21 |
Ferroelectric Barium Strontium Titanate Thin-Film Varactor Based Reconfigurable AntennaPan, Kuan-Chang January 2011 (has links)
No description available.
|
22 |
High gain CPW‐fed UWB planar monopole antenna‐based compact uniplanar frequency selective surface for microwave imagingAbdulhasan, R.A., Alias, R., Ramli, K.N., Seman, F.C., Abd-Alhameed, Raed 28 March 2019 (has links)
Yes / In this article, a novel uniplanar ultra‐wideband (UWB) stop frequency selective surface (FSS) was miniaturized to maximize the gain of a compact UWB monopole antenna for microwave imaging applications. The single‐plane FSS unit cell size was only 0.095λ × 0.095λ for a lower‐operating frequency had been introduced, which was miniaturized by combining a square‐loop with a cross‐dipole on FR4 substrate. The proposed hexagonal antenna was printed on FR4 substrate with coplanar waveguide feed, which was further backed at 21.6 mm by 3 × 3 FSS array. The unit cell was modeled with an equivalent circuit, while the measured characteristics of fabricated FSS array and the antenna prototypes were validated with the simulation outcomes. The FSS displayed transmission magnitude below −10 dB and linear reflection phase over the bandwidth of 2.6 to 11.1 GHz. The proposed antenna prototype achieved excellent gain improvement about 3.5 dBi, unidirectional radiation, and bandwidth of 3.8 to 10.6 GHz. Exceptional agreements were observed between the simulation and the measured outcomes. Hence, a new UWB baggage scanner system was developed to assess the short distance imaging of simulated small metallic objects in handbag model. The system based on the proposed antenna displayed a higher resolution image than the antenna without FSS.
|
23 |
Tecnologias para defasadores baseados em MEMS e linhas de transmissão de ondas lentas. / Technologies for phase shifters based on MEMS and slow-wave transmission lines.Robert Aleksander Gavidia Bovadilla 05 July 2018 (has links)
O desenvolvimento deste trabalho foi motivado pela alta demanda de novas aplicações para o mercado do consumidor que necessitam de sistemas de transmissão e recepção de dados sem fio trabalhando na região de ondas milimétricas (mmW - entre 30 GHz e 300 GHz). Para estes tipos de sistemas, os defasadores são cruciais por definir o custo e o tamanho do dispositivo final. A pesquisa bibliográfica mostra que a melhor opção são os defasadores passivos do tipo linha carregada que utilizam Sistemas Microeletromecânicos (MEMS) como elemento de ajuste para a mudança de fase. Por esse motivo neste trabalho foi feito o estudo de diferentes tecnologias para o desenvolvimento de defasadores baseados em MEMS distribuídos e linhas de transmissão com efeito de ondas lentas de tipo shielded-CoPlanar Stripline (S-CPS) e shielded-Coplanar Waveguide (S-CPW). Foram estudadas três diferentes tecnologias: a tecnologia CMOS; a tecnologia dedicada desenvolvida pelo Laboratoire d\'électronique des technologies de l\'information (CEA-Leti) e a tecnologia in-house desenvolvida no Laboratório de Microeletrônica da Universidade de São Paulo. Utilizando a tecnologia CMOS foram fabricadas linhas de transmissão de tipo S-CPS utilizando a tecnologia de 250 nm da IHP (Innovations for High Performance Microelectronics) e a tecnologia de 0,35 µm da AMS (Austria Micro Systems). A tecnologia de 0,35 µm da AMS foi utilizada também para o desenvolvimento de defasadores de 2-bits e 3-bits baseados em linhas de transmissão de tipo S-CPW. Para estes defasadores foi definido um processo de liberação da camada de blindagem, reprodutível, que permitiu a atuação do dispositivo. Outros defasadores baseados em S-CPW que foram desenvolvidos anteriormente com a tecnologia dedicada CEA-LETI, foram modelados eletrostaticamente utilizando o Comsol MultiPhysics e o Ansys Workbench. Os modelos desenvolvidos permitiram entender o comportamento eletromecânico do defasador e foram utilizados reprojetar o defasador com um desempenho otimizado. Finalmente, visando o desenvolvimento dos dispositivos otimizados utilizando a tecnologia in house com os materiais e métodos disponíveis no Laboratório de Microeletrônica da USP (LME-USP), foram estudadas algumas etapas críticas do processo de fabricação. / The development of this work is motivated by the high demand for new applications for the consumer market that require wireless systems for data transmission and reception working in the millimeter wave region (mmW - between 30 GHz and 300 GHz). For these kinds of systems, the phase shifter are crucial to define the cost and size of the final device. The bibliographical research shows that the best option are the passive load line-type phase shifters using Microelectromechanical Systems (MEMS) as tuning element. Therefore, in this work, the study of different technologies for the development of phase shifter based on distributed MEMS and slow-wave transmission lines. The two types of transmission lines considered were the shielded-CoPlanar Stripline (S-CPS) and shielded-Coplanar Waveguide line (S-CPW). Three different technologies were studied: CMOS technology; the dedicated technology developed by the Laboratoire d\'électronique des technologies de l\'information (CEA-Leti) and the in-house technology developed at the Microelectronics Laboratory of the University of São Paulo. Using the CMOS technology, S-CPS-type transmission lines were fabricated using IHP\'s 250 nm CMOS technology and AMS\'s 0.35 µm CMOS technology. AMS\'s 0.35 µm technology has also been used for the development of 2-bit and 3-bit phase-shifters based on S-CPW type transmission lines. For these phase shifters, a reproducible shielding layer release process was defined that allowed the device to operate. Also, another phase shifter based in S-CPW-type transmission lines that were previously developed with dedicated CEA-LETI technology was electrostatically modeled using Comsol MultiPhysics and Ansys Workbench. The developed models allowed to understand the electromechanical behavior of the phase shifter and was used for a new design of the phase shifter with an optimized performance. Finally, in order to develop the optimized devices using the in-house technology with the materials and methods available at the USP Microelectronics Laboratory (LME-USP), some critical stages of the fabrication process were studied.
|
24 |
Tecnologias para defasadores baseados em MEMS e linhas de transmissão de ondas lentas. / Technologies for phase shifters based on MEMS and slow-wave transmission lines.Bovadilla, Robert Aleksander Gavidia 05 July 2018 (has links)
O desenvolvimento deste trabalho foi motivado pela alta demanda de novas aplicações para o mercado do consumidor que necessitam de sistemas de transmissão e recepção de dados sem fio trabalhando na região de ondas milimétricas (mmW - entre 30 GHz e 300 GHz). Para estes tipos de sistemas, os defasadores são cruciais por definir o custo e o tamanho do dispositivo final. A pesquisa bibliográfica mostra que a melhor opção são os defasadores passivos do tipo linha carregada que utilizam Sistemas Microeletromecânicos (MEMS) como elemento de ajuste para a mudança de fase. Por esse motivo neste trabalho foi feito o estudo de diferentes tecnologias para o desenvolvimento de defasadores baseados em MEMS distribuídos e linhas de transmissão com efeito de ondas lentas de tipo shielded-CoPlanar Stripline (S-CPS) e shielded-Coplanar Waveguide (S-CPW). Foram estudadas três diferentes tecnologias: a tecnologia CMOS; a tecnologia dedicada desenvolvida pelo Laboratoire d\'électronique des technologies de l\'information (CEA-Leti) e a tecnologia in-house desenvolvida no Laboratório de Microeletrônica da Universidade de São Paulo. Utilizando a tecnologia CMOS foram fabricadas linhas de transmissão de tipo S-CPS utilizando a tecnologia de 250 nm da IHP (Innovations for High Performance Microelectronics) e a tecnologia de 0,35 µm da AMS (Austria Micro Systems). A tecnologia de 0,35 µm da AMS foi utilizada também para o desenvolvimento de defasadores de 2-bits e 3-bits baseados em linhas de transmissão de tipo S-CPW. Para estes defasadores foi definido um processo de liberação da camada de blindagem, reprodutível, que permitiu a atuação do dispositivo. Outros defasadores baseados em S-CPW que foram desenvolvidos anteriormente com a tecnologia dedicada CEA-LETI, foram modelados eletrostaticamente utilizando o Comsol MultiPhysics e o Ansys Workbench. Os modelos desenvolvidos permitiram entender o comportamento eletromecânico do defasador e foram utilizados reprojetar o defasador com um desempenho otimizado. Finalmente, visando o desenvolvimento dos dispositivos otimizados utilizando a tecnologia in house com os materiais e métodos disponíveis no Laboratório de Microeletrônica da USP (LME-USP), foram estudadas algumas etapas críticas do processo de fabricação. / The development of this work is motivated by the high demand for new applications for the consumer market that require wireless systems for data transmission and reception working in the millimeter wave region (mmW - between 30 GHz and 300 GHz). For these kinds of systems, the phase shifter are crucial to define the cost and size of the final device. The bibliographical research shows that the best option are the passive load line-type phase shifters using Microelectromechanical Systems (MEMS) as tuning element. Therefore, in this work, the study of different technologies for the development of phase shifter based on distributed MEMS and slow-wave transmission lines. The two types of transmission lines considered were the shielded-CoPlanar Stripline (S-CPS) and shielded-Coplanar Waveguide line (S-CPW). Three different technologies were studied: CMOS technology; the dedicated technology developed by the Laboratoire d\'électronique des technologies de l\'information (CEA-Leti) and the in-house technology developed at the Microelectronics Laboratory of the University of São Paulo. Using the CMOS technology, S-CPS-type transmission lines were fabricated using IHP\'s 250 nm CMOS technology and AMS\'s 0.35 µm CMOS technology. AMS\'s 0.35 µm technology has also been used for the development of 2-bit and 3-bit phase-shifters based on S-CPW type transmission lines. For these phase shifters, a reproducible shielding layer release process was defined that allowed the device to operate. Also, another phase shifter based in S-CPW-type transmission lines that were previously developed with dedicated CEA-LETI technology was electrostatically modeled using Comsol MultiPhysics and Ansys Workbench. The developed models allowed to understand the electromechanical behavior of the phase shifter and was used for a new design of the phase shifter with an optimized performance. Finally, in order to develop the optimized devices using the in-house technology with the materials and methods available at the USP Microelectronics Laboratory (LME-USP), some critical stages of the fabrication process were studied.
|
25 |
Apport des lignes à ondes lentes S-CPW aux performances d'un front-end millimétrique en technologie CMOS avancée / Design of RF amplifiers based on slow-wave transmission lines in millimeter waves rangeTang, Xiaolan 08 October 2012 (has links)
L’objectif de ce travail est de concevoir et de caractériser un front-end millimétriqueutilisant des lignes de propagation à ondes lentes S-CPW optimisées en technologies CMOS avancées.Ces lignes présentant des facteurs de qualité 2 à 3 fois supérieurs à ceux des lignes classiques de typemicroruban ou CPW.Dans le premier chapitre, l’impact de l’évolution des noeuds technologiques CMOS sur lesperformances des transistors MOS aux fréquences millimétriques et sur les lignes de propagation ainsiqu’un état de l’art concernant les performances des front-end sont présentés. Le deuxième chapitreconcerne la réalisation des lignes S-CPW dans différentes technologies CMOS et la validation d’unmodèle phénoménologique électrique équivalent. Le troisième chapitre est dédié à la conceptiond’amplificateurs de puissance à 60 GHz utilisant ces lignes S-CPW en technologies CMOS 45 et65 nm. Cette étude a permis de mettre en évidence l’apport des lignes à ondes lentes aux performancesdes amplificateurs de puissance fonctionnant dans la gamme des fréquences millimétriques. Uneméthode de conception basée sur les règles d’électro-migration et permettant une optimisation desperformances a été développée. Finalement, un amplificateur faible bruit et un commutateur d’antennetravaillant à 60 GHz et à base de lignes S-CPW ont été conçus en technologie CMOS 65 nm afin degénéraliser l’impact de ce type de lignes sur les performances des front-end millimétriques. / The objective of this work is to design and characterize a millimeter-wave front-end usingthe optimized slow-wave transmission lines S-CPW in advanced CMOS technologies. The qualityfactor of these transmission lines is twice to three times higher than that of the conventionaltransmission lines such as microstrip lines and coplanar waveguides.In the first chapter, the influence of CMOS scaling-down on the performance of transistors atmillimeter-wave frequencies and on the transmission lines was studied. In addition, a state of the artwith regard to the performance of the front-end was presented. The second chapter concerns about therealization of the S-CPW lines in different CMOS technologies and the validation of an electricalequivalent model. The third chapter is dedicated to the design of 60-GHz power amplifiers using theseS-CPW lines in CMOS 45 and 65 nm technologies. This study highlighted the performanceenhancement of power amplifiers operating at millimeter-wave frequencies by using the slow-wavetransmission lines. A design method based on the electro-migration rules was also developed. Finally,a low noise amplifier and an antenna switch operating at 60 GHz were designed in CMOS 65 nm inorder to generalize the impact of such transmission lines on the performance of the millimeter-wavefront-end.
|
26 |
Radiation pattern reconfigurable microfabricated planar millimeter-wave antennasBalcells Ventura, Jordi 20 May 2011 (has links)
Els serveis de telecomunicacions i sistemes radar estan migrant a freqüències mil•limètriques (MMW), on es disposa d 'una major amplada de banda i conseqüentment d'una major velocitat de transmissió de dades. Aquesta migració requereix de l'ús de diferents tecnologies amb capacitat d'operar a la banda de freqüències mil•limètriques (30 a 300 Ghz), i més concretament en les bandes Ka (26,5 - 40GHz), V (50 – 75GHz) i W (75 – 110GHz). En moltes aplicacions i sobretot en aquelles on l'antena forma part d'un dispositiu mòbil, es cerca poder utilitzar antenes planes, caracteritzades per tenir unes dimensions reduïdes i un baix cost de fabricació. El conjunt de requeriments es pot resumir en obtenir una antena amb capacitat de reconfigurabilitat i amb un baix nivell de pèrdues en cada una de les bandes de freqüència. Per tal d'afrontar aquests reptes, les dimensions de les antenes mil•limètriques, juntament amb els tipus de materials, toleràncies de fabricació i la capacitat de reconfigurabilitat ens porten a l'ús de processos de microfabricació.
L'objectiu d'aquesta tesis doctoral és l'anàlisi dels conceptes mencionats, tipus de materials, geometries de línia de transmissió i interruptors, en el context de les freqüències mil•limètriques, així com la seva aplicació final en dissenys d'antenes compatibles amb els processos de microfabricació. Finalment, com a demostració s'han presentat dissenys específics utilitzables en tres aplicacions a freqüències mil•limètriques: Sistemes de Comunicació per Satèl•lit (SCS) a la banda Ka, Xarxes d'àrea personal inalàmbriques (WPAN) a la banda V i sistemes radar per l'automoció a la banda W.
La primera part d'aquesta tesis consisteix en l'anàlisi d'algunes tecnologies circuitals a freqüències mil•limètriques. S'han presentat els materials més utilitzats a altes freqüències (Polytetrafluoroethylene or Teflon (PTFE), Quartz, Benzocyclobuten polymer (BCB) i Low Temperature Co-fired Ceramic (LTCC)) i s'han comparat en termes de permitivitat i tangent de pèrdues. També s'inclou un estudi de pèrdues a altes freqüències en les principals línies de transmissió (microstrip, stripline i CPW). Finalment, es presenta un resum dels interruptors RF-MEMS i es comparen amb els PIN diodes i els FET.
En la segona part, es presenten diferents agrupacions d'antenes amb la capacitat de reconfigurar la polarització i la direcció d'apuntament. S'han dissenyat dos elements base reconfigurables en polarització: CPW Patch antena i 4-Qdime antena. La primera antena consisteix en un element singular amb interruptors RF-MEMS, dissenyada per operar a les bandes Ka i V. La segona antena consisteix en una arquitectura composta on la reconfigurabilitat en polarització s'obté mitjançant variant la fase d'alimentació de cada un dels quatre elements lineals. La fase és controlada mitjançant interruptors RF-MEMS ubicats en la xarxa de distribució. L'antena 4-Qdime s'ha dissenyat per operar en les bandes V i W. Ambdós elements base s'han utilitzat posteriorment pel disseny de dues agrupacions d'antenes amb capacitat de reconfigurar l'apuntament del feix principal. La reconfigurabilitat es dur a terme utilitzant desfasadors de fase d'1 bit.
La part final de la tesis es centra en les toleràncies de fabricació i en els processo de microfabricació d'agrupacions d'antenes mil•limètriques. Les toleràncies de fabricació s'han estudiat en funció dels error d'amplitud i fase en cada element de l'agrupació, fixant-se en les pèrdues de guany, error d'apuntament, error en l'amplada de feix, errors en el nivell de lòbul secundari i en l'error en la relació axial. El procés de microfabricació de les diferents antenes dissenyades es presenta en detall. Els dissenys de l'antena CPW Patch reconfigurable en polarització i apuntament operant a les bandes Ka i V, s'han fabricat en la sala blanca del Cornell NanoScale Science & Technology Facility (CNF). Posteriorment, s'han caracteritzat l'aïllament i el temps de resposta dels interruptors RF-MEMS, i finalment, el coeficient de reflexió, el diagrama de radiació i la relació axial s'han mesurat a les bandes Ka i V per les antenes configurades en polarització lineal (LP) i circular (CP). / Telecommunication services and radar systems are migrating to Millimeter-wave (MMW) frequencies, where wider bandwidths are available. Such migration requires the use of different technologies with the capability to operate at the MMW frequency band (30 to 300GHz), and more specifically at Ka- (26.5 to 40GHz), V- (50 to 75GHz) and W-band (75 to 110GHz). For many applications and more concretely those where the antenna is part of a mobile device, it is targeted the use of planar antennas for their low profile and low fabrication cost. A wide variety of requirements is translated into a reconfiguration capability and low losses within each application frequency bandwidth. To deal with the mentioned challenges, the MMW antenna dimensions, together with the materials, fabrication tolerances and reconfigurability capability lead to microfabrication processes.
The aim of this thesis is the analysis of the mentioned concepts, materials, transmission lines geometries and switches in the MMW frequencies context and their final application in antenna designs compatible with microfabrication. Finally, specific designs are presented as a demonstration for three MMW applications: Satellite Communication Systems (SCS) at Ka-band, Wireless Personal Area Network (WPAN) at V-band and Automotive Radar at W-band.
The first part of this thesis consist to analyze some MMW circuit technologies. The four most used materials at MMW frequencies (Polytetrafluoroethylene or Teflon (PTFE), Quartz, Benzocyclobuten polymer (BCB) and Low Temperature Co-fired Ceramic (LTCC)) have been presented and compared in terms of permittivity (εr) and loss tangent (tanδ). An study of the main transmission lines attenuation (microstrip, stripline and CPW) at high frequencies is included. Finally, an overview of the RF-MEMS switches is presented in comparison with PIN diodes and FETS switches.
The second part presents different polarization and beam pointing reconfigurable array antennas. Two polarization-reconfigurable base-elements have been designed: CPW Patch antenna and 4-Qdime antenna. The first consists of a single reconfigurable element with integrated RF-MEMS switches, designed to operate at Ka- and V-band. The second antenna presented in this thesis has a composed architecture where the polarization reconfigurability is obtained by switching the phase feeding for each of the four linear polarized elements in the feed network with RF-MEMS switches. The 4-Qdime antenna has been designed to operate at V- and W-band. The two base-elements have been used to design two beam pointing reconfigurable antenna arrays. Using phased array techniques, beamsteering is computed and implemented with 1-bit discrete phase-shifter.
The final part of the thesis is focused into the fabrication tolerances and microfabrication process of Millimeter-wave antenna arrays. The fabrication tolerances have been studied as a function of the amplitude and phase errors presented at each elements array, focusing on the gain loss, beam pointing error, Half-Power Beamwidth (HPBW) error, sidelobe level error and axial ratio error. The microfabrication process for the designed antennas is presented in detail. Polarization- and pointing- reconfigurable CPW Patch antenna operating at Ka- and V- band have been fabricated in a clean-room facility at Cornell NanoScale Science & Technology Facility (CNF). The RF-MEMS switches isolation and time response have been characterized. Finally, the reflection coefficient, radiation pattern and axial ratio have been measured at Ka- and V-band for the fabricated antennas configured in Linear Polarization (LP) and Circular Polarization (CP).
|
27 |
A Novel Modeling Methodology And Performance Improvement Technique For Dmtl Phase ShiftersIstanbulluoglu, Ipek 01 September 2006 (has links) (PDF)
This thesis presents distributed MEMS transmission line (DMTL) phase shifters, emphasizing the circuit modeling and design as well as the performance improvement. A novel modeling methodology is introduced for DMTL unit sections, with bridge widths larger than 50 & / #956 / m. The introduced model is compared with EM simulation results and the CLR modeling results. For structures with bridge widths larger than 50 & / #956 / m, the introduced model fits the simulation results much better than the CLR model. The simulated structures are fabricated in METU micro-electronics facilities on glass substrates using gold structural layers. 1-20 GHz S-parameter measurement results of various DMTL structures are compared with the introduced model. It is observed that the S-parameters match except for a scaling need in the insertion loss. The measurement results give 2 dB insertion and 15 dB isolation at 20 GHz.
The ABCD parameters of the introduced model are converted into S-parameters. Loss and the phase shift of the DMTL structures are expressed in terms of these S-parameters. These expressions are re-written as MATLAB code, from which the phase shift/loss (degree/dB) performance is evaluated. Therefore degree/dB plots with respect to bridge widths and center CPW conductor widths are obtained. From these plots the optimum DMTL phase shifters, which give maximum phase shift for minimum loss are determined for a pre-defined DMTL structure.
To increase the degree/dB performance of a DMTL phase shifter, a change in the geometry of the DMTL phase shifters is proposed. The geometry change is based on inserting an open-ended stub through the signal line and connecting one side of the stub to the bridge. By this way, the stub capacitance is added to the shunt capacitance of the bridge satisfying a larger phase shift. The simulations point out a performance of 217 degree/dB at 20 GHz with a 15 % change in the 25 & / #956 / m wide bridge height ratio.
|
28 |
Zero-level Packaging Of Microwave And Millimeter-wave Mems ComponentsComart, Ilker 01 September 2010 (has links) (PDF)
This thesis presents realization of two shunt, capacitive contact RF MEMS switches and two RF MEMS SPDT switches for microwave and millimeter-wave applications, two zero-level package structures for RF MEMS switches and development trials of a BCB based zero level packaging process cycle.
Two shunt, capacitive contact RF MEMS switches for 26 GHz and 12 GHz operating frequencies are designed, fabricated and consistencies between fabricated devices and designs are shown through RF measurements. For the switch design at 26 GHz and at the operating frequency, return loss in the upstate is measured to be 27.61 dB, insertion loss and isolation in the downstate is measured to be 0.21 dB and 27.16 dB, respectively. For the switch design at 12 GHz and at the operating frequency, return loss in the upstate is measured to be 38.69 dB, insertion loss and isolation in the downstate is measured to be 0.05 dB and 25.84 dB, respectively. Quite accurate circuit models have been obtained for both of the RF MEMS switches. Two RF MEMS SPDT switches, which utilize the shunt, capacitive contact switches as building blocks are designed through circuit simulations. These two designs are fabricated and their RF measurements have been completed. It is shown from circuit model simulations that, the performances of the fabricated devices and desired responses corresponded to each other. For the SPDT switch design at 26 GHz, return loss at the input port is measured to be 12 dB and insertion loss is measured to be 1.24 dB. For the SPDT switch design at 12 GHz, return loss at the input port is measured to be 5.6 dB and insertion loss is measured to be 0.49 dB. The reason behind the unexpectedly bad performances has been investigated and discovered. The bad performances were due to a common mistake in the layouts of both SPDT switches. These mistakes are corrected in the circuit models and expected performances are obtained.
Two different zero-level package structures which use high-resistive Si wafers have been suggested and required design changes have been made on the RF MEMS shunt, capacitive contact switches and SPDT switches in order to minimize the package effects. For this purpose polygonal CPW transitions have been designed and integrated into the designs, followed by the necessary tunings in the switch structures for which EM and circuit simulations are utilized.
For the suggested package structures to be produced, two possible process cycles have been studied. One of the process flows was based on KOH anisotropic Si etching and the other one was based on DRIE (Deep Reactive Ion Etching). Great progress has been achieved in the latter process cycle, however this process cycle still needs some more study and it could not be completed in the time required for this thesis study.
|
29 |
Investigation of a Rectenna element for infrared and millimeter wave applicationLa Rosa, Henrry 01 June 2007 (has links)
This thesis presents the rectifying antenna potential for infrared and millimeter wave energy conversion. Infrared imaging is one of the emerging technologies that have attracted considerable attention in the next generation of military, medical, and commercial applications. Moreover, with the ever-increasing congestion of the electromagnetic spectrum at RF and microwave frequencies and the establishment of firm civilian and military requirements best met by millimeter wave systems, the interest in the technology has grown and is now firmly established. During this work a 2.5GHz slot antenna, a 2.5GHz Schottky diode detector, a CPW-to-Microstrip transition, a fully integrated Rectenna element, and a 94GHz slot antenna were designed, fabricated, and tested. Results on the performance of the devices show a great deal of correlation between the simulated and measured data.
To perform an initial study, the CPW-fed narrow slot antenna is designed at 2.5GHz and implemented on an FR-4 board. This investigation serves as the basis for the development of the Rectenna element at millimeter wave frequencies. In order to increase the bandwidth of the slot antenna, a 2.5GHz CPW-fed wide slot antenna with U-shaped tuning stub is realized, which provides a 60% increase in bandwidth while keeping the same radiation characteristics. In addition, a set of simulations is performed to show how a reflector plate affects the radiating properties of the slot antenna. A 2.5GHz square-law detector is also designed, fabricated, and tested in order to rectify the RF signal delivered by the antenna. The fabricated detector presents a well matched condition at the design frequency with a dynamic range found to be from --17dBm to --50dBm. The low frequency Rectenna element prototype is then integrated within a single FR-4 board.
This is accomplished by implementing a compact via-less CPW-to-Microstrip transition. Finally, a 94GHz CPW-fed wide slot antenna is realized on a 10μm high resistivity silicon membrane. This antenna shows a great deal of similarity to the 2.5GHz slot antenna. This low profile antenna presents at least a 10dB return loss over the entire W band frequency window. Simulated antenna efficiencies of up to 99% were achieved assuming a perfect conductor.
|
30 |
Chaves MEMS aplicadas a dispositivos de RF e micro-ondas : projeto, tecnologia e implementação fisica de deslocador de fase e filtro sintonizavel / MEMS switches applied to RF and microwave devices : design, technology and physical implementation of phase shifter and tunable filterAtanazio, Paulo Filipe Braghetto 13 August 2018 (has links)
Orientador: Luiz Carlos Kretly / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-13T08:18:49Z (GMT). No. of bitstreams: 1
Atanazio_PauloFilipeBraghetto_M.pdf: 6727187 bytes, checksum: 90bbbbf904ffcce6757eeaeefe4abd96 (MD5)
Previous issue date: 2009 / Resumo: O propósito deste trabalho é, a partir dos conceitos de linhas de transmissão, teoria de filtros e o conhecimento pioneiro deste grupo acerca das chaves MEMS de RF, propor duas aplicações reais baseadas nesta estrutura singular: um deslocador de fase e um filtro sintonizável na faixa de 0,1-35GHz e banda Ku (12,4-18GHz) respectivamente. Uma abordagem puramente eletromecânica é realizada na etapa inicial, observando a tensão de ativação da chave para diferentes formas estruturais, desmistificando a histerese mecânica, fenômeno intrínseco a este tipo de dispositivo. Na segunda fase do trabalho é feito um detalhamento do comportamento eletromagnético da chave MEMS, explorando fortemente a extração dos parâmetros elétricos e sua inserção em outros circuitos. Por fim, a implementação do filtro sintonizável e do deslocador de fase realizouse baseada nos conceitos de DMTL - Distributed MEMS Trasmission Lines - onde tanto a seleção da frequência central de passagem do filtro, quanto o comprimento elétrico total do deslocador são controladas pela capacitância variável da chave MEMS, de acordo com uma tensão de controle DC aplicada. / Abstract: The purpose of this work is, based on transmission line concepts, filter theory and the pioneer knowledge of this group about RF MEMS Switches, propose two physical applications employing this singular structure: a phase shifter and a tunable filter at 0.1 - 35GHz range and Ku band respectively. A purely electromechanical approach is done at the initial step, observing the switch pull-in voltages for several structural geometries, demystifying the mechanical hysteresis, intrinsic phenomena of this kind of device. On the second phase of the work, the MEMS switch electromagnetic behavior is detailed, strongly exploring the electrical parameters extraction and its application on other types of circuits. Finally, the tunable filter and phase shifter are implemented through DMTL - Distributed MEMS Transmission Lines - concepts, where frequency selection and the amount of phase shifting are controlled by the variable switch capacitance according to the applied DC control voltage. / Mestrado / Telecomunicações e Telemática / Mestre em Engenharia Elétrica
|
Page generated in 0.149 seconds