• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 15
  • 13
  • 11
  • 3
  • Tagged with
  • 156
  • 62
  • 44
  • 23
  • 21
  • 20
  • 19
  • 16
  • 16
  • 15
  • 15
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Functions of the Cdc14-Family Phosphatase Clp1p in the Cell Cycle Regulation of <em>Schizosaccharomyces pombe</em>: A Dissertation

Trautmann, Susanne 20 May 2005 (has links)
In order to generate healthy daughter cells, nuclear division and cytokinesis need to be coordinated. Premature division of the cytoplasm in the absence of chromosome segregation or nuclear proliferation without cytokinesis might lead to aneuploidy and cancer. The cyclin dependent kinases, CDKs, are a main regulator of the cell cycle. Timely increase and decrease in their activity is required for cell cycle progression. To enter mitosis, mitotic CDK activity needs to rise. CDK activity stays elevated until chromosome segregation is completed and exit from mitosis requires decrease in CDK activity. Observations in several experimental systems suggest that coordination of cytokinesis with the nuclear cycle is regulated through CDK activity. Prolonged high CDK activity, as it occurs when chromosome segregation is delayed, was found to oppose cytokinesis. Prevention of cytokinesis through high CDK activity may therefore provide a mechanism to prevent precocious cell division in the absence of chromosome segregation. To prevent polyploidy when cell division is delayed, progression through the next nuclear cycle should be inhibited until cytokinesis is completed, presumably by the inhibition of CDK activity. In the fission yeast Schizosaccharomyces pombe, a signaling cascade called Septation Initiation Network (SIN) is required for the coordination of cytokinesis with the nuclear cycle. The SIN is essential for cytokinesis, triggering the execution of cell division through constriction of the actomyosin ring. The activation of the SIN signaling cascade, and thus cytokinesis, is opposed by high CDK activity, preventing precocious cytokinesis. S. pombe delay entry into the next nuclear division in response to delayed cytokinesis due to defects in the contractile ring until cytokinesis is completed thereby preventing the accumulation of multinucleate, non viable cells. This safeguard against multinucleate cells is termed the cytokinesis checkpoint. The cytokinesis checkpoint keeps CDK activity low, preventing nuclear cycle progression. The SIN is required for the cytokinesis checkpoint and therefore is a key coordinator between nuclear cycle and cytokinesis. How the SIN functions in the cytokinesis checkpoint was not known. Cdc14-family phosphatases are highly conserved from yeast to humans, but were only characterized in Saccharomyces cerevisiae at the time this thesis was initiated. Cdc14 had been identified as the effector of a signaling cascade homologous to the SIN, called the mitotic exit network (MEN), which is required for exit from mitosis. This thesis describes the identification of the S. pombe Cdc14-like phosphatase Clp1p as a component of the cytokinesis checkpoint. Clp1p opposes CDK activity, and Clp1p and the SIN activate each other in a positive feedback loop. This maintains an active cytokinesis checkpoint and delays mitotic entry. We further found that Clp1p regulates chromosome segregation. Concluding, this thesis describes discoveries adding to the characterization of the cytokinesis checkpoint and the function of Clp1p. While others found that Cdc14-family phosphatases, including Clp1p, have similar catalytic functions, we show that their biological function may be quite different between organisms, possibly due to different biological challenges.
112

A Global Approach of Ral Pathway : Identification of a New Actor : Stk38 / Une approche globale de la Voie Ral : identification d'un nouvel acteur : Stk38

Selimoglu, Rasim 04 July 2011 (has links)
Les GTPases Ral, RalA et RalB, sont des effecteurs proximaux de l’oncogène Ras.Malgré leur forte homologie, leurs activateurs communs (les RalGEFs) et des effecteurs communs (le complexe exocyste), ils apportent des contributions distinctes et parfois collaborent à diverses fonctions cellulaires.RalA est impliqué en prolifération en absence de substrat et l'exocytose polarisée.RalB est impliqué dans la migration cellulaire, l'autophagie et l'apoptose des cellules cancéreuses. Comment les GTPases Ral régulent ces différents fonctions n’est toujours pas connu.Une partie de ma thèse était consacrée à l'étude de la spécificité des fonctions de RalA et RalB, ainsi que la spécificité des RalGEFs et des éléments de l'interactome deRal, dans trois processus biologiques: la cytocinèse, la migration cellulaire et l'activation de la voie MAPK.Nous avons démontré que RalA et RalB ont des fonctions distinctes pendant la cytocinèse. RalA est nécessaire pour la correcte progression de la cytocinèse alors RalB est nécessaire pour l’abscission du pont intracellulaire. Nous avons montré également que RalA, mais pas RalB, régule l’activation de p38 et de Jnk à travers le complexe exocyste en réponse au stress osmotique. L'implication de RalB, mais pas RalA, dans la migration cellulaire a été établie antérieurement. Dans ces trois fonctions, nous avons montré que les GTPases Ral sont été régulées par des RalGEFs spécifiques.Nous avons effectué un crible par siARN de 91 gènes codant des protéines du réseau d’interactions protéine‐protéine autour de Ral (l'interactome de Ral), nous avons identifié 14 protéines impliquées dans la voie de RalA et 8 protéines impliquées dans la voie de RalB, en cytocinèse. Dans la migration cellulaire, nous avons identifié 22 protéines impliquées dans la voie de RalB. Nous avons identifié cinq protéines communes aux deux fonctions cellulaires.Parmi ces protéines, j'ai étudié la relation fonctionnelle entre RalA et Stk38, une kinase qui appartient à la voie Hippo, qui a un rôle suppresseur de tumeur. J'ai montré que RalA active Stk38 par une voie RalA/exocyste/Map4k4 en réponse au stress osmotique. J’ai démontré que cette voie est impliquée dans l’activation de la voie p38 et Jnk en réponse au stress osmotique. J'ai aussi montré que la régulation deStk38 par RalA est nécessaire pour l'apoptose induite par le TNFα.L'identification de nouveaux composants de la voie RalA ouvre de nouvelles perspectives dans la compréhension de la fonction des GTPases Ral dans les processus normaux et tumoraux. En outre, ce travail est le premier présentant RalA comme une protéine pro‐apoptotique, ce qui suggère que RalA pourrait posséder une fonction suppresseur de tumeurs. / The Ras‐like GTPases RalA and RalB are proximal effectors of oncogenic Ras.Despite their high homology, their common activators (the RalGEFs) and effectors(the exocyst complex), they make distinct and sometimes collaborative contributions to diverse cellular functions. RalA supports anchorage independent growth and regulates polarized exocytosis. RalB regulates cell migration and autophagy and inhibits apoptosis of cancer cells. How Ral GTPases achieve their differing functions is still elusive.One part of my thesis was dedicated to study the specificity of RalA and RalB functions, as well as the specificity of RalGEFs functions and of the components of the Ral interactome, in three biological processes: cytokinesis, cell migration and MAPK activation.We demonstrated that RalA and RalB have distinct functions during cytokinesis.RalA is necessary for correct progression of cytokinesis whereas RalB is necessary for abscission of the intracellular bridge. We showed also that RalA, but not RalB,regulates p38 and Jnk activation upon osmotic stress through the exocyst complex.The importance of RalB, but not RalA, in cell migration was established previously. In these three functions, we showed that the functions of Ral GTPases were triggered by specific RalGEFs.We carried out a siRNA screen of 91 genes encoding proteins participating to a protein‐protein interaction map rooted in Ral (the Ral interactome), we determined14 proteins as components of RalA pathway and 8 proteins as components of RalBpathway, required for cytokinesis completion. In cell migration, we determined 22 proteins as components of RalB pathway. We identified 5 proteins in common involved in both cellular functions.Among these proteins I have been studying the functional relationship betweenRalA and Stk38, a kinase that belongs to the tumour suppressor Hippo pathway. I showed that upon osmotic stress, RalA activates Stk38 by phosphorylation through aRalA/exocyst/Map4k4 pathway. I demonstrate that this pathway has the function to trigger p38 and Jnk activation upon osmotic stress. I showed that the regulation ofStk38 by RalA is required for apoptosis induced by TNFα.The identification of new components of Ral pathway opened new perspectives in understanding the Ral GTPases function in normal and tumour processes. Moreover,this is the first work presenting RalA as a pro‐apoptotic protein, suggesting that RalAmight have tumour‐suppressor like functions.
113

Caractérisation du nouveau rôle de la phosphatase dOCRL durant la division cellulaire

Ben El Kadhi, Khaled 05 1900 (has links)
No description available.
114

Caractérisation des rôles de l"Anilline durant la cytokinèse

Kechad, Amel 04 1900 (has links)
No description available.
115

Uncovering New Roles for Hsp90 in Candida albicans Morphogenesis

Senn, Heather 03 December 2012 (has links)
The trimorphic fungus Candida albicans is the leading cause of systemic candidiasis, a disease with poor prognosis affecting immunocompromised patients. The capacity to switch between growth morphologies is tightly coupled to its ability to cause life-threatening infection. Recently, the molecular chaperone Heat Shock Protein 90 (Hsp90) has been implicated as a major regulator of C. albicans morphogenesis via the Ras1-PKA pathway. In model organisms from plant, animal and fungal kingdoms, Hsp90 stabilizes regulators of cell signaling and participates in many important cellular processes. Hsp90’s roles in C. albicans are beginning to be dissected. This thesis represents a comprehensive overview of the morphological response of C. albicans to compromised Hsp90 function, illuminating previously unidentified roles for this chaperone in cell cycle progression, cytokinesis and vacuole maintenance. This work sheds light on the importance of Hsp90 in fungal development and the therapeutic potential of Hsp90 inhibitors in the treatment of fungal infections.
116

Uncovering New Roles for Hsp90 in Candida albicans Morphogenesis

Senn, Heather 03 December 2012 (has links)
The trimorphic fungus Candida albicans is the leading cause of systemic candidiasis, a disease with poor prognosis affecting immunocompromised patients. The capacity to switch between growth morphologies is tightly coupled to its ability to cause life-threatening infection. Recently, the molecular chaperone Heat Shock Protein 90 (Hsp90) has been implicated as a major regulator of C. albicans morphogenesis via the Ras1-PKA pathway. In model organisms from plant, animal and fungal kingdoms, Hsp90 stabilizes regulators of cell signaling and participates in many important cellular processes. Hsp90’s roles in C. albicans are beginning to be dissected. This thesis represents a comprehensive overview of the morphological response of C. albicans to compromised Hsp90 function, illuminating previously unidentified roles for this chaperone in cell cycle progression, cytokinesis and vacuole maintenance. This work sheds light on the importance of Hsp90 in fungal development and the therapeutic potential of Hsp90 inhibitors in the treatment of fungal infections.
117

The impact of high protein-high red meat vs high carbohydrate weight loss diets on genome stability and biomarkers of colorectal cancer risk in overweight men.

Benassi, Bianca Jane January 2008 (has links)
It has been suggested that high protein diets are associated with an increased risk of colorectal cancer due to the higher content of red meat. However, the study of the overall dietary and lifestyle pattern may prove more important than any individual component when assessing colorectal cancer risk. From this, it is proposed that a dietary pattern used for weight loss that is higher in protein but remains low in fat and high in foods rich in fibre and micronutrients that are required for genome stability may not increase the risk of colorectal cancer, thus providing a safe and effective dietary method of weight loss in overweight subjects. This thesis describes the development of a novel in vitro faecal water genotoxicity test using the cytokinesis-block micronucleus (CBMN) cytome assay in the WIL2-NS cell line. This thesis then investigates faecal water genotoxicity and peripheral blood lymphocyte genome stability in overweight men following a weight loss dietary pattern either high in protein, specifically red meat, or high in carbohydrate. Results from this thesis indicate that the genotoxic potential of faecal water can be successfully assessed in vitro using the CBMN cytome assay. A high protein-high red meat weight loss diet did not increase faecal water genotoxicity or peripheral blood lymphocyte DNA damage, measured with the CBMN cytome assay, differently to a high carbohydrate weight loss diet. Faecal water genotoxicity data suggests weight loss and/or caloric restriction following either a high protein or high carbohydrate diet may beneficially modify the carcinogenic load of the colon in the short term, however this needs to be validated in a study that includes a non-weight loss control group. A lack of relationship was seen between faecal water genotoxicity and genome damage in lymphocytes which may suggest that the assessment of both the genome damage potential of the bowel contents and the assessment of the genome stability profile of peripheral blood lymphocytes may be important in comprehensively assessing the impact on genome damage by different dietary patterns. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1316889 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2008
118

Elucidation of the Multi-Faceted Roles of the SIN (Septation Initiation Network); Understanding How the SIN Promotes Cytokinesis and Inhibits Interphase Growth in the Fission Yeast Schizosaccharomyces pombe: A Dissertation

Ray, Samriddha 17 August 2010 (has links)
Cytokinesis is the cytoplasmic division of one cell into two independent daughter cells. Precise regulation of cytokinesis during cell cycle is essential for healthy and rapid multiplication of any organism. Schizosaccharomyces pombe has emerged as an excellent model system to study eukaryotic cell division regulation. This rod shaped organism grows by bipolar elongation in interphase when its actin cytoskeleton is concentrated at the cell ends (poles). However, growth stops in mitosis and the actin cytoskeleton is rearranged to facilitate assembly of the contractile actomyosin ring at the cell middle. Although several studies have focused on the separate processes of growth and division, it was unclear how cells regulate the cytoskeletal remodeling during the transition between the different stages of the cell cycle. The Septation Initiation Network (SIN) is a signaling cascade essential for fission yeast cytokinesis (Balasubramanian et al., 1998; Mishra et al., 2004) and the MOR (morphogenesis) signaling pathway is essential for interphase bipolar growth (Kanai et al, 2005). Interestingly, inactivation of the SIN not only failed to maintain the cytokinetic apparatus at the cell middle but also caused the redistribution of the cytoskeletal elements like actin to the cell ends that led to bipolar cell elongation similar to cells in interphase (Mishra et al., 2004). These results suggested that SIN signaling inhibits interphase bipolar growth, but it was not clear if the SIN had a direct role in inhibition of interphase growth during mitosis and this question was the major focus of this thesis. The results presented in Chapter II show a novel cross-pathway interaction between the SIN and the MOR in the fission yeast. Our results in Chapter III suggest that some of the MOR pathway components might be important for coordination between nuclear and cytoplasmic divisions in mitosis, revealing novel roles of the pathway. In a separate study (Chapter IV) we sought to identify additional regulators of the SIN and cytokinesis through a suppressor screen and found that the nucleolar rDNA transcription machinery inhibits cytokinesis in fission yeast.
119

The function and regulation of myosin-interacting guanine nucleotide exchange factor (MYOGEF) and centrosome/spindle pole associated protein (CSPP) during mitotic progression and cytokinesis

Asiedu, Michael Kwabena January 1900 (has links)
Doctor of Philosophy / Biochemistry Interdepartmental Program / Qize Wei / This dissertation describes the role of myosin-interacting guanine nucleotide exchange factor (MyoGEF) and centrosome/spindle pole associated protein (CSPP) in mitotic progression and cytokinesis. We have identified three mouse isoforms of CSPP, all of which interact and colocalize with MyoGEF to the central spindle in anaphase cells. The N-terminus of MyoGEF interacts with myosin whereas the C terminus interacts with the N-terminus of CSPP, forming a complex. The N-terminus of CSPP appears to be important for both localization and interaction with MyoGEF. CSPP plays a role in mitotic progression since its depletion by RNAi resulted in metaphase arrest. MyoGEF is required for completion of cytokinesis. Both MyoGEF and CSPP are phosphorylated by mitotic kinases including Plk1 and Aurora. Importantly, MyoGEF is phosphorylated at Thr-574 in mitosis by Polo-like kinase 1, and this phosphorylation is required for activation of RhoA. Thr-543 of MyoGEF is required for Plk1 binding in mitosis and phosphorylation of MyoGEF by Cdk1/cyclinB, possibly at Thr-543 may generate a Plk1 docking site, i.e., Cdk1 can phosphorylate MyoGEF at Thr-543, thereby allowing Plk1 to bind and phosphorylate MyoGEF at Thr-574. Finally, MyoGEF and CSPP are also phosphorylated by Aurora-B kinase in vitro. Taken together, we propose that Aurora-B may phosphorylate and recruit MyoGEF and CSPP to the central spindle, where phosphorylation of MyoGEF at Thr-543 promotes Polo kinase binding and additional phosphorylation of MyoGEF, leading to the activation of RhoA at the cleavage furrow.
120

Caractérisation de ARHGAP19, une nouvelle GAP de Rho impliquée dans la mitose des Lymphocytes T / Characterization of ARHGAP19, a Novel Rho GAP Involved in T-Cell Mitosis

Petit, Dominique 02 February 2016 (has links)
Dans le but de déterminer le rôle des Rho GTPases et de leurs régulateurs dans les cellules hématopoïétiques, une analyse des niveaux d’expressions de 300 gènes codant pour des protéines impliquées dans les voies de signalisation dépendantes de Rho a été faite à partir d’échantillons de patients atteints de leucémies de type T-ALL. Il a ainsi pu être mis en évidence qu’un groupe de gènes incluant notamment RacGAP1, Ect2, Citron et ARHGAP19 variaient parallèlement. A l’exception de ARHGAP19, ces gènes avaient une fonction connue au cours de la mitose. Il a donc été entrepris de caractériser ARHGAP19 qui, d’après les banques de données, est spécifique du système hématopoïétique, et pour laquelle aucune fonction n’avait encore été déterminée.Afin de déterminer la fonction biologique de GAP19, un anticorps a été généré. Cet outil nous a permis de montrer que l’expression de la protéine est régulée au cours du cycle cellulaire et que sa localisation varie au cours de la mitose. Par ailleurs, nous avons montré que GAP19, joue un rôle essentiel dans le changement de forme des lymphocytes en mitose, la ségrégation des chromatides sœurs et le recrutement membranaire des effecteurs de RhoA au cours de la mitose. Nous avons aussi mis en évidence le mécanisme par lequel GAP19 permet le changement de forme dans les lymphocytes.Nous avons aussi montré que GAP19 est phosphorylée par CDK1 sur deux résidus présents dans la partie C-Terminale. Afin de mettre en évidence le rôle de ces phosphorylations, nous avons généré des cellules Kit225 transfectées avec des plasmides pour les formes non-phosphorylables de la protéine. Ceci nous a permis de mettre en évidence que la phosphorylation des résidus T404 et T476 permet la localisation cytoplasmique de GAP19 en début de mitose. Nous avons aussi pu observer lors de l’anaphase la formation de ponts de chromatines, ainsi qu’une augmentation significative de cellules multinucléées. Par ailleurs, nous avons procédé à des expériences de cytogénétique et d’immunofluorescence afin de déterminer, si les ponts de chromatines avaient pour origine soit des défauts de condensation de la chromatine, soit un stress réplicatif.Enfin, un possible modèle de la protéine ARHGAP19 a été généré et des simulations de dynamiques moléculaires réalisées afin de comprendre le rôle des phosphorylations par CDK1 a un niveau structurel. / In an attempt to understand the role of Rho GTPases and their regulators in hematopoietic cell lines, expression levels of 300 genes were analyzed for proteins involved in Rho dependent signaling pathways from patients with T-ALL leukemia.It was shown that a group of genes consisting of RacGAP1, Ect2 and Citron varied concomitantly. With the exception of ARHGAP19, all already had a known function during mitosis. Consequently, it was decided to characterize ARHGAP19, which according to databases is specific of hematopoietic cell lines, and whose function was unknown. In order to determine the biological function of ARHGAP19, a specific antibody has been generated. This allowed us to demonstrate that the level of expression of the protein vary during the cell cycle and its localization varies during mitosis. In addition, we have shown that ARHGAP19 plays a central role in regulating cell shapes changes, sister chromatids segregation and RhoA effectors membrane recruitment during mitosis. We have also shown that this occurs by a previously undescribed pathway involving RhoA-ROCK-Vimentin.Finally, we have demonstrated that ARHGAP19 is a substrate of CDK1. It is phosphorylated on two residues located in the C-Terminal region of the protein. For investigating the role of these phosphorylations, we have generated Kit225 cell lines transfected with plasmids coding for the non-phosphorylable forms of the protein. This allowed us to show that phosphorylation of residue T404 and T476 are involved preventing GAP19 recruitment at the equatorial cell cortex during mitosis.In addition, we have observed the formation of chromatin bridges, as well as an increase in multinucleated cells. Thus, we have performed cytogenetic experiments for determining if chromatin bridges are due to chromosome condensation defects, or replicative stress. Finally, a possible tertiary structure of ARHGAP19 has been created de novo, and molecular dynamics simulations were generated in order to understand the role of these phosphorylations by CDK1 at a structural level.

Page generated in 0.0439 seconds