• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 15
  • 13
  • 11
  • 3
  • Tagged with
  • 156
  • 62
  • 44
  • 23
  • 21
  • 20
  • 19
  • 16
  • 16
  • 15
  • 15
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Experiments concerning the mechanism of cytokinesis in Caenorhabditis elegans embryos

Bringmann, Henrik Philipp 10 January 2007 (has links)
In my thesis I aimed to contribute to the understanding of the mechanism of cytokinesis in C. elegans embryos. I wanted to analyze the relative contributions of different spindle parts – microtubule asters and the midzone - to cytokinesis furrow positioning. I developed a UV laser-based severing assay that allows the spatial separation of the region midway between the asters and the spindle midzone. The spindle is severed asymmetrically between one aster and the midzone. I found that the spindle provides two consecutive signals that can each position a cytokinesis furrow: microtubule asters provide a first signal, and the spindle midzone provides a second signal. The use of mutants that do not form a midzone suggested that the aster-positioned furrow is able to divide the cell alone without a spindle midzone. Analysis of cytokinesis in hypercontracile mutants suggests that the aster-positioned cytokinesis furrow and the midzone positioned furrow inhibit each other by competing for cortical contractile elements. I then wanted to identify the molecular pathway responsible for cytokinesis furrow positioning in response to the microtubule asters. To this end, I performed an RNAi screen, which identified a role for LET-99 in cytokinesis: LET-99 appeared to be required for aster-positioned cytokinesis but not midzone-positioned cytokinesis. LET-99 localizes as a cortical band that overlaps with the cytokinesis furrow. Mechanical displacement of the spindle demonstrated that the spindle positions cortical LET-99 at the site of furrow formation. The furrow localization of LET-99 depended on G proteins, and consistent with this finding, G proteins are also required for aster-positioned cytokinesis. (Anlage: Quick time movies, 466, 67 MB)
102

Studies on the essential YNL152w open reading frame in Saccharomyces cerevisiae

Ciklic, Ivan 29 June 2007 (has links)
The essential gene YNL152w was previously found in a screen designed to isolate putative negative regulators of the S. cerevisiae Pkc1p pathway. Activity assays were performed with a lexA-RLM1-lacZ integrated reporter in different ynl152w truncated mutants. In contrast to the original screen, there were no differences or the activities were even lower in some mutants. To analyze the consequences of different expression levels, YNL152w was expressed under the control of the GAL1/10 promoter. Growth curves were performed under high, intermediate and low expression levels. Strikingly, both conditional strains were able to grow under repressing conditions. However, an aberrant morphology was found suggesting that the cells are indeed affected by low amounts of Ynl152w protein. A series of successive Ynl152wp C-terminal truncations was analyzed to determine cell viability and to investigate the function of the protein. Remarkably, about 2/3 of the protein were dispensable to confer viability. Microscopic analyses of constructs revealed an aberrant morphology characteristic of a cytokinesis defective mutant, with the appearance of swollen cells and formation of big aggregates. Interestingly, the phenotype was more pronounced in the larger truncations. Coherent with these results time-lapse experiments with a large truncated mutant showed a stabilization of the SH3 protein Hof1p at the bud neck. This protein is involved in septum formation and has been reported as a binding partner of YNL152w. The phenotypes observed in the truncated mutants could be attributed to the presence of 4 proline rich motifs. Such motifs have been reported to interact with SH3 domains. An internal deletion of an aspartate rich domain present in the Ynl152wp sequence also displayed a phenotype very similar to that of the largest truncations. Therefore, this domain may play an important role in Ynl152wp function.
103

Roles of Interphase Node Protein Nod1 and UNC-13/Munc13 Protein Ync13 during Fission Yeast Cytokinesis

Zhu, Yihua January 2017 (has links)
No description available.
104

Mechanism of Calcium Spikes during Cytokinesis

Poddar, Abhishek January 2022 (has links)
No description available.
105

Regulation of Contractile-Ring and Spindle-Pole-Body Assembly in Fission Yeast

Lee, I-Ju January 2013 (has links)
No description available.
106

Roles of actin motor myosin-V, Rho GEF Gef3, and membrane trafficking in fission yeast cytokinesis

Wang, Ning January 2015 (has links)
No description available.
107

Regulation of Septum Formation by Two Novel Proteins Art1 and Bga1 in Fission Yeast Cytokinesis

Davidson, Reshma 29 December 2016 (has links)
No description available.
108

La formine Diaphanous est essentielle pour l’organisation et la maturation de l’anneau contractile pendant la cytokinèse

Ruella, Yvonne 12 1900 (has links)
Une cellule se divise en deux par le processus de cytokinèse. Elle requiert la coordination de plusieurs composants pour éviter la formation des cellules potentiellement cancéreuses. Premièrement, un anneau contractile (AC) dépendant de l’actine et de Rho-GTP diminue le diamètre de la cellule jusqu’à la formation d’une structure plus stable indépendante de l’actine, l’anneau du midbody (AM) qui guide l’éventuelle séparation des cellules sœurs. Diaphanous (Dia) est une formine dépendante de Rho responsable de l’agencement des filaments d’actine non ramifiés qui se localise à l’AC et est essentielle à la cytokinèse. Nous avons étudié le rôle de Dia pendant la cytokinèse par microscopie de haute résolution en temps réel pour suivre le comportement dynamique des protéines fluorescentes (PF) dans des cellules de Drosophile S2. Une construction fonctionnelle de Dia-PF est recrutée à l’AC et l’AM indépendamment de l’actine mais est absente dans l’AM mature. Dia quitte l’AM au même temps où l’AM dévient indépendant d’actine. La déplétion de Dia par ARN interférant ralentit la constriction de l’AC, augmente les oscillations et, dans 70% des cas, les cellules échouent la cytokinèse pendant la constriction, suggérant que Dia a un rôle dans l’organisation de l’AC. LifeAct-PF, une sonde pour F-actine, dévoile une diminution des filaments d’actine spécifique à l’AC des cellules dépourvues de Dia pendant que Anilline-PF et Myosine-PF sont recrutées en puncta. Ces résultats soutiennent un modèle où Dia nuclée des filaments d’actine qui permettent l’organisation dynamique de l’AC et la perte de Dia régule la transition à l’AM stable indépendant d’actine. / Cytokinesis is the intricate process by which eukaryotic cells divide in two. It involves the coordination of many components in order to avoid the formation potentially cancerous cells. Initially, a Rho GTPase- and actomyosin-dependent contractile ring (CR) drives constriction at the cell equator until a stable actin-independent midbody ring (MR) forms and ultimately guides the separation of the two sister cells. Diaphanous (Dia), is a Rho-dependent formin that nucleates unbranched actin filaments, localises to the cleavage furrow and is required for cytokinesis. We have examined the role of Dia during cytokinesis by time lapse video microscopy of Drosophila S2 cells expressing markers tagged with fluorescent proteins (FPs). A functional Dia-FP was recruited to the CR independently of actin and stayed in the nascent MR, but was absent from the mature MR. The timing of its disappearance coincided with the transition of the MR to an actin-independent structure. RNAi-mediated depletion of Dia slowed furrow ingression, enhanced furrow oscillations and, in 70% of the failures, prevented furrow completion, consistent with a role for Dia in CR organization. The F-actin probe, LifeAct-FP, revealed a decrease in F-actin in Dia-depleted cells specifically at the CR while Anillin-FP and Myosin-FP were aberrantly recruited in punctate structures. Our findings are consistent with a model in which Dia nucleates actin filaments at the CR to maintain the dynamic organization of the actin-dependent CR and that the regulated loss of Dia from the nascent MR guides the formation of the stable, actin-independent MR.
109

L'implication de la Cycline B dans le processus de cytocinèse

Diaz, Mélanie 11 1900 (has links)
Un dérèglement du cycle cellulaire peut causer le cancer. Lors de la cytocinèse un anneau contractile d’actine et de myosine se forme, se contracte, et donne un anneau du midbody qui mène à l’abscision. Le processus de cytocinèse est sous le contrôle de protéines telles que la GTPase Rho qui active la cytocinèse et les cyclines-Cdks qui l'inhibent. La Drosophile possède 3 cyclines mitotiques CycA/ CycB/ CycB3 qui sont successivement dégradées en fin de mitose et permettent l'initiation de la cytocinèse. La dernière étape d’abscission est un phénomène qui reste encore peu connu. Les protéines Vps4 et CHMP4C liées à ANCHR vont, sous la dépendance de la kinase Aurora B, promouvoir l’abscision mais, suite à quelques études récentes, il semble y avoir une implication de la cycline B. Ici, le but était de tester l’implication de cette cycline dans les processus de cytocinèse et d’abscision, elle a été menée par microscopie à haute résolution en temps réel avec des cellules S2 de l’organisme Drosophila melanogaster par le suivi de protéines recombinantes fluorescentes. L’étude a été divisée en deux axes : gain et perte de fonction par l’intermédiaire respectivement de la protéine Cycline B recombinante stable, non dégradable (CycBstable-GFP) et l’inhibition par l’utilisation d’ARN double brin (ARNdb) sur l’endogène. La CycBstable-GFP a perturbé la cytocinèse en induisant plusieurs anneaux contractiles et midbodies. En revanche la réduction de l’expression de CycB n'a pas eu d’effet observable, et elle ne semble pas avoir d’action sur l’abscission malgré le recrutement de CycB-GFP au midbody tardif. En revanche la protéine Cdk1 semble avoir un rôle dans l'abscision puisque sa réduction d’expression a induit un délai. Elle a donc une implication potentielle sur la cytocinèse. / Dysregulation of the cell cycle can cause cancer. During cytokinesis a contractile ring of actin and myosin forms, contracts and gives rise to a midbody ring which controls abscission. The process of cytokinesis is controlled by proteins such as the Rho GTPase, which activates cytokinesis and cyclin-Cdks that inhibit cytokinesis. Drosophila has 3 mitotic cyclins CycA, CycB and CycB3, which are successively degraded at the end of mitosis to allow the initiation of cytokinesis. The last step of abscission is a phenomenon that is still obscure. The ESCRTIII components VPS4 and CHMP4C protein linked to ANCHR will, in an Aurora B kinasedependent manner, promote abscission with recent studies implicating Cyclin B at this stage. Here, the aim was to test the role of cyclin B in cytokinesis and abscission, using real-time, high resolution microscopy of Drosophila melanogaster S2 cells expressing recombinant fluorescent proteins. This study was divided into two parts: gain and loss of function studies respectively using stable non-degradable cyclin B (CycBstable-GFP) and inhibition by using CycB double-stranded RNA (dsRNA). The CycBstable-GFP perturbed cytokinesis by inducing multiple contractile rings and midbodies. However CycB depletion had no detectable effect on the progression of cytokinesis nor on abscission despite the recruitment of CycB-GFP to the late midbody. In contrast, the protein Cdk1 seemed to play a role in abscission, since its depletion induced a delay. It therefore has potential implications for cytokinesis.
110

Septin regulation by the Protein Kinase C in the budding yeast, Saccharomyces cerevisiae / Régulation des septines par la Protéine Kinase C dans la levure bourgeonnante

Courtellemont, Thibault 25 June 2014 (has links)
La cytokinèse est un processus fondamental prenant place à la fin de la mitose et permettant la séparation des deux cellules filles. Un défaut de cytokinèse peut mener à une ségrégation anormale des chromosomes et engendrer des phénomènes de cancer. Dans beaucoup d'organismes eucaryotes, la cytokinèse nécessite l'assemblage et la contraction d'un anneau d'actomyosine permettant la formation d'un sillon et la réorganisation de la membrane cellulaire au site de clivage. Dans la plupart de ces organismes, des protéines du cytosquelette appelées septines participent à la cytokinèse. Chez la levure bourgeonnante, Saccharomyces cerevisiae, cinq septines sont exprimées durant la mitose (Cdc3, Cdc10, Cdc11, Cdc12 et Shs1). Ces protéines ont la capacité de s'assembler en un anneau au niveau du site de bourgeonnement, lieu de séparation entre la cellule mère et la cellule fille. Cet anneau de septines permet la fixation et le recrutement de nombreuses protéines intervenant dans la cytokinèse. La dynamique des septines change durant le cycle cellulaire, ce qui a une importance dans la régulation de la cytokinèse. La stabilisation de cet anneau est accompagnée d'un changement du niveau de phosphorylation des septines, mais les kinases responsables de ces modifications restent inconnues. Les travaux de l'équipe de Simonetta Piatti ont mis en évidence un nouveau rôle de la GTPase Rho1 et de sa cible, la protéine kinase C (Pkc1), dans la régulation de la dynamique des septines. Le but de ce travail de thèse était de déterminer les voies moléculaires par lesquelles la protéine Pkc1 intervient dans le recrutement et la stabilisation de l'anneau de septines. Pour se faire nous avons purifié le complexe de septines chez la levure bourgeonnante en présence ou en absence de la protéine Pkc1 et nous l'avons analysé par spectrométrie de masse. Cette analyse nous a permis d'observer que le niveau de phosphorylation d'un cluster (îlot) de 5 sérines était diminué sur Shs1. L'alignement de séquence nous a permis de constater que ce domaine était conservé dans la septine Cdc11. Par ailleurs ces deux protéines sont connues pour jouer un rôle dans l'assemblage des filaments et la formation de l'anneau de septines. Il a déjà été observé qu'un mutant phosphomimétique du cluster de sérine de la septine Shs1 empêche la formation des filaments in-vitro. Nous avons voulu caractériser le rôle de ce cluster dans la protéine Cdc11 en créant un mutant non-phosphorylable (CDC11-9A) et un mutant phosphomimétique (CDC11-9D). De manière très évidente, le mutant phosphomimétique provoque des problèmes de cytokinèse dans les cellules dont le gène codant la protéine Shs1 a été supprimé. A l'inverse le mutant non-phosphorylable améliore le phénotype des cellules ne comportant pas Shs1. Ces résultats sont en parfait accord avec l'observation selon laquelle les protéines Shs1 et Cdc11 pourraient avoir des fonctions très similaires, et mettent en avant le rôle important du cluster de sérines phosphorylées de Cdc11 lors de la cytokinèse. Nous avons constaté que Pkc1 ne phosphoryle pas directement les septines, mais agit par l'intermédiaire de kinases et de phosphatases impliquées dans la régulation des septines. Nous avons pu montrer que Pkc1 régule l'interaction de Gin4 avec les septines, cette kinase étant connue pour sa capacité à phosphoryler Shs1. De plus, nous avons observé que Pkc1 impacte sur le niveau de phosphorylation des deux autres kinases de la même famille, Hsl1 et Kcc4. Par ailleurs, la délétion de PKC1 diminue drastiquement la quantité de protéines Kcc4 dans la cellule.L'absence de Pkc1 augmente également l'interaction entre les septines et Bni4, une sous-unité régulatrice de la phosphatase PP1. Nous avons également observé que Bni4-PP1 peut déphosphoryler Cdc11, expliquant la diminution de son niveau de phosphorylation en cas d'absence de la protéine Pkc1.Ces travaux mettent en évidence que Pkc1 est un nouveau régulateur majeur des septines dans la levure. / Cytokinesis is the last step of mitosis and is the fundamental process leading to the physical separation of two daughter cells. Defects in cytokinesis generate polyploid cells that are prone to chromosome missegregation and cancer development. In animal cells and fungi, cytokinesis requires the formation and contraction of an actomyosin ring that drives ingression of the cleavage furrow. Additional cytoskeletal proteins called septins contribute to cytokinesis. In the budding yeast Saccharomyces cerevisiae, five different septins are expressed during the mitotic cell cycle (Cdc3, Cdc10, Cdc11, Cdc12 and Shs1). All septins, except for Shs1, are essential for cell viability. Yeast septins form filaments that in turn organize into a ring at the bud neck, which is the constriction between the mother and the future daughter cell where cytokinesis takes place. The septin ring then expands into a rigid septin collar that acts as scaffold for cytokinesis by recruiting most cytokinetic proteins to the bud neck. Cell cycle-regulated changes in septin ring dynamics are thought to be important for its cytokinetic functions and formation of the rigid septin collar is accompanied by septin phosphorylation. However, the kinases responsible for these modifications have not been fully characterized. Unpublished data from our laboratory indicate that the Rho1 GTPase, which is essential for actomyosin ring formation and contraction, and its target protein kinase C (Pkc1) contribute to deposition and stabilization of the septin ring. Here, we have addressed how Pkc1 regulates septin ring deposition and/or stability. To this end, septin complexes were purified from yeast and analyzed by mass spectrometry, comparing wild type and pkc1Δ mutant cells. This mass spectrometry analysis clearly showed that phosphorylation of a cluster of residues in Shs1 decreased in the absence of Pkc1. Interestingly, we found that this cluster is conserved in the septin Cdc11, which together with Shs1 is known to play an important role in the assembly of high-order structures like filaments and rings. Phosphomimetic mutations of the phosphorylatable cluster in Shs1 have been previously shown to disrupt filament formation in-vitro. We therefore proceeded to mutagenise the same cluster in Cdc11, generating a phosphomimetic (CDC11-9D) and in a non-phosphorylatable mutant (CDC11-9A). Strikingly, the phosphomimetic CDC11-9D caused cytokinesis defects in cells lacking Shs1, whereas the non-phosphorylatable CDC11-9A allele partially rescued the sickness of shs1∆ mutant cells. These observations are in agreement with the notion that Cdc11 and Shs1 share overlapping functions and highlight an important role of the phosphorylatable cluster of Cdc11 for cytokinesis. We also found that Pkc1 does not phosphorylate septins directly, but rather regulates the activity of septin kinases and phosphatases. Consistently, we show that Pkc1 affects the interaction between septins and the bud neck kinase Gin4, which is known to interact with septins and to phosphorylate them. In addition, Pkc1 impacts on the phosphorylation of two additional bud neck kinases, Hsl1 and Kcc4, which are part of the same family of Nim1-related kinases as Gin4. In addition, PKC1 deletion leads to a dramatic decrease in the levels of Kcc4 , so that it is barely detected at the bud neck.Deletion of PKC1 affects also the interaction between septins and the Bni4 protein, which is a regulatory subunit for the PP1 phosphatase at the bud neck. In turn, we found that Bni4-PP1 modulates Cdc11 phosphorylation, thereby explaining how the latter is decreased in the absence of Pkc1. Altogether, our data strongly suggest that Pkc1 is a novel major regulator of septins in yeast.

Page generated in 0.0678 seconds