• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reprogrammation du métabolisme cyanobactérien de Synechocystis sp. PCC6803 pour une meilleure photoproduction d’hydrogène / Reprogramming the cyanobacterial metabolism of Synechocystis sp. PCC6803 for a better hydrogen photoproduction

Dutheil, Jérémy 26 April 2013 (has links)
Le développement d'organismes photosynthétiques (piégeant le C02 en préservant l'eau douce et les terres cultivables sans ajout d'engrais) capables d'utiliser l'énergie solaire pour produire du dihydrogène (H2) passe par une meilleure compréhension du rôle de l'hydrogénase dans le métabolisme cyanobactérien. Le Laboratoire de Biologie et Biotechnologie des Cyanobatéries où j'ai travaillé durant ma thèse utilise une approche de "Biologie Intégrative" pour analyser le métabolisme qui conduit à la photo-production d’H2 chez la cyanobactérie modèle Synechocystis sp. PCC6803. Mon travail s'est focalisé sur l’analyse des réseaux de régulation amenant à la production d'H2 par l’hydrogénase bidirectionnelle à centre Ni-Fe (composée de 5 sous-unités) codée par l’opéron hox. Lorsque j’ai débuté ce travail, 2 activateurs de l’opéron hox avaient été identifiés: AbrB1 et LexA. Un article dont je suis co-premier auteur est paru (Dutheil et al. 2012 J Bact.), il décrit l'identification par l'utilisation de diverses approches d'un nouveau facteur de transcription de l'opéron hox: AbrB2 (homologue d'AbrB1). J'ai ainsi montré que l'expression de l’opéron hox était régulée négativement par AbrB2 en utilisant des fusions transcriptionnelles au gène rapporteur cat (introduites dans la souche sauvage ou dépourvues d'AbrB2) ainsi que des expériences de qRT-PCR. Par la technique de retard sur gel, nous avons confirmé une interaction directe entre AbrB2 et la région promotrice de l’opéron hox. En collaboration avec deux laboratoires du CEA, nous avons montré qu'un mutant dépourvu d’AbrB2 possède une activité hydrogénase augmentée, confirmant ainsi qu'AbrB2 est un régulateur négatif de la production d'H2.Dans un deuxième temps et en collaboration avec deux post-doc du laboratoire, nous avons mis en évidence le rôle de la cystéine unique d'AbrB2 dans le contrôle redox de son activité de régulation transcriptionnelle.Par la technique du retard sur gel,j’ai montré que cette cystéine n’est pas cruciale pour la fixation d'AbrB2 sur le promoteur hox, mais que par contre, la modification redox de celle-ci l’affecte de manière drastique. Dans le cadre de collaborations, nous avons identifié la modification post-traductionnelle qui peut avoir lieu sur la cysteine d'AbrB2 et il s’agit de la première fois, qu’un tel mécanisme de régulation est identifié pour cette famille de régulateur et chez les cyanobactéries. J’ai construit une souche portant l'allèle muté abrB2 Cys>Ser sur le chromosome et exprimé par le promoteur sauvage d’abrB2. J’ai montré grâce à cette construction et en utilisant diverses techniques (activité hydrogénase, qRT-PCR, Western blot et transcriptome) que la cystéine d'AbrB2 joue un rôle dans son activité de régulation qui est 60% moins bonne sur les 529 gènes cibles (directes ou indirectes) du régulateur muté. L’effet est également visible sur l’activité hydrogénase. Ce résultat a été complété par des tests de surexpression thermoinduite d’AbrB2 qui montrent que la mutation C34S affecte la stabilité de la protéine qui ne s’accumule pas autant que la sauvage dans les même conditions et dont la surexpression est létale. Un manuscrit dont je suis copremier auteur et décrivant ces résultats est en cours de finalisation et sera prochainement soumis à l’Intern. Journ. of Hydrogen Energy.L’ensemble de ces travaux permet de mieux comprendre les mécanismes biologiques liés à l’expression de l’hydrogénase bidirectionnelle et vont dans le sens d’un rôle important de celle-ci dans la détoxification des stress redox. La détermination des relations entre les différents régulateurs de l’hydrogénase et les possibles modifications post-traductionnelles de chacun de ces facteurs que j’ai mises en évidence traduisent une enzyme à la régulation complexe. Ces nouvelles connaissances permettent d’éclairer sous un angle nouveau la photoproduction d’H2 par les cyanobactéries et permettront peut-être d’élaborer des stratégies de production d’H2 efficace. / Developing photosynthetic organism (trapping CO2 while preserving fresh water and arable soils without adding fertilizers) able to use Sun light to produce dihydrogen (H2) is depending on a better understanding of the role of hydrogenase in the cyanobacterial metabolism. The Laboratoire de Biologie et Biotechnologie des Cyanobactéries (LBBC) where I worked during my thesis uses « Integrative Biology » approach to analyze the metabolism leading to H2 photoproduction by the model cyanobacterium Synechocystis sp. PCC6803. My work focused on analyzing the regulation network leading to H2 production by the bidirectionnal hydrogenase with Ni-Fe cluster (composed of 5 subunits) encoded by hox operon. When I started this work, two transcriptionnal activators were identified : AbrB1 and LexA. An article, of which I’m sharing first author position, is published (Dutheil et al. 2012 J Bact.), it describes the identification by different approachs of a new transcriptionnal factor of hox operon : AbrB2 (homologous to AbrB1). I showed that hox expression is negatively regulated by AbrB2 by using transcriptionnal fusion to cat reporter gene (introduced in the wild type background or the AbrB2-deleted one) and qRT-PCR experiments. By the electrophoretic mobility shift assay (EMSA) method, we confirmed a direct interaction between AbrB2 and the promoter region of hox operon. Collaborating with two CEA laboratories, we showed that a mutant lacking AbrB2 harbours an increased hydrogenase activity, validating that AbrB2 is a negative regulator of H2 production.In a second time of my thesis and colaborating with two post-doc of the laboratory, we evidenced the role of the unique cysteine of AbrB2 in redox-controlling the transcriptionnal regulator activity of the protein.Using the EMSA method, I showed that the cysteine is not crucial for AbrB2 fixing on hox promoter, but also that the redox modification occuring on this residue inhibits this same binding activity. Collaborating with other labs, we identified the post-translational modifications that may occur on AbrB2 cysteine and it is the first time that such a regulating mechanism is identified for this family of regulators and in cyanobacteria. I constructed a strand harbouring the abrB2C34S mutant allele on the chromosome and expressed by the abrB2 natural promoter. I showed with this construction and using diverse methods (hydrogenase activity, qRT-PCR, Western blot and transcriptome) that AbrB2 cysteine plays a role in its regulating activity : regulating activity is 60% less efficient towards the 529 target genes (either direct and indirect) of the mutated regulator. The effect is also seen on hydrogenase activity and hox genes. This result was completed by thermoinduced overexpression assays that show that C34S mutation of AbrB2 alters protein stability : the mutated protein accumulates less than wild type allele in the same conditions, which is lethal. A manuscript, of which I’m sharing first author position, and describing those results is being finalised and will be submitted soon to the IJHE (International Journal of Hydrogen Energy).Altogether, my results allow a better understanding of the biological mechanisms linked to bidirectionnal hydrogenase expression and agree with a possible role for hydrogenase in detoxifying redox stresses. The determination of the relationships between the different regulators of hydrogenase, and their possible post-translational modifications that I revealed, highlight an enzyme with complex regulation. This new knowledge brings an original outlook on hydrogen photoproduction by cyanobacteria and shall allow elaboration of efficient H2 production strategies.
2

Cultivation of Nannochloropsis salina and Synechocystis sp. PCC6803 in Anaerobic Digestion Effluent for Nutrient Removal and Lipid Production

Cai, Ting 27 August 2012 (has links)
No description available.
3

Vers la reprogrammation métabolique de la cyanobactérie modèle Synechocystis pour la production durable de biocarburants : structuration des flux du carbone par CP12 et implications sur l’équilibre bioénergétique, l’hydrogénase et l’intégrité génomique / Towards the metabolic reprogramming of the cyanobacterium Synechocystis for sustainable biofuels production : Structuration of carbon fluxes by CP12 and implications on the bioenergetic balance, hydrogenase and genomic integrity

Veaudor, Théo 11 September 2017 (has links)
Les biotechnologies sont un outil puissant permettant d’emprunter les circuits biologiques pour produire des composés aux applications multiples (médecine, alimentation, industries…). Les cyanobactéries possèdent des propriétés génétiques et trophiques précieuses pour réduire les coûts et l’empreinte environnementale de ces procédés (photosynthèse, fixation du CO₂, sources d’azote assimilables...). Elles produisent aussi naturellement certaines molécules énergétiques comme le H₂ dont pourraient émerger de nouvelles filières propres de biocarburants. Cependant, une compréhension globale et approfondie de leur physiologie est nécessaire pour concevoir un châssis biologique performant à partir de ces organismes. Elles sont aisément manipulables génétiquement mais présentent une versatilité favorisant la fixation de mutations bénéfiques mais aussi délétères pour leur exploitation à grande échelle. Au cours de ma thèse, j’ai construit et étudié des mutants d’un régulateur de l’assimilation du CO₂ dont l’activation est liée à la photosynthèse. J’ai montré que l’activité du cycle de Calvin synchronise les flux du carbone et le statut rédox de Synechocystis et que sa dérégulation se répercute de manière pléiotropique sur son métabolisme. Plus spécifiquement, je me suis intéressé au déséquilibre carbone/azote dans cette espèce et à son métabolisme de l’urée qui présente un intérêt biotechnologique considérable. J’ai démontré que ce dernier était en compétition avec l’hydrogénase pour l’insertion du nickel dans leurs centres catalytiques respectifs. L’insuffisance de ce métal a permis de sélectionner des mutants de l’uréase tolérant une exposition prolongée à l’urée et conservant une forte capacité de production de H₂ en présence de ce substrat azoté. L’ensemble de ces résultats montre que le métabolisme de Synechocystis peut être détourné au profit de certains processus cellulaires. Les approches « omiques » permettent d’identifier globalement les réponses physiologiques induites ainsi que les leviers biologiques de compensation. Ces travaux sont discutés au regard des implications biotechnologiques de l’instabilité génétique et de la nécessité de renforcer notre compréhension de la plasticité métabolique et génomique des cyanobactéries. / Biotechnology is a powerful tool allowing exploitation of biological circuits to produce compounds with multiple uses (medicine, nutrition, industrial…). Cyanobacteria have valuable genetic and trophic properties which could reduce the costs and the environmental footprint of these processes (photosynthesis, CO₂ fixation, assimilation of diverse nitrogen sources…). They also naturally produce energetic molecules such as H₂ from which new and sustainable biofuels sectors may rise. However, a global and fine understanding of their physiology is required in order to design an efficient biological chassis with these organisms. They are genetically manipulable but also exhibit a strong versatility favoring fixation of mutations that can be either beneficial or harmful to their large-scale cultivation. Over the course of my PhD, I constructed and studied mutants of a CO₂ fixation regulator whose activation is linked to photosynthesis. I showed that the Calvin cycle activity synchronizes carbon fluxes and redox status in Synechocystis and that its deregulation affects the metabolism in a pleiotropic manner. I was specifically interested into the carbon/nitrogen balance in this species and its urea metabolism which is of prime interest in biotechnology. I demonstrated that the latter was in competition with the hydrogenase for the insertion of nickel into their respective catalytic centers. Scarcity of this metal leads to selection of mutants thriving upon prolonged exposure to urea that retained a high capacity of H₂ production in presence of this nitrogenic substrate. This work shows that the metabolism of Synechocystis can be altered in favor of other cellular processes. Omics approaches allow global identification of the physiological responses induced as well as the biological compensation mechanisms. These observations are discussed with regards to biotechnological implications of genetic instability and the need to strengthen our understanding of metabolic and genetic plasticity in cyanobacteria.
4

Reprogrammation du métabolisme cyanobactérien de Synechocystis sp. PCC6803 pour une meilleure photoproduction d'hydrogène

Dutheil, Jérémy 26 April 2013 (has links) (PDF)
Le développement d'organismes photosynthétiques (piégeant le C02 en préservant l'eau douce et les terres cultivables sans ajout d'engrais) capables d'utiliser l'énergie solaire pour produire du dihydrogène (H2) passe par une meilleure compréhension du rôle de l'hydrogénase dans le métabolisme cyanobactérien. Le Laboratoire de Biologie et Biotechnologie des Cyanobatéries où j'ai travaillé durant ma thèse utilise une approche de "Biologie Intégrative" pour analyser le métabolisme qui conduit à la photo-production d'H2 chez la cyanobactérie modèle Synechocystis sp. PCC6803. Mon travail s'est focalisé sur l'analyse des réseaux de régulation amenant à la production d'H2 par l'hydrogénase bidirectionnelle à centre Ni-Fe (composée de 5 sous-unités) codée par l'opéron hox. Lorsque j'ai débuté ce travail, 2 activateurs de l'opéron hox avaient été identifiés: AbrB1 et LexA. Un article dont je suis co-premier auteur est paru (Dutheil et al. 2012 J Bact.), il décrit l'identification par l'utilisation de diverses approches d'un nouveau facteur de transcription de l'opéron hox: AbrB2 (homologue d'AbrB1). J'ai ainsi montré que l'expression de l'opéron hox était régulée négativement par AbrB2 en utilisant des fusions transcriptionnelles au gène rapporteur cat (introduites dans la souche sauvage ou dépourvues d'AbrB2) ainsi que des expériences de qRT-PCR. Par la technique de retard sur gel, nous avons confirmé une interaction directe entre AbrB2 et la région promotrice de l'opéron hox. En collaboration avec deux laboratoires du CEA, nous avons montré qu'un mutant dépourvu d'AbrB2 possède une activité hydrogénase augmentée, confirmant ainsi qu'AbrB2 est un régulateur négatif de la production d'H2.Dans un deuxième temps et en collaboration avec deux post-doc du laboratoire, nous avons mis en évidence le rôle de la cystéine unique d'AbrB2 dans le contrôle redox de son activité de régulation transcriptionnelle.Par la technique du retard sur gel,j'ai montré que cette cystéine n'est pas cruciale pour la fixation d'AbrB2 sur le promoteur hox, mais que par contre, la modification redox de celle-ci l'affecte de manière drastique. Dans le cadre de collaborations, nous avons identifié la modification post-traductionnelle qui peut avoir lieu sur la cysteine d'AbrB2 et il s'agit de la première fois, qu'un tel mécanisme de régulation est identifié pour cette famille de régulateur et chez les cyanobactéries. J'ai construit une souche portant l'allèle muté abrB2 Cys>Ser sur le chromosome et exprimé par le promoteur sauvage d'abrB2. J'ai montré grâce à cette construction et en utilisant diverses techniques (activité hydrogénase, qRT-PCR, Western blot et transcriptome) que la cystéine d'AbrB2 joue un rôle dans son activité de régulation qui est 60% moins bonne sur les 529 gènes cibles (directes ou indirectes) du régulateur muté. L'effet est également visible sur l'activité hydrogénase. Ce résultat a été complété par des tests de surexpression thermoinduite d'AbrB2 qui montrent que la mutation C34S affecte la stabilité de la protéine qui ne s'accumule pas autant que la sauvage dans les même conditions et dont la surexpression est létale. Un manuscrit dont je suis copremier auteur et décrivant ces résultats est en cours de finalisation et sera prochainement soumis à l'Intern. Journ. of Hydrogen Energy.L'ensemble de ces travaux permet de mieux comprendre les mécanismes biologiques liés à l'expression de l'hydrogénase bidirectionnelle et vont dans le sens d'un rôle important de celle-ci dans la détoxification des stress redox. La détermination des relations entre les différents régulateurs de l'hydrogénase et les possibles modifications post-traductionnelles de chacun de ces facteurs que j'ai mises en évidence traduisent une enzyme à la régulation complexe. Ces nouvelles connaissances permettent d'éclairer sous un angle nouveau la photoproduction d'H2 par les cyanobactéries et permettront peut-être d'élaborer des stratégies de production d'H2 efficace.

Page generated in 0.0873 seconds