• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 26
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Engineering Cyanobacteria to Convert Carbon Dioxide to Building Blocks for Renewable Plastics

January 2014 (has links)
abstract: The production of monomer compounds for synthesizing plastics has to date been largely restricted to the petroleum-based chemical industry and sugar-based microbial fermentation, limiting its sustainability and economic feasibility. Cyanobacteria have, however, become attractive microbial factories to produce renewable fuels and chemicals directly from sunlight and CO2. To explore the feasibility of photosynthetic production of (S)- and (R)-3-hydroxybutyrate (3HB), building-block monomers for synthesizing the biodegradable plastics polyhydroxyalkanoates and precursors to fine chemicals, synthetic metabolic pathways have been constructed, characterized and optimized in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis 6803). Both types of 3HB molecules were produced and readily secreted from Synechocystis cells without over-expression of transporters. Additional inactivation of the competing PHB biosynthesis pathway further promoted the 3HB production. Analysis of the intracellular acetyl-CoA and anion concentrations in the culture media indicated that the phosphate consumption during the photoautotrophic growth and the concomitant elevated acetyl-CoA pool acted as a key driving force for 3HB biosynthesis in Synechocystis. Fine-tuning of the gene expression levels via strategies, including tuning gene copy numbers, promoter engineering and ribosome binding site optimization, proved critical to mitigating metabolic bottlenecks and thus improving the 3HB production. One of the engineered Synechocystis strains, namely R168, was able to produce (R)-3HB to a cumulative titer of ~1600 mg/L, with a peak daily productivity of ~200 mg/L, using light and CO2 as the sole energy and carbon sources, respectively. Additionally, in order to establish a high-efficiency transformation protocol in cyanobacterium Synechocystis 6803, methyltransferase-encoding genes were cloned and expressed to pre-methylate the exogenous DNA before Synechocystis transformation. Eventually, the transformation efficiency was increased by two orders of magnitude in Synechocystis. This research has demonstrated the use of cyanobacteria as cell factories to produce 3HB directly from light and CO2, and developed new synthetic biology tools for cyanobacteria. / Dissertation/Thesis / Ph.D. Biological Design 2014
22

The ecology of the nuisance cyanobacterium, <i>Lyngbya wollei</i>, in the Western Basin of Lake Erie

Panek, Sarah E. 17 July 2012 (has links)
No description available.
23

Characterization of secondary microbial communities in industrial bioreactors producing high value chemicals

Kindt, Rocky January 2017 (has links)
Microbial communities are key drivers of biogeochemical cycles and several important industrial processes rely on complex, undefined microbial ecosystems for production or conversion of substrates for example in wastewater treatment or anaerobic digestion plants. Despite their significance, such communities are often poorly defined, if at all. This project concerned previously undefined secondary microbial communities (SMCs) from photobioreactors culturing cyanobacterium Arthrospira platensis, known for producing high-value protein-pigment complex C-phycocyanin (C-PC). C-PC has a range of applications in the biochemical/pharmaceutical and food industries. Next-generation sequencing methods were applied to characterize the SMCs sampled over the course of various batch runs. The bioreactor exerted a strong selective pressure on the SMC, initially diverse and dynamic, succeeded by a stable and predictable SMC dominated by a few species. SMC stability and diversity correlated with reactor performance, especially proliferation and instability of the rare-abundance sub-population; dominant species ratios were likely less important. The substantially larger (compared to other species present) A. platensis filaments may represent a dynamic microenvironment in itself, and if so, constitutes a significant parameter when optimizing culture conditions. Denser and carefully pre-acclimated inocula reduce the ecological space available to undesirable taxa (e.g. pathogens) otherwise below detectable/significant limits. This has implications for other processes that rely on mixed cultures and may be a control strategy in manufacturing active pharmaceutical ingredients to cGMP standards. Molecular data was used to obtain several pure isolates which were characterized further. Strategies to optimize performance with respect to SMCs were explored and evaluated. A significant aspect of this CASE project was an industrial placement with Scottish Bioenergy. The placement involved set-up of a production facility and incremental scale-up of cultivation from 2 L to 1000 L reactors; development of a downstream processing protocol covering harvesting, pigment extraction and protein purification, and some formulation/stability testing. A very low-cost method is described for obtaining relatively high-purities of C-PC, broadly considered the most costly part of the entire production process.
24

Impact shocked rocks as protective habitats on an anoxic early Earth

Bryce, C.C., Horneck, G., Rabbow, E., Edwards, Howell G.M., Cockell, C.S. 2014 May 1914 (has links)
No / On Earth, microorganisms living under intense ultraviolet (UV) radiation stress can adopt endolithic lifestyles, growing within cracks and pore spaces in rocks. Intense UV irradiation encountered by microbes leads to death and significant damage to biomolecules, which also severely diminishes the likelihood of detecting signatures of life. Here we show that porous rocks shocked by asteroid or comet impacts provide protection for phototrophs and their biomolecules during 22 months of UV radiation exposure outside the International Space Station. The UV spectrum used approximated the high-UV flux on the surface of planets lacking ozone shields such as the early Earth. These data provide a demonstration that endolithic habitats can provide a refugium from the worst-case UV radiation environments on young planets and an empirical refutation of the idea that early intense UV radiation fluxes would have prevented phototrophs without the ability to form microbial mats or produce UV protective pigments from colonizing the surface of early landmasses.
25

Biologie systémique de la résistance au stress oxydant métabolique : rôles du glutathion, du méthylglyoxal et des glyoxalases / System biology of the metabolic oxydative stress resistance : role of glutathione, methylglyoxal and glyoxalases

Narainsamy, Kinsley 21 June 2012 (has links)
Apparues il y a environ trois milliards d'années, les cyanobactéries ont façonné notre planète, en produisant l’atmosphère oxygénique. De nos jours, les cyanobactéries sont les organismes photosynthétiques les plus abondants dans notre environnement, elles assurent environ 30 à 40% de la production d'O2, et de la consommation du CO2 par les océans et constituent le premier maillon de la chaîne alimentaire. A part la photosynthèse, leur métabolisme est encore très mal connu. Ainsi, pour mieux comprendre le métabolisme cyanobactérien et proposer des stratégies de reprogrammation, il est primordial de développer des méthodes analytiques permettant l’étude globale de leur métabolisme en réponse à des variations de conditions environnementales et de stress. La cyanobactérie modèle Synechocystis PCC6803 convient parfaitement à ce type d’analyse. En effet, Synechocystis est un unicellulaire, hétérotrophe facultative capable de se développer en eau douce ou saumâtre et à un pH alcalin. Synechocystis possède un petit génome d’environ 4.0 Mb entièrement séquencé et facilement manipulable grâce aux outils développés au laboratoire. Son génome prédit l'existence d'un métabolisme carboné complexe mais encore peu étudié. Mon travail de thèse est centré sur cette analyse par la combinaison de deux approches, la génomique fonctionnelle et la métabolomique. Durant ma thèse en collaboration avec le LEMM dirigé par Christophe Junot iBiTec-S/SPI, j’ai développé un protocole d’extraction des métabolites de Synechocystis, ainsi qu’une méthode d’analyse métabolomique par couplage de la chromatographie liquide à la spectrométrie de masse LTQ-Orbitrap à haute résolution. L’application de cette nouvelle méthode analytique m’a permis d’étudier l’influence de la lumière et du glucose sur le métabolisme de Synechocystis. Ainsi, j’ai montré que Synechocystis cultivée en présence du glucose reprogramme fortement son métabolisme. Parmi les résultats très intéressants, j’ai montré que le glucose engendre un stress oxydant. Chez tous les organismes, une forte activité du métabolisme carboné entraîne la production de métabolites toxiques tels que le méthyglyoxal (MG). Le MG modifie irréversiblement de nombreuses bio-molécules. Dans le cadre de ma thèse, j’ai commencé à m’intéresser à l'effet du MG sur la physiologie et le métabolisme de Synechocystis. J'ai construit 25 mutants KO pour les gènes de la glycolyse et du métabolisme du glycérol permettant de moduler la concentration intracellulaire de MG et également les gènes impliqués dans les voies de détoxication du MG dont celle dépendante de la synthèse du GSH (la voie des glyoxalases). J’ai pu montrer que les gènes responsables de la synthèse du GSH sont essentiels à la viabilité cellulaire. Je suis parvenu toutefois à obtenir un mutant déplété de gshB et ne produisant plus de GSH à un niveau détectable. En faisant une analyse métabolomique approfondie, j’ai mis en évidence pour la première fois que Synechocystis était capable produire deux tripeptides non-thiolés analogues structuraux du GSH; l’acide ophthalmique et l’acide norophthalmique identifiés jusqu’à présent uniquement chez les mammifères. La comparaison des métabolomes de culture de souches sauvage, ou dépletées en gshA, gshB ou ggt, a permis de montré que ces analogues sont synthétisés par les mêmes enzymes que le GSH à savoir GshA et GshB. Par ailleurs, une autre molécule anti-oxydante dont la synthèse est connue chez quelques champignons et qui s’accumule chez l’Homme par l’apport alimentaire a également été observée. / Cyanobacteria are fascinating microorganisms. They are among the oldest life forms, regarded as the progenitors of the oxygenic photosynthesis and plant chloroplast. Furthermore, cyanobacteria have evolved as the largest and most diverse groups of bacteria in colonizing most marine and fresh waters, as well as soils. An important reason for the hardness of cyanobacteria is their successful combination of effective metabolic pathways driven by their efficient photosynthesis that uses nature's most abundant resources, solar energy, water and CO2, to produce a large part of the Planet's oxygenic atmosphere and organic assimilates for the food chain. Hence, cyanobacteria are receiving a growing attention because of their potential for the carbon-neutral production of biofuels and bioplastics. To better understand cyanobacteria and turn their biotechnological potentials into an industrial reality, we need to develop robust protocols for global analysis of their metabolism and its responses to environmental stresses. The model cyanobacterium Synechocystis PCC6803 is well suited for this purpose. Synechocystis is a basic organism, i.e. unicellular, which grows well (i) in fresh- and marine-waters; (ii) in the presence of glucose that can compensate for the absence of light; and (iii) at high pH that prevents microbial contaminations. Furthermore, Synechocystis harbors a small sequenced genome (about 4.0 Mb), which can be easily manipulated. In the present work, we developed a robust protocol for metabolome analyses of Synechocystis, using liquid chromatography (LC) for metabolite separation, coupled to a LTQ-Orbitrap mass spectrometer that provides high sensitivity and resolution, accurate mass measurements, and structural informations with MS/MS or sequential MSn experiments that facilitate metabolite identification. Consequently, we applied the PFPP-LC/MS method to analyze the metabolome of Synechocystis growing under various conditions of light and glucose, which strongly influence cell growth. We found that glucose increases glucose storage and catabolism, while it decreases the Calvin-Benson cycle that consumes photosynthetic electrons for CO2 assimilation. Depending on light and glucose availabilities, this global metabolic reprogramming can generate an oxidative stress, likely through the recombination of the glucose-spared electrons with the photosynthetic oxygen thereby producing toxic reactive oxygen species. Furthermore, we studied the metabolism of an endogenous toxic the méthylglyoxal and its main catabolic pathway going through the glyoxalases system glutathione dependent.
26

Reprogrammation du métabolisme cyanobactérien de Synechocystis sp. PCC6803 pour une meilleure photoproduction d’hydrogène / Reprogramming the cyanobacterial metabolism of Synechocystis sp. PCC6803 for a better hydrogen photoproduction

Dutheil, Jérémy 26 April 2013 (has links)
Le développement d'organismes photosynthétiques (piégeant le C02 en préservant l'eau douce et les terres cultivables sans ajout d'engrais) capables d'utiliser l'énergie solaire pour produire du dihydrogène (H2) passe par une meilleure compréhension du rôle de l'hydrogénase dans le métabolisme cyanobactérien. Le Laboratoire de Biologie et Biotechnologie des Cyanobatéries où j'ai travaillé durant ma thèse utilise une approche de "Biologie Intégrative" pour analyser le métabolisme qui conduit à la photo-production d’H2 chez la cyanobactérie modèle Synechocystis sp. PCC6803. Mon travail s'est focalisé sur l’analyse des réseaux de régulation amenant à la production d'H2 par l’hydrogénase bidirectionnelle à centre Ni-Fe (composée de 5 sous-unités) codée par l’opéron hox. Lorsque j’ai débuté ce travail, 2 activateurs de l’opéron hox avaient été identifiés: AbrB1 et LexA. Un article dont je suis co-premier auteur est paru (Dutheil et al. 2012 J Bact.), il décrit l'identification par l'utilisation de diverses approches d'un nouveau facteur de transcription de l'opéron hox: AbrB2 (homologue d'AbrB1). J'ai ainsi montré que l'expression de l’opéron hox était régulée négativement par AbrB2 en utilisant des fusions transcriptionnelles au gène rapporteur cat (introduites dans la souche sauvage ou dépourvues d'AbrB2) ainsi que des expériences de qRT-PCR. Par la technique de retard sur gel, nous avons confirmé une interaction directe entre AbrB2 et la région promotrice de l’opéron hox. En collaboration avec deux laboratoires du CEA, nous avons montré qu'un mutant dépourvu d’AbrB2 possède une activité hydrogénase augmentée, confirmant ainsi qu'AbrB2 est un régulateur négatif de la production d'H2.Dans un deuxième temps et en collaboration avec deux post-doc du laboratoire, nous avons mis en évidence le rôle de la cystéine unique d'AbrB2 dans le contrôle redox de son activité de régulation transcriptionnelle.Par la technique du retard sur gel,j’ai montré que cette cystéine n’est pas cruciale pour la fixation d'AbrB2 sur le promoteur hox, mais que par contre, la modification redox de celle-ci l’affecte de manière drastique. Dans le cadre de collaborations, nous avons identifié la modification post-traductionnelle qui peut avoir lieu sur la cysteine d'AbrB2 et il s’agit de la première fois, qu’un tel mécanisme de régulation est identifié pour cette famille de régulateur et chez les cyanobactéries. J’ai construit une souche portant l'allèle muté abrB2 Cys>Ser sur le chromosome et exprimé par le promoteur sauvage d’abrB2. J’ai montré grâce à cette construction et en utilisant diverses techniques (activité hydrogénase, qRT-PCR, Western blot et transcriptome) que la cystéine d'AbrB2 joue un rôle dans son activité de régulation qui est 60% moins bonne sur les 529 gènes cibles (directes ou indirectes) du régulateur muté. L’effet est également visible sur l’activité hydrogénase. Ce résultat a été complété par des tests de surexpression thermoinduite d’AbrB2 qui montrent que la mutation C34S affecte la stabilité de la protéine qui ne s’accumule pas autant que la sauvage dans les même conditions et dont la surexpression est létale. Un manuscrit dont je suis copremier auteur et décrivant ces résultats est en cours de finalisation et sera prochainement soumis à l’Intern. Journ. of Hydrogen Energy.L’ensemble de ces travaux permet de mieux comprendre les mécanismes biologiques liés à l’expression de l’hydrogénase bidirectionnelle et vont dans le sens d’un rôle important de celle-ci dans la détoxification des stress redox. La détermination des relations entre les différents régulateurs de l’hydrogénase et les possibles modifications post-traductionnelles de chacun de ces facteurs que j’ai mises en évidence traduisent une enzyme à la régulation complexe. Ces nouvelles connaissances permettent d’éclairer sous un angle nouveau la photoproduction d’H2 par les cyanobactéries et permettront peut-être d’élaborer des stratégies de production d’H2 efficace. / Developing photosynthetic organism (trapping CO2 while preserving fresh water and arable soils without adding fertilizers) able to use Sun light to produce dihydrogen (H2) is depending on a better understanding of the role of hydrogenase in the cyanobacterial metabolism. The Laboratoire de Biologie et Biotechnologie des Cyanobactéries (LBBC) where I worked during my thesis uses « Integrative Biology » approach to analyze the metabolism leading to H2 photoproduction by the model cyanobacterium Synechocystis sp. PCC6803. My work focused on analyzing the regulation network leading to H2 production by the bidirectionnal hydrogenase with Ni-Fe cluster (composed of 5 subunits) encoded by hox operon. When I started this work, two transcriptionnal activators were identified : AbrB1 and LexA. An article, of which I’m sharing first author position, is published (Dutheil et al. 2012 J Bact.), it describes the identification by different approachs of a new transcriptionnal factor of hox operon : AbrB2 (homologous to AbrB1). I showed that hox expression is negatively regulated by AbrB2 by using transcriptionnal fusion to cat reporter gene (introduced in the wild type background or the AbrB2-deleted one) and qRT-PCR experiments. By the electrophoretic mobility shift assay (EMSA) method, we confirmed a direct interaction between AbrB2 and the promoter region of hox operon. Collaborating with two CEA laboratories, we showed that a mutant lacking AbrB2 harbours an increased hydrogenase activity, validating that AbrB2 is a negative regulator of H2 production.In a second time of my thesis and colaborating with two post-doc of the laboratory, we evidenced the role of the unique cysteine of AbrB2 in redox-controlling the transcriptionnal regulator activity of the protein.Using the EMSA method, I showed that the cysteine is not crucial for AbrB2 fixing on hox promoter, but also that the redox modification occuring on this residue inhibits this same binding activity. Collaborating with other labs, we identified the post-translational modifications that may occur on AbrB2 cysteine and it is the first time that such a regulating mechanism is identified for this family of regulators and in cyanobacteria. I constructed a strand harbouring the abrB2C34S mutant allele on the chromosome and expressed by the abrB2 natural promoter. I showed with this construction and using diverse methods (hydrogenase activity, qRT-PCR, Western blot and transcriptome) that AbrB2 cysteine plays a role in its regulating activity : regulating activity is 60% less efficient towards the 529 target genes (either direct and indirect) of the mutated regulator. The effect is also seen on hydrogenase activity and hox genes. This result was completed by thermoinduced overexpression assays that show that C34S mutation of AbrB2 alters protein stability : the mutated protein accumulates less than wild type allele in the same conditions, which is lethal. A manuscript, of which I’m sharing first author position, and describing those results is being finalised and will be submitted soon to the IJHE (International Journal of Hydrogen Energy).Altogether, my results allow a better understanding of the biological mechanisms linked to bidirectionnal hydrogenase expression and agree with a possible role for hydrogenase in detoxifying redox stresses. The determination of the relationships between the different regulators of hydrogenase, and their possible post-translational modifications that I revealed, highlight an enzyme with complex regulation. This new knowledge brings an original outlook on hydrogen photoproduction by cyanobacteria and shall allow elaboration of efficient H2 production strategies.

Page generated in 0.4656 seconds