> ×Σ<em><sub>h</sub></em>. In particular, we achieve all positive genera from these families, providing first examples of infinite families of homotopic but pairwise non-isotopic symplectic surfaces of even genera inside Σ<em><sub>g</sub></em> ×Σ<em><sub>h</sub></em>.
|
13 |
Design of cost effective lysimeter for field evaluation of alternative landfill cover projects using hydris 2D simulationLiu, Xiaoli. Abichou, Tarek. January 2004 (has links)
Thesis (M.S.)--Florida State University, 2004. / Advisor: Dr. Tarek Abichou, Florida State University, College of Engineering, Dept. of Civil and Environmental Engineering. Title and description from dissertation home page (viewed June 21, 2004). Includes bibliographical references.
|
14 |
Study of marketing techniques involving color and texture associations as used in book publishing /McClanahan, Roxanne L. January 1990 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1990. / Includes bibliographical references (leaves 57-58).
|
15 |
The artistic and sociological imagery of the merchant-banker on the book covers of the Biccherna in Siena in the early Renaissance /Baker, Donna Tsuruda. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves [434]-447).
|
16 |
Bio-reactive landfill covers an inexpensive approach to mitigate methane emissions /Escoriaza, Sharon Czarina. Abichou, Tarek. January 1900 (has links)
Thesis (M.S.)--Florida State University, 2005. / Advisor: Dr. Tarek Abichou, Florida State University, College of Engineering, Dept. of Civil and Environmental Engineering. Title and description from dissertation home page (viewed June 8, 2005). Document formatted into pages; contains ix, 62 pages. Includes bibliographical references.
|
17 |
"Proud as a peacock" an historic and semiotic analysis of illustrated "Vogue" magazine covers from 1909 and 1911 /Dreher, Anne M. January 2008 (has links)
Thesis (M.A.)--University of Wyoming, 2008. / Title from PDF title page (viewed on Nov. 17, 2009). Includes bibliographical references (p. 52-56).
|
18 |
On Extending Hansel's Theorem to HypergraphsChurchill, Gregory Sutton 08 November 2017 (has links)
For integers $n \geq k \geq 2$, let $V$ be an $n$-element set, and let $\binom{V}{k}$ denote the family of all $k$-element subsets of $V$. For disjoint subsets $A, B \subseteq V$, we say that $\{A, B\}$ {\it covers} an element $K \in \binom{V}{k}$ if $K \subseteq A \dot\cup B$ and $K \cap A \neq \emptyset \neq K \cap B$. We say that a collection $\cC$ of such pairs {\it covers} $\binom{V}{k}$ if every $K \in \binom{V}{k}$ is covered by at least one $\{A, B\} \in \cC$. When $k=2$, covers $\cC$ of $\binom{V}{2}$ were introduced in~1961 by R\'enyi~\cite{Renyi}, where they were called {\it separating systems} of $V$ (since every pair $u \neq v \in V$ is separated by some $\{A, B\} \in \cC$, in the sense that $u \in A$ and $v \in B$, or vice-versa). Separating systems have since been studied by many authors.
For a cover $\cC$ of $\binom{V}{k}$, define the {\it weight} $\omega(\cC)$ of $\cC$ by $\omega(\cC) = \sum_{\{A, B\} \in \cC} (|A|+|B|)$. We define $h(n, k)$ to denote the minimum weight $\omega(\cC)$ among all covers $\cC$ of $\binom{V}{k}$. In~1964, Hansel~\cite{H} determined the bounds $\lceil n \log_2 n \rceil \leq h(n, 2) \leq n\lceil \log_2 n\rceil$, which are sharp precisely when $n = 2^p$ is an integer power of two. In~2007, Bollob\'as and Scott~\cite{BS} extended Hansel's bound to the exact formula $h(n, 2) = np + 2R$, where $n = 2^p + R$ for $p = \lfloor \log_2 n\rfloor$.
The primary result of this dissertation extends the results of Hansel and of Bollob\'as and Scott to the following exact formula for $h(n, k)$, for all integers $n \geq k \geq 2$. Let $n = (k-1)q + r$ be given by division with remainder, and let $q = 2^p + R$ satisfy $p = \lfloor \log_2 q \rfloor$. Then
h(n, k) = np + 2R(k-1) + \left\lceil\frac{r}{k-1}\right\rceil (r + k - 1).
A corresponding result of this dissertation proves that all optimal covers $\cC$ of $\binom{V}{k}$, i.e., those for which $\omega(\cC) = h(n, k)$, share a unique {\it degree-sequence}, as follows. For a vertex $v \in V$, define the {\it $\cC$-degree} $\deg_{\cC}(v)$ of $v$ to be the number of elements $\{A, B\} \in \cC$ for which $v \in A \dot\cup B$. We order these degrees in non-increasing order to form $\bd(\cC)$, and prove that when $\cC$ is optimal, $\bd(\cC)$ is necessarily binary with digits $p$ and $p+1$, where uniquely the larger digits occur precisely on the first $2R(k-1) + \lceil r/(k-1) \rceil (r + k - 1)$ many coordinates. That $\bd(\cC)$ satisfies the above for optimal $\cC$ clearly implies the claimed formula for $h(n,k)$, but in the course of this dissertation, we show these two results are, in fact, equivalent.
In this dissertation, we also consider a $d$-partite version of covers $\cC$, written here as {\it $d$-covers} $\cD$. Here, the elements $\{A,B\} \in \cC$ are replaced by $d$-element families $\{A_1, \dots, A_d\} \in \cD$ of pairwise disjoint sets $A_i \subset V$, $1 \leq i \leq d$. We require that every element $K \in \binom{V}{k}$ is covered by some $\{A_1, \dots, A_d\} \in \cD$, in the sense that $K \subseteq A_1 \dot\cup \cdots \dot\cup A_d$ where $K \cap A_i \neq \emptyset$ holds for each $1 \leq i \leq d$. We analogously define $h_d(n,k)$ as the minimum weight $\omega(\cD) = \sum_{D \in \cD} \sum_{A \in D} |A|$ among all $d$-covers $\cD$ of $\binom{V}{k}$. In this dissertation, we prove that for all $2 \leq d \leq k \leq n$, the bound $h_d(n,k) \geq n \log_{d/(d-1)} (n/(k-1))$ always holds, and that this bound is asymptotically sharp whenever $d = d(k) = O (k/\log^2 k)$ and $k = k(n) = O(\sqrt{\log \log n})$.
|
19 |
Otacore för dummies : Jakten på det japanska soundet / Otacore for dummies : The hunt for the japanese soundSandberg, Molly January 2023 (has links)
Många drömmer om att skapa sin egna favoritlåt, men få finner vägen dit. I detta arbete undersöks olika sätt att skapa musik inom genren Otacore, med premissen att komma så nära sin ”favoritmusik” som möjligt, genom att anpassa det egna konstnärliga uttrycket till genrens ramar. Metoden som appliceras innebär analys, omtolkning, reproduktion och skapande i form av tre coverarbeten och skapande av ett original-arrangemang. Undersökningen visade att mitt uttryck är grundat i användning av midi- instrumentering, och att denna användning gör mina produktioner mjukare i karaktären. Även att mitt uttryck redan har mycket gemensamt med genren samt att jag graviterar mot ett instrumentalt sound med lite fokus på sång. Bästa sättet att involvera mitt uttryck inom ramarna idag är att hitta en gemensam nämnare i mitt uttryck med produktionen jag vill efterlikna. I framtiden bör jag fortsätta involvera mig i genren då detta i sin tur kommer påverka mitt uttryck och ge det fler likheter med genren.
|
20 |
Covering Music: Tracing the Semiotics of Beatles'Album Covers Through the Cultural CircuitMcGuire, Meghan S. 04 April 2005 (has links)
No description available.
|
Page generated in 0.0648 seconds