• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 227
  • 48
  • 28
  • 21
  • 14
  • 12
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 506
  • 506
  • 112
  • 105
  • 79
  • 69
  • 68
  • 58
  • 48
  • 43
  • 40
  • 39
  • 39
  • 38
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Influência de defeitos e da qualidade superficial no desempenho do cristal de iodeto de mercúrio aplicado como detector de radiação / The influence of defects and surface quality on the mercuric iodide crystal used as a radiation detector

MARTINS, JOAO F.T. 03 February 2016 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2016-02-03T12:00:17Z No. of bitstreams: 0 / Made available in DSpace on 2016-02-03T12:00:17Z (GMT). No. of bitstreams: 0 / Os compostos semicondutores com alto número atômico e energia de banda proibida larga vêm sendo pesquisados como detectores de radiação X e gama, com alta resolução energética, operando à temperatura ambiente. O denominador comum dos materiais semicondutores, que operam à temperatura ambiente, é a dificuldade em crescer cristais com pureza química elevada e boa estequiometria. O desenvolvimento deste tipo de detectores semicondutores de radiação é ainda um desafio tecnológico e tem deparado com muitos fatores limitantes, tais como: material de partida com qualidade compatível para o uso no crescimento de cristal, baixa estabilidade do detector ao longo do tempo, oxidação superficial e outras dificuldades relatadas na literatura, que limitam o seu uso. Neste trabalho, estabeleceu-se a metodologia de transporte físico de vapor (PVT) para a purificação e crescimento do cristal semicondutor de Iodeto de Mercúrio (HgI2). Cristais de HgI2 com orientação cristalina, estequiometria e morfologia da superfície adequadas foram obtidos por essa técnica. Uma redução nítida de impurezas após a purificação pode ser observada e o nível de impureza presente nos cristais não interferiu nas suas estruturas cristalinas. Uma boa morfologia com uniformidade nas camadas da superfície foi encontrada nos cristais, indicando uma boa orientação na estrutura cristalina. Um estudo inédito foi realizado no Laboratório da University of Freiburg, sob a coordenação do Prof. Michael Fiederle, com o intuito de aumentar a estabilidade do detector de HgI2 ao longo do tempo. A aplicação de diferentes tipos de resina polimérica para encapsulamento dos detectores HgI2 foi realizada e estudada, no intuito de proteger o cristal de HgI2 das reações com os gases atmosféricos e isolar eletricamente a superfície dos cristais. Quatro resinas poliméricas foram analisadas, cujas composições são: Resina n 1: 50% - 100% de heptano, 10% - 25% metilcicloexano, <1% de ciclo-hexano; Resina n2: 25% - 50% de etanol, 25% - 50% de acetona, <2,5% de acetato de etilo; Resina n3: 50% - 100% de acetato de metilo, 5% - 10% de n-butilo e Resina 4: 50% - 100% de etil-2- cianoacrilato. A influência dos tipos de resina polimérica utilizada na espectroscopia de desempenho do detector semicondutor HgI2 é, claramente, demonstrada. O melhor resultado foi encontrado para o detector encapsulado com resina n3. Um aumento de até 26 vezes no tempo de estabilidade, como detector de radiação, foi observado para os detectores encapsulados com resina em comparação com o detector não encapsulado, exposto à atmosfera. / Tese (Doutorado em Tecnologia Nuclear) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
182

Caracterização estrutural e funcional das glutarredoxinas ditiolicas de Saccharomyces cerevisiae

Discola, karen Fulan 08 December 2009 (has links)
Orientador: Luis Eduardo Soares Netto / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-14T00:45:19Z (GMT). No. of bitstreams: 1 Discola_karenFulan_D.pdf: 5792872 bytes, checksum: ee9797756e3c67c12d00e2c76271feee (MD5) Previous issue date: 2009 / Resumo: Glutarredoxinas (Grxs) são pequenas oxidorredutases que possuem pelo menos um resíduo de cisteína conservado em seus sítios ativos e têm atividade dissulfeto redutase dependente de tiol. Embora Grxs estejam envolvidas em diversos processos celulares, como enovelamento protéico e proteção contra espécies reativas de oxigênio, poucos substratos biológicos dessas enzimas são conhecidos. Na levedura Saccharomyces cerevisiae, oito Grxs foram identificadas (ScGrx1-8); destas ScGrx1-2 são ditiólicas e possuem o motivo Cys-Pro-Tyr-Cys em seus sítios ativos. Ambas Grxs ditiólicas são citosólicas, embora ScGrx2 também seja encontrada na mitocôndria. Neste trabalho, mostramos que ScGrx2 possui atividade específica como oxidorredutase quinze vezes maior do que ScGrx1, embora estas enzimas compartilhem 64% de identidade e 85% de similaridade de seqüência. A análise cinética bi-substrato mostrou que ScGrx2 possui tanto um menor KM para glutationa quanto um maior turnover que ScGrx1. Com o intuito de compreender melhor estas diferenças bioquímicas, determinamos os valores de pKa da cisteína N-terminal (Cys27) dos sítios ativos destas duas proteínas e demonstramos que estes parâmetros não justificam a diferença de atividade observada. Tentando identificar características estruturais relacionadas a essa diferença de atividade, determinamos as estruturas cristalográficas de ScGrx2 na forma oxidada e do mutante ScGrx2-C30S ligado à glutationa a 2.05 e 1.91 Å de resolução, respectivamente, e comparamos estas estruturas com as estruturas de ScGrx1 descritas por Håkansson & Winther, 2007. As análises estruturais nos permitiram formular a hipótese de que substituições dos resíduos Ser23 e Gln52 de ScGrx1 por Ala23 e Glu52 em ScGrx2 poderiam modificar a capacidade da cisteína C-terminal do sítio ativo de atacar o dissulfeto misto formado entre a cisteína Nterminal e glutationa. Nossa hipótese foi testada através de ensaios enzimáticos com proteínas mutantes. Acreditamos que as diferenças funcionais e estruturais observadas entre ScGrx1 e ScGrx2 possam refletir em variações na especificidade por substratos e indicam que estas enzimas possuem funções biológicas não redundantes em S. cerevisiae. / Abstract: Glutaredoxins (Grxs) are small thiol-dependent oxidoreductases with disulfide reductase activity endowed by at least one cysteine at their active sites. Although Grxs are implicated in many cellular processes, including protein folding and protection against reactive oxygen species, few of their targets are known. In the yeast Saccharomyces cerevisiae, eight Grxs isoforms were identified (ScGrx1-8). Two of them (ScGrx1-2) are dithiolic, possessing a conserved Cys-Pro-Tyr-Cys motif. Both dithiol glutaredoxins are cytosolic, however ScGrx2 is also located at the mitochondria. In spite of the fact that ScGrx1 and ScGrx2 share 85% of amino acid sequence similarity, we have shown that ScGrx2 is fifteen times more active as oxidoreductase than ScGrx1. Further characterization of the enzymatic activities through two-substrate kinetics analysis revealed that ScGrx2 possesses both a lower KM for glutathione and a higher turnover than ScGrx1. To better comprehend these biochemical differences, the pKa of the N-terminal active site cysteines (Cys27) of these two proteins were determined. Since the pKa values of ScGrx1 and ScGrx2 Cys27 residues are very similar, these parameters cannot account for the difference observed between their specific activities. In an attempt to better understand the mechanisms and differences between yeast dithiol Grxs activities, we elucidated the crystallographic structures of ScGrx2 in the oxidized state and of the ScGrx2-C30S mutant with a glutathionyl mixed disulfide at resolutions of 2.05 and 1.91 Å, respectively. Comparisons among these structures and those of ScGrx1 (Håkansson & Winther, 2007) provided insights into the remarkable functional divergence between these enzymes. We hypothesize that the substitutions of Ser23 and Gln52 in ScGrx1 by Ala23 and Glu52 in ScGrx2 can modify the capability of the active site C-terminal cysteine to attack the mixed disulfide between the N-terminal active site cysteine and the glutathione molecule. Mutagenesis studies supported this hypothesis. The observed structural and functional differences between ScGrx1 and ScGrx2 may reflect variations in substrate specificity and non-redundant biological functions. / Doutorado / Bioquimica / Doutor em Biologia Funcional e Molecular
183

Determinação da estrutura de alguns complexos de estanho e de platina / Crystal structure of complexes of tin and platinum

Walter Filgueira de Azevedo Junior 21 September 1992 (has links)
Foram determinadas as estruturas de três complexos de Platina, dois complexos de estanho e um ligante orgânico. AS intensidades das reflexões foram medidas com umdifratômetro CAD-4. As estruturas foram resolvidas por métodos diretos ou pela função de Patterson e refinadas por mínimos quadrados. Bis (fenilsulfonil) etano, C14H14(SO2)2, foi obtido durante as tentativas de sintetizar ligantes para serem usados na complexação com diversos organo-estânicos, o cristal pertence ao sistema moniclínico, P21/n, a= 8,495(3), b= 10,159(1), c= 9,072(1)&#197, &#946= 116,23(2) &#176, V= 702,3(3) &#1973, Z= 2, dcalc= 1,467g.cm-3. Cis-dicloro[meso-1,2-bis(n-propilsulfinil)etano]platina(II), PtCl2. (PrSO)2C2H4, o cristal pertence ao sistema ortorrômbico, P212121, a= 7,360(2), b= 9,793(2), c= 19,369(2)&#197, V= 1396,1(4)&#1973, Z= 4, dcalc= 2,25g.cm-3. Trans-diclorol[(trietilfosfina) (2-metilsulfinil)piridina)]platina(II), Et3PPtCl 2.PySOMe, o cristal pertence ao sistema monoclínico, P21/c, a= 8,067(3), b= 8,5184(9), c= 25,592(3)&#197, &#946= 92,000(9)&#176, V= 1757,6(7)&#1973, Z= 4, dcalç= 1,98g.cm-3. Trans-dicloro [(trietilfosfina)(2-n-propilsulfinil)piridina)]platina(II), Et3PPtCl2.PySOPr, o cristal pertence ao sistema triclínico, P-1, a= 8,254(3), b= 8,377(4), c= 14,531(4)&#197, &#945= 87,14(3), &#946= 82,83(3), &#933= 84,10(3)&#176, V= 991,0(7)&#1973, Z= 2, dcalc= 1,78g.cm-3. Mer-tricloro [(2-metilsulfinil)benzotiazol)]metilestanho(IV), MeSnCl3.BtSOMe)2, o cristal pertence ao sistema monoclínico, C2/c, a= 20,083(2), b= 17,406(1), c= 14,415(2)&#197, &#946= 108,06(3), V= 4790,5(8)&#1973, Z= 8, dcalc= 1,78g.cm-3. Hidroxi cloreto de difenil estanho (IV) + mesobis (fenilsulfinil)metano, SnClOHPh2 + Ph2(SO) 2CH2, o cristal pertence ao sistema monoclínico, P21/c, a= 10,540(3), b= 9,743(1), c= 24,099(7)&#197, &#946= 92,95(2), V= 2471(1)&#1973, Z= 4, dcalç= 1,58g.cm-3 / The structures of three platinum complexes, two organotin compounds and organic ligand were determined. The reflection intensities were measured with a CAD-4 automatic diffractometer. The structures were solved by direct methods or the Patterson function and were refined by least squares method. Bis (phenylsulfonyl)ethane, C14H14(SO2)2, was obtained among attempts to synthesize ligands to be used for complexation with several organotins, the crystal belongs to the monoclinic system, P21/n, a= 8,495(3), b= 10,159(1), c= 9,072(1)&#197, &#946= 116,23(2) &#176, V= 702,3(3) &#1973, Z= 2, dcalc= 1,467g.cm-3. Cis-dichloro [ meso 1,2-bis(n-propylsulphinyl)ethane]platinum(II), PtCl2. (PrSO)2C2H4 the crystal belongs to the orthorhombic system, P212121, a= 7,360(2), b= 9,793(2), c= 19,369(2)&#197, V= 1396,1(4)&#1973, Z= 4, dcalc= 2,25g.cm-3. Trans-dichloro [(triethylphosphine) (2-methylsulphinyl)pyridine)]platinum(II), Et3PPtCl 2.PySOMe, the crystal belongs to the monoclinic system, P21/c, a= 8,067(3), b= 8,5184(9), c= 25,592(3)&#197, &#946= 92,000(9)&#176, V= 1757,6(7)&#1973, Z= 4, dcalç= 1,98g.cm-3. Trans-dichloro [(triethylphosphine) (2-npropylsulphinyl) pyridine)]platinum(II), Et3PPtCl2.PySOPr, the crystal belongs to the orthorhombic system, P-1, a= 8,254(3), b= 8,377(4), c= 14,531(4)&#197, &#945= 87,14(3), &#946= 82,83(3), &#933= 84,10(3)&#176, V= 991,0(7)&#1973, Z= 2, dcalc= 1,78g.cm-3. Mer-trichloro[(2-methylsulphinyl)benzothiazole)]methyltin(IV), MeSnCl3.BtSOMe)2 the crystal belongs to the monoclinic system, C2/c, a= 20,083(2), b= 17,406(1), c= 14,415(2)&#197, &#946= 108,06(3), V= 4790,5(8)&#1973, Z= 8, dcalc= 1,78g.cm-3. Hidroxe chloride diphenyl tin (IV) + mesobis (phenylsulphinyl)methane, SnClOHPh2 + Ph2(SO) 2CH2 the crystal belongs to the monoclinic system, P21/c, a= 10,540(3), b= 9,743(1), c= 24,099(7)&#197, &#946= 92,95(2), V= 2471(1)&#1973, Z= 4, dcalç= 1,58g.cm-3
184

New data on hemihedrite from Arizona

Lafuente, B., Downs, R. T., Origlieri, M. J., Domanik, K. J., Gibbs, R. B., Rumsey, M. S. 01 August 2017 (has links)
Hemihedrite from the Florence Lead-Silver mine in Pinal County, Arizona, USA was first described and assigned the ideal chemical formula Pb10Zn(CrO4)(6)(SiO4)(2)F-2, based upon a variety of chemical and crystal-structure analyses. The primary methods used to determine the fluorine content for hemihedrite were colorimetry, which resulted in values of F that were too high and inconsistent with the structural data, and infrared (IR) spectroscopic analysis that failed to detect OH or H2O. Our reinvestigation using electron microprobe analysis of the type material, and additional samples from the type locality, the Rat Tail claim, Arizona, and Nevada, reveals the absence of fluorine, while the presence of OH is confirmed by Raman spectroscopy. These findings suggest that the colorimetric determination of fluorine in the original description of hemihedrite probably misidentified F due to the interferences from PO4 and SO4, both found in our chemical analyses. As a consequence of these results, the study presented here proposes a redefinition of the chemical composition of hemihedrite to the ideal chemical formula Pb10Zn(CrO4)(6)(SiO4)(2)(OH)(2). Hemihedrite is isotypic with iranite with substitution of Zn for Cu, and raygrantite with substitution of Cr for S. Structural data from a sample from the Rat Tail claim, Arizona, indicate that hemihedrite is triclinic in space group P (1) over bar, a = 9.4891(7), b = 11.4242(8), c = 10.8155(7) angstrom, alpha = 120.368(2)degrees, ss = 92.017(3)degrees, gamma = 55.857(2)degrees, V = 784.88(9) angstrom(3), Z = 1, consistent with previous investigations. The structure was refined from single-crystal X-ray diffraction data to R-1 = 0.022 for 5705 unique observed reflections, and the ideal chemical formula Pb10Zn(CrO4)(6)(SiO4)(2)(OH)(2) was assumed during the refinement. Electron microprobe analyses of this sample yielded the empirical chemical formula Pb-10.05(Zn0.91Mg0.02)(Sigma) (= 0.93) (Cr5.98S0.01P0.01)(Sigma = 6.00) Si1.97O34 H-2.16 based on 34 O atoms and six (Cr + S + P) per unit cell.
185

Preparation and characterization of some ionic liquids and their use in the dimerization reaction of 2-methylpropene

Kärkkäinen, J. (Johanna) 27 February 2007 (has links)
Abstract This study concentrates on the preparation and characterization of some ionic liquids and their use in dimerization reaction of 2-methylpropene. Ionic liquids consist of cations and anions, and are commonly understood as green solvents. By definition their melting points should be lower than 100 °C. Prepared ionic liquids were used as catalytic solvents in dimerizations of 2-methylpropene to a high octane compound, isooctene. The monograph consists of two parts: the literature survey and the practical work. The literature survey reviews the preparation and characterization of ionic liquids as well as their environmental aspects, such as toxicity, biodegradability and recyclability. In addition, the acid catalyzed dimerization of butenes is discussed together with the dimerizations of light olefins carried out in ionic liquids. The practical work consists of three entities: The environmentally benign preparation of 1-alkyl-3-methylimidazolium-based ionic liquids under microwave activation, the characterization of ionic liquids and the use of the ionic liquids in the dimerization reaction. Ionic liquids absorb efficiently microwave irradiation and the most beneficial aspect in the microwave-assisted preparations was the considerably shortened reaction time compared to the conventional methods. In addition to the microwave-assisted preparations, [Cnmim][InCl4] ionic liquids were prepared successfully without microwave irradiation. A special attention was paid to the characterization of ionic liquids since impurities are known to affect on the properties of the ionic liquids. Ionic liquids were analysed with the following methods: 1H and 13C NMR, MS(ESI+ and ESI-), GC and elemental analysis. Characterization of ionic liquids was done by determining the thermal stability, the melting point and the crystal structure of each solid ionic liquid. The determination of the liquid range of ionic liquid is necessary in order to know the temperature limits for each ionic liquid. Novel InCl3-based ionic liquids revealed to be the more efficient than Brønsted acidic ILs as a catalytic reaction media in the dimerization of 2-methylpropene. It was preferable to apply [C6mim]Cl/InCl3 (x(InCl3) = 0.55) as a catalytic IL since then the conversion of 2-methylpropene and the product distribution revealed to be good. In order to maximize the production and the separation of dimers reaction should be carried out continuously at temperature high enough, such as 160 °C. Neutral InCl3-based ionic liquid did not catalyze reaction of 2-methylpropene, but it had to be acidic x(InCl3) > 0.5. Excess of InCl3 did not leach out from the IL and the recycling of IL was possible.
186

Etude du diagramme de phases des solutions d'électrolytes sous conditions extrêmes / Exploring the phase diagram of electrolyte solutions under extreme conditions

Ludl, Adriaan-Alexander 28 September 2015 (has links)
L’étude des phases amorphes et cristallines de solutions permet est d'un fort intérêt pour la biologie et la planétologie. Le but de cette thèse est l’exploration du diagramme de phase des solutions d’électrolytes (LiCl et NaCl dans l’eau) sous des conditions de pression et température typiques des corps glacés tels Europe et Ganymède (de 77 à 300 K et jusqu’à 5 GPa). Nous avons étudié des phases de glaces amorphes et cristallines pouvant incorporer des quantités considérables de sel (jusqu’à 10 % de masse de sel). En outre de la mise en évidence de phases de glace salées, nous avons caractérisé deux propriétés exotiques induites sous pression, à savoir le polyamorphisme et l’inclusion des ions dans le réseau de la glace. Nous avons produit des échantillons de phase amorphe de solutions de NaCl dans l’eau par trempe rapide à 77 Kelvin. Nos expériences de diffraction de neutron et de rayons X montrent que la structure locale de cette phase amorphe est très similaire de celle de la phase haute densité de l’eau pure. Nos expériences haute pression avec la presse Paris-Edinbourg et nos calculs de dynamique moléculaire montrent que la densité et la structure évoluent de manière continue en compression jusqu’à 4 GPa. La possibilité d’inclusion du sel (NaCl) dans le réseau de la glace VII sous pression dans nos expériences est analysée en comparaison avec des simulations utilisant la théorie de la densité fonctionnelle. La glace VII qui cristallise dans nos expériences est soit pure, soit elle contient une fraction faible des ions de la solution mère. Il est possible que des quantités de sel plus grandes puissent être incorporées à des pressions plus élevées. / The study of amorphous and crystalline phases of solutions gives essential insight on the behaviour of water under conditions relevant for biology and planetary science. The aim of this work is the exploration of the phase diagram of common electrolyte solutions (LiCl-water, NaCl-water) under pressure and temperature conditions (from 77 K to 330 K and up to 5 GPa) relevant for icy bodies such as Europe and Ganymede. In experiments and simulations we search for crystalline phases of ice at high-pressure, which can contain considerable amounts of salt in their lattice (up to 10 % of by weight). We probe the existence of these salty ices, and characterize two exotic, pressure induced properties, polyamorphism and ionic inclusions in the ice lattice. We have produced highly concentrated amorphous solutions of NaCl in water by fast quenching to liquid nitrogen temperature. Our neutron and X-ray diffraction experiments show that the local structure of this amorphous solution at ambient pressure is very similar to the high density amorphous structure of pure water. Our high-pressure experiments with the Paris-Edinburgh cell and our classical Molecular Dynamics calculations show only smooth structure and density changes during compression up to 4 GPa. We discuss the possibility of salt (NaCl) inclusions in the ice VII lattice at high pressure in our experiments by complementary calculations based on Density Functional Theory. The ice VII which crystallized in our experiments is either pure ice, or it contains only a small fraction of the ions from the solution. It may be possible that ions can be included in larger quantities at higher pressures.
187

Hydroxycalciomicrolite, Ca1.5Ta2O6(OH), a new member of the microlite group from Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil

Andrade, M. B., Yang, H., Atencio, D., Downs, R. T., Chukanov, N. V., Lemée-Cailleau, M. H., Persiano, A. I. C., Goeta, A. E., Ellena, J. 01 May 2017 (has links)
Hydroxycalciomicrolite, Ca1.5Ta2O6(OH) is a new microlite-group mineral found in the Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. It occurs as isolated octahedral and as a combination of octahedral and rhombic dodecahedral crystals, up to 1.5 mm in size. The crystals are yellow and translucent, with a white streak and vitreous to resinous lustre. The mineral is brittle, with a Mohs hardness of 56. Cleavage is not observed and fracture is conchoidal. The calculated density is 6.176 g cm(3). Hydroxycalciomicrolite is isotropic, n(calc). = 2.010. The infrared and Raman spectra exhibit bands due to OH stretching vibrations. The chemical composition determined from electron microprobe analysis (n = 13) is (wt.%): Na2O 0.36(8), CaO 15.64(13), SnO2 0.26(3), Nb2O5 2.82(30), Ta2O5 78.39(22), MnO 0.12(2), F 0.72(12) and H2O 1.30 (from the crystal structure data), O = F -0.30, total 99.31(32), yielding an empirical formula, (Ca1.48Na0.06Mn0.01)(Sigma 1.55)(Ta1.88Nb0.11Sn0.01)S2.00O6.00[(OH)(0.76)F0.20O0.04]. Hydroxycalciomicrolite is cubic, with unit-cell parameters a = 10.4205(1) angstrom, V = 1131.53(2) angstrom(3) and Z = 8. It represents a pyrochlore supergroup, microlite-group mineral exhibiting P4(3)32 symmetry, instead of Fd (3) over barm. The reduction in symmetry is due to long-range ordering of Ca and vacancies on the A sites. This is the first example of such ordering in a natural pyrochlore, although it is known from synthetic compounds. This result is promising because it suggests that other species with P4(3)32 or lower-symmetry space group can be discovered and characterized.
188

Mineralogy of Copper Sulfides in Porphyry Copper and Related Deposits

Schumer, Benjamin Nathan, Schumer, Benjamin Nathan January 2017 (has links)
Porphyry copper deposits represent one of the largest copper reserves on Earth. They typically contain large, low-grade reserves of primary ore and higher-grade, supergene enrichment blankets of sulfide and oxide ores. Understanding the mineralogy of porphyry copper ores and ores related to porphyry copper systems is exceedingly important for several reasons, foremost of which are the information provided by ore mineral parageneses, assemblages, and mineral chemistry on evolution of these magmatic-hydrothermal systems, and information on mineral processing characteristics of the ores. The focus of this work is to better understand the mineralogy of supergene copper sulfides in porphyry copper systems and hypogene base metal lodes related to porphyry copper systems, and use this mineralogical knowledge to improve our understanding of the processes responsible for ore formation. The objectives of this study are accomplished by two means: focusing on the crystallography and crystal chemistry of minerals, and then applying this mineralogical knowledge to a supergene sulfide enrichment blanket and hypogene massive sulfides from base metal lodes in southeastern Arizona. The discovery of a new mineral, natropalermoite, NaSr2Al4(PO4)4(OH)4, provided the opportunity to use single-crystal X-ray diffraction to solve a crystal structure, and electron-probe microanalysis (EPMA) to study the crystal chemistry of natropalermoite and how the accommodation of Na in the structure changes lengthens the unit cell along [010] and shortens it along [100] and [001] compared to its lithium analogue, palermoite. Solution of the crystal structure of the mineral nickelskutterudite, (Ni,Co,Fe)As3, allowed for the investigation of anion deficiency in minerals of the skutterudite group, a problem whose solution has eluded researchers for nearly 100 years. Two skutterudite (CoAs3) and two nickelskutterudite samples were analyzed using single-crystal X-ray diffraction, EPMA, and procrystal electron density. The results showed fully-occupied anion sites and a cation surplus, which was accommodated in the icosahedral site, proving that minerals of the skutterudite group are not anion deficient. This mineralogical knowledge was applied to the supergene enrichment blanket in the Western Copper section of the Morenci mine, Greenlee County, and hypogene massive sulfide deposits associated with a porphyry copper deposit at Bisbee, Cochise County, Arizona. This is one of very few studies of supergene sulfide blankets ever completed. One drill hole through the supergene blanket at Western Copper was examined using ore microscopy and EPMA. Results showed dominant (Cu+Fe):S ratios of 1.80 ± 0.05, 1.92 ± 0.03, and 1.10 ± 0.10, with higher (Cu+Fe):S dominant high in the blanket and low ratios dominant near the base of the blanket. These values were interpreted to be controlled by activity of Cu2+, Fe2+, and Fe3+ in solution. Massive sulfide deposits at Bisbee were investigated using ore microscopy and EPMA in order to correct the previous conflicting reports of the mineralogy and paragenesis of this famous district and interpret constraints on conditions of ore-forming fluids. Results show four types of ore: chalcopyrite-rich with hematite and/or pyrite, bornite-rich, chalcocite-rich, and a Zn-Pb association. Chalcopyrite-rich ores formed first, followed by bornite-rich and chalcocite-rich ores. All ores were formed at relatively shallow depths from oxidized, moderately sulfur-rich fluids; early fluids were higher temperature and later fluids were lower temperature and considerably more sulfidized. Zinc-lead ores formed early and were continuously dissolved and reprecipitated distal to Cu-mineralization. These patterns are similar to many other base-metal lode districts worldwide, however Bisbee contains more Zn-Pb ore than other districts with hematite-containing ores and less than those without hematite.
189

Structural Characterization of Metal Hydrides for Energy Applications

George, Lyci 19 May 2010 (has links)
Hydrogen can be an unlimited source of clean energy for future because of its very high energy density compared to the conventional fuels like gasoline. An efficient and safer way of storing hydrogen is in metals and alloys as hydrides. Light metal hydrides, alanates and borohydrides have very good hydrogen storage capacity, but high operation temperatures hinder their application. Improvement of thermodynamic properties of these hydrides is important for their commercial use as a source of energy. Application of pressure on materials can have influence on their properties favoring hydrogen storage. Hydrogen desorption in many complex hydrides occurs above the transition temperature. Therefore, it is important to study the physical properties of the hydride compounds at ambient and high pressure and/or high temperature conditions, which can assist in the design of suitable storage materials with desired thermodynamic properties. The high pressure-temperature phase diagram, thermal expansion and compressibility have only been evaluated for a limited number of hydrides so far. This situation serves as a main motivation for studying such properties of a number of technologically important hydrides. Focus of this dissertation was on X-ray diffraction and Raman spectroscopy studies of Mg2FeH6, Ca(BH4)2, Mg(BH4)2, NaBH4, NaAlH4, LiAlH4, LiNH2BH3 and mixture of MgH2 with AlH3 or Si, at different conditions of pressure and temperature, to obtain their bulk modulus and thermal expansion coefficient. These data are potential source of information regarding inter-atomic forces and also serve as a basis for developing theoretical models. Some high pressure phases were identified for the complex hydrides in this study which may have better hydrogen storage properties than the ambient phase. The results showed that the highly compressible B-H or Al-H bonds and the associated bond disordering under pressure is responsible for phase transitions observed in brorohydrides or alanates. Complex hydrides exhibited very high compressibility suggesting possibility to destabilize them with pressure. With high capacity and favorable thermodynamics, complex hydrides are suitable for reversible storage. Further studies are required to overcome the kinetic barriers in complex hydrides by catalytic addition. A comparative study of the hydride properties with that of the constituting metal, and their inter relationships were carried out with many interesting features.
190

Structural and transport properties of V₆O₁₃ insertion electrodes

Spurdens, Paul Charles January 1982 (has links)
No description available.

Page generated in 0.0759 seconds