Spelling suggestions: "subject:"cytokines"" "subject:"cytokine""
1 |
Studying the formation of tricellular junction upon epithelial cell division in Drosophila / Etude de la formation de la jonction tricellulaire au cours de la division épithéliale chez la drosophileWang, Zhimin 15 December 2017 (has links)
Pour maintenir l'organisation et la polarité du tissu épithélial, de nouvelles jonctions cellulaires ont besoin de se former lors de la division cellulaire. Pour comprendre les mécanismes de formation de la jonction durant la cytokinèse, nous avons exploré dans les tissus épithéliaux de la Drosophile, la formation des jonctions septées tricellulaires (TCJs), critique à la fois dans la fonction de barrière tissulaire, dans l'homéostasie des cellules souches, ainsi que dans l'orientation du fuseau mitotique. Durant les dernières étapes de la constriction de l'anneau contractile, les membranes des deux cellules filles et des cellules voisines localisées sous la jonction adhérente (JA) restent enchevêtrées dans une structure à 4 cellules apposée au corps intermédiaire. Les constituants protéiques de la jonction septée, Discs-large (Dlg) et Neuroglian (Nrg), ainsi que les composants de la TCJ, Gliotactin (Gli) et Anakonda (Aka), s'accumulent dans cette structure à 4 cellules. Par la suite, la descente basale du corps intermédiaire est corrélée au détachement des membranes des cellules voisines, au désengagement des cellules filles de leurs voisines, et à la formation de TCJs matures. Le détachement des cellules voisines du corps intermédiaire est indépendant de l'abscision. Au contraire, la perte de la fonction Gli ou Aka empêche le détachement entre les cellules filles-voisines et le mouvement du corps intermédiaire. Ainsi, nous proposons que les protéines de la TCJ contrôlent une étape additionnelle de la cytokinèse, nécessaire au désengagement des cellules filles et de leurs voisines durant la cytokinèse épithéliale. / To maintain epithelial tissue organisation and polarity, new cell-cell junctions need to be formed upon cell division. To understand the mechanisms of junction formation during cytokinesis, we explored in Drosophila epithelial tissues, the de novo formation of tricellular septate junctions (TCJs), which are critical to tissue barrier function, stem cell homeostasis and mitotic spindle orientation. During the final stages of cytokinetic ring constriction, the membranes of the two daughter cells and of the neighbouring cells located below the adherens junction (AJ) remain entangled in a 4-cell structure apposed to the midbody. Protein constituents of the septate junction Discs-large (Dlg) and Neuroglian (Nrg) and the components of the TCJ Gliotactin (Gli) and Anakonda (Aka) accumulate in this 4-cell structure. Subsequently, a basal descent of the midbody correlates with the detachment of the neighbouring cell membranes, disengagement of the daughter cells from their neighbours and the formation of mature TCJs. The detachment of the neighbouring cells from the midbody is independent of abscission. On the contrary, the loss of Gli or Aka function prevents the resolution of the connection between the daughter-neighbour cells and the midbody movement. Altogether, we propose that TCJ proteins control an additional step of cytokinesis necessary for the disentanglement of the daughter cells and their neighbours during epithelial cytokinesis.
|
2 |
La formine Diaphanous est essentielle pour l’organisation et la maturation de l’anneau contractile pendant la cytokinèseRuella, Yvonne 12 1900 (has links)
Une cellule se divise en deux par le processus de cytokinèse. Elle requiert la coordination de plusieurs composants pour éviter la formation des cellules potentiellement cancéreuses. Premièrement, un anneau contractile (AC) dépendant de l’actine et de Rho-GTP diminue le diamètre de la cellule jusqu’à la formation d’une structure plus stable indépendante de l’actine, l’anneau du midbody (AM) qui guide l’éventuelle séparation des cellules sœurs. Diaphanous (Dia) est une formine dépendante de Rho responsable de l’agencement des filaments d’actine non ramifiés qui se localise à l’AC et est essentielle à la cytokinèse. Nous avons étudié le rôle de Dia pendant la cytokinèse par microscopie de haute résolution en temps réel pour suivre le comportement dynamique des protéines fluorescentes (PF) dans des cellules de Drosophile S2. Une construction fonctionnelle de Dia-PF est recrutée à l’AC et l’AM indépendamment de l’actine mais est absente dans l’AM mature. Dia quitte l’AM au même temps où l’AM dévient indépendant d’actine. La déplétion de Dia par ARN interférant ralentit la constriction de l’AC, augmente les oscillations et, dans 70% des cas, les cellules échouent la cytokinèse pendant la constriction, suggérant que Dia a un rôle dans l’organisation de l’AC. LifeAct-PF, une sonde pour F-actine, dévoile une diminution des filaments d’actine spécifique à l’AC des cellules dépourvues de Dia pendant que Anilline-PF et Myosine-PF sont recrutées en puncta. Ces résultats soutiennent un modèle où Dia nuclée des filaments d’actine qui permettent l’organisation dynamique de l’AC et la perte de Dia régule la transition à l’AM stable indépendant d’actine. / Cytokinesis is the intricate process by which eukaryotic cells divide in two. It involves the coordination of many components in order to avoid the formation potentially cancerous cells. Initially, a Rho GTPase- and actomyosin-dependent contractile ring (CR) drives constriction at the cell equator until a stable actin-independent midbody ring (MR) forms and ultimately guides the separation of the two sister cells. Diaphanous (Dia), is a Rho-dependent formin that nucleates unbranched actin filaments, localises to the cleavage furrow and is required for cytokinesis. We have examined the role of Dia during cytokinesis by time lapse video microscopy of Drosophila S2 cells expressing markers tagged with fluorescent proteins (FPs). A functional Dia-FP was recruited to the CR independently of actin and stayed in the nascent MR, but was absent from the mature MR. The timing of its disappearance coincided with the transition of the MR to an actin-independent structure. RNAi-mediated depletion of Dia slowed furrow ingression, enhanced furrow oscillations and, in 70% of the failures, prevented furrow completion, consistent with a role for Dia in CR organization. The F-actin probe, LifeAct-FP, revealed a decrease in F-actin in Dia-depleted cells specifically at the CR while Anillin-FP and Myosin-FP were aberrantly recruited in punctate structures. Our findings are consistent with a model in which Dia nucleates actin filaments at the CR to maintain the dynamic organization of the actin-dependent CR and that the regulated loss of Dia from the nascent MR guides the formation of the stable, actin-independent MR.
|
3 |
Septin regulation by the Protein Kinase C in the budding yeast, Saccharomyces cerevisiae / Régulation des septines par la Protéine Kinase C dans la levure bourgeonnanteCourtellemont, Thibault 25 June 2014 (has links)
La cytokinèse est un processus fondamental prenant place à la fin de la mitose et permettant la séparation des deux cellules filles. Un défaut de cytokinèse peut mener à une ségrégation anormale des chromosomes et engendrer des phénomènes de cancer. Dans beaucoup d'organismes eucaryotes, la cytokinèse nécessite l'assemblage et la contraction d'un anneau d'actomyosine permettant la formation d'un sillon et la réorganisation de la membrane cellulaire au site de clivage. Dans la plupart de ces organismes, des protéines du cytosquelette appelées septines participent à la cytokinèse. Chez la levure bourgeonnante, Saccharomyces cerevisiae, cinq septines sont exprimées durant la mitose (Cdc3, Cdc10, Cdc11, Cdc12 et Shs1). Ces protéines ont la capacité de s'assembler en un anneau au niveau du site de bourgeonnement, lieu de séparation entre la cellule mère et la cellule fille. Cet anneau de septines permet la fixation et le recrutement de nombreuses protéines intervenant dans la cytokinèse. La dynamique des septines change durant le cycle cellulaire, ce qui a une importance dans la régulation de la cytokinèse. La stabilisation de cet anneau est accompagnée d'un changement du niveau de phosphorylation des septines, mais les kinases responsables de ces modifications restent inconnues. Les travaux de l'équipe de Simonetta Piatti ont mis en évidence un nouveau rôle de la GTPase Rho1 et de sa cible, la protéine kinase C (Pkc1), dans la régulation de la dynamique des septines. Le but de ce travail de thèse était de déterminer les voies moléculaires par lesquelles la protéine Pkc1 intervient dans le recrutement et la stabilisation de l'anneau de septines. Pour se faire nous avons purifié le complexe de septines chez la levure bourgeonnante en présence ou en absence de la protéine Pkc1 et nous l'avons analysé par spectrométrie de masse. Cette analyse nous a permis d'observer que le niveau de phosphorylation d'un cluster (îlot) de 5 sérines était diminué sur Shs1. L'alignement de séquence nous a permis de constater que ce domaine était conservé dans la septine Cdc11. Par ailleurs ces deux protéines sont connues pour jouer un rôle dans l'assemblage des filaments et la formation de l'anneau de septines. Il a déjà été observé qu'un mutant phosphomimétique du cluster de sérine de la septine Shs1 empêche la formation des filaments in-vitro. Nous avons voulu caractériser le rôle de ce cluster dans la protéine Cdc11 en créant un mutant non-phosphorylable (CDC11-9A) et un mutant phosphomimétique (CDC11-9D). De manière très évidente, le mutant phosphomimétique provoque des problèmes de cytokinèse dans les cellules dont le gène codant la protéine Shs1 a été supprimé. A l'inverse le mutant non-phosphorylable améliore le phénotype des cellules ne comportant pas Shs1. Ces résultats sont en parfait accord avec l'observation selon laquelle les protéines Shs1 et Cdc11 pourraient avoir des fonctions très similaires, et mettent en avant le rôle important du cluster de sérines phosphorylées de Cdc11 lors de la cytokinèse. Nous avons constaté que Pkc1 ne phosphoryle pas directement les septines, mais agit par l'intermédiaire de kinases et de phosphatases impliquées dans la régulation des septines. Nous avons pu montrer que Pkc1 régule l'interaction de Gin4 avec les septines, cette kinase étant connue pour sa capacité à phosphoryler Shs1. De plus, nous avons observé que Pkc1 impacte sur le niveau de phosphorylation des deux autres kinases de la même famille, Hsl1 et Kcc4. Par ailleurs, la délétion de PKC1 diminue drastiquement la quantité de protéines Kcc4 dans la cellule.L'absence de Pkc1 augmente également l'interaction entre les septines et Bni4, une sous-unité régulatrice de la phosphatase PP1. Nous avons également observé que Bni4-PP1 peut déphosphoryler Cdc11, expliquant la diminution de son niveau de phosphorylation en cas d'absence de la protéine Pkc1.Ces travaux mettent en évidence que Pkc1 est un nouveau régulateur majeur des septines dans la levure. / Cytokinesis is the last step of mitosis and is the fundamental process leading to the physical separation of two daughter cells. Defects in cytokinesis generate polyploid cells that are prone to chromosome missegregation and cancer development. In animal cells and fungi, cytokinesis requires the formation and contraction of an actomyosin ring that drives ingression of the cleavage furrow. Additional cytoskeletal proteins called septins contribute to cytokinesis. In the budding yeast Saccharomyces cerevisiae, five different septins are expressed during the mitotic cell cycle (Cdc3, Cdc10, Cdc11, Cdc12 and Shs1). All septins, except for Shs1, are essential for cell viability. Yeast septins form filaments that in turn organize into a ring at the bud neck, which is the constriction between the mother and the future daughter cell where cytokinesis takes place. The septin ring then expands into a rigid septin collar that acts as scaffold for cytokinesis by recruiting most cytokinetic proteins to the bud neck. Cell cycle-regulated changes in septin ring dynamics are thought to be important for its cytokinetic functions and formation of the rigid septin collar is accompanied by septin phosphorylation. However, the kinases responsible for these modifications have not been fully characterized. Unpublished data from our laboratory indicate that the Rho1 GTPase, which is essential for actomyosin ring formation and contraction, and its target protein kinase C (Pkc1) contribute to deposition and stabilization of the septin ring. Here, we have addressed how Pkc1 regulates septin ring deposition and/or stability. To this end, septin complexes were purified from yeast and analyzed by mass spectrometry, comparing wild type and pkc1Δ mutant cells. This mass spectrometry analysis clearly showed that phosphorylation of a cluster of residues in Shs1 decreased in the absence of Pkc1. Interestingly, we found that this cluster is conserved in the septin Cdc11, which together with Shs1 is known to play an important role in the assembly of high-order structures like filaments and rings. Phosphomimetic mutations of the phosphorylatable cluster in Shs1 have been previously shown to disrupt filament formation in-vitro. We therefore proceeded to mutagenise the same cluster in Cdc11, generating a phosphomimetic (CDC11-9D) and in a non-phosphorylatable mutant (CDC11-9A). Strikingly, the phosphomimetic CDC11-9D caused cytokinesis defects in cells lacking Shs1, whereas the non-phosphorylatable CDC11-9A allele partially rescued the sickness of shs1∆ mutant cells. These observations are in agreement with the notion that Cdc11 and Shs1 share overlapping functions and highlight an important role of the phosphorylatable cluster of Cdc11 for cytokinesis. We also found that Pkc1 does not phosphorylate septins directly, but rather regulates the activity of septin kinases and phosphatases. Consistently, we show that Pkc1 affects the interaction between septins and the bud neck kinase Gin4, which is known to interact with septins and to phosphorylate them. In addition, Pkc1 impacts on the phosphorylation of two additional bud neck kinases, Hsl1 and Kcc4, which are part of the same family of Nim1-related kinases as Gin4. In addition, PKC1 deletion leads to a dramatic decrease in the levels of Kcc4 , so that it is barely detected at the bud neck.Deletion of PKC1 affects also the interaction between septins and the Bni4 protein, which is a regulatory subunit for the PP1 phosphatase at the bud neck. In turn, we found that Bni4-PP1 modulates Cdc11 phosphorylation, thereby explaining how the latter is decreased in the absence of Pkc1. Altogether, our data strongly suggest that Pkc1 is a novel major regulator of septins in yeast.
|
4 |
Caractérisation des rôles de l"Anilline durant la cytokinèseKechad, Amel 04 1900 (has links)
No description available.
|
5 |
Coordination des réseaux cytosquelettiques dans la cytokinèseChambaud, Guillaume 12 1900 (has links)
La cytokinèse est un processus minutieusement régulé par une structure corticale appelée
l'anneau contractile d'actomyosine, sous le contrôle de la petite GTPase RhoA. La protéine
d'échafaudage Anilline est un effecteur de RhoA et organise les différents éléments de l'anneau
permettant sa fermeture. Via son N-terminus, l'Anilline interagit avec la Citron kinase Sticky, la
myosine II et l'actine-F ce qui permet la stabilisation de l'anneau contractile et sa maturation en
anneau du corps central ou «midbody». Via son domaine C-terminal, l'Anilline interagit avec la
RhoA-GTP et les septines pour ancrer l'anneau à la membrane. De précédentes études du
laboratoire ont montré que Sticky et les septines ont des actions opposées sur l'Anilline. Nous
avons donc défini plusieurs ensembles d'interactions entre l'Anilline et les cytosquelettes
d'actomyosine et de septines, qui possèdent des fonctions différentes voire opposées dans la
cytokinèse: ce sont des réseaux cytosquelettiques. L'Anilline est ainsi impliquée dans la
coordination de ces réseaux opposés et RhoA-dépendants. Nous devons encore déterminer si ces
interactions de l'Anilline en N-ter et C-ter peuvent se produire en même temps ou si elles sont
mutuellement exclusives pour coordonner les différents éléments cytosquelettiques pendant la
fermeture de l'anneau contractile. Les cellules S2 de drosophile ont été utilisées pour déterminer
comment l'Anilline coordonnait les réseaux cytosqulettiques de l'anneau contractile. Deux
modèles ont été proposés : l'un où une seule molécule d'Anilline se lie simultanément aux réseaux
en N-ter et C-ter; l'autre modèle suggère qu'une ou plusieurs populations d'Anilline coordonnent
les réseaux de façon mutuellement exclusive. Pour distinguer entre ces deux modèles, des allèles
de séparation de fonction de l'Anilline ont été testés : l'AnillinΔ1-5 qui n'interagit plus avec
Sticky, ainsi que l'AnillinRBD* qui n'interagit plus avec Rho1-GTP et qui ne recrute plus les
septines à l'anneau contractile. Des expériences de sauvetage suite à la déplétion de l'Anilline
endogène ont été réalisées et les tentatives de division ont été captées par microscopie en temps
réel. L'expression de chaque mutant individuellement menait à une fermeture de l’anneau
décalée, ralentie et souvent incomplète. En revanche, la co-expression de l'AnillinΔ1-5 et
AnillinRBD* en trans dans les mêmes cellules a restauré la cinétique normale de la fermeture de
l'anneau. Ce résultat supporte le modèle des populations multiples d'Anilline. Cette étude avance
significativement nos connaissances de l'organisation de l'anneau contractile qui gère la division
de toutes cellules animales. / Cytokinesis is a process thoroughly regulated by a cortical structure called the
actomyosine contractile ring, under the control of the RhoA GTPase. The scaffolding protein
Anillin is a RhoA effector organizing the several elements of the ring, thus permitting its closure.
The AnillinN-terminus interacts with the Citron kinase Sticky, Myosin II and F-actin to stabilize
the contractile ring and drive its maturation to the midbody ring. The AnillinC-terminus interacts
with the RhoA GTPase and the septins to anchor the ring to the membrane. Previous works
revealed that Sticky retains Anillin while the septins shed Anillin from the ring. Therefore,
Anillin is involved in opposed RhoA-dependent cytoskeletal sub-networks to generate or reduce
the tension at the membrane, and their balance is necessary to improve the ring closure. This
study aims to decipher the coordination between these opposed sub-networks. We proposed two
models : either sub-networks on AnillinN-ter and AnillinC-ter are simultaneously organized by
the same molecule of Anillin, or several pools of Anillin coordinate separately the opposed subnetworks.
We generated and expressed several inducible Anillin mutants in drosophila S2 cells :
AnillinΔ1-5 prevents the interaction with Sticky; AnillinRBD* does not interact with RhoA and
perturbs the Anillo-septin assembly. The expression of each mutant individually delayed, slowed
down and failed the ring closure. However, co-expression of single mutants in trans rescued the
ring closure. Moreover, Sticky over-expression improved AnillinRBD* recruitment in the ring.
These results support the multiple pools of Anillin model. This study improves our knowledge on
the contractile ring organization, necessary to succeed cytokinesis in animal cells.
|
6 |
Caractérisation du rôle de Citron Kinase durant la cytokinèseEl-Amine, Nour 12 1900 (has links)
La cytokinèse est un processus dont le but est une séparation de deux cellules soeurs en deux entités suite à une mitose. La cytokinèse nécessite la formation d’un anneau contractile (AC) qui va conduire un sillon de clivage vers une ingression à l’équateur de la cellule. L’une des étapes critiques de ce processus est la transition d’un AC dynamique vers une structure stable surnommée l’anneau du midbody (AM), organelle qui va guider la cellule vers l’abscision. La compréhension des mécanismes moléculaires impliqués dans cette transition nous permettrait de mieux comprendre les complexes protéiques impliqués autant au niveau de l’initiation qu’à la terminaison de la cytokinèse. Des défauts ayant lieu lors de cette transition mènent à la formation de cellules binucléées tétraploïdes qui sont observées dans plusieurs pathologies comme le cancer. Afin d’approfondir nos connaissances à ce sujet j’ai utilisé un modèle d’imagerie optique en temps réel dans un modèle cellulaire de Drosophila melanogaster : les cellules S2 de Schneider. Ces études ont mis l’emphase sur un nouveau mécanisme de maturation de la transition AC/AM. Nous avons pu démontrer que la kinase Citron, Sticky, et la septine, Peanut, agissent de manière opposée sur la protéine Anillin pour retenir ou éliminer, respectivement, la membrane plasmique lors de la transition AC/AM. En effet, la diminution d’expression de Sticky par ARNi engendre une perte de contrôle de rétention membranaire de l’AM. À l’inverse, la diminution d’expression de Peanut inhibe la maturation par excrétion membranaire de l’AM. La diminution d’expression simultanée de Sticky et de Peanut conduit l’AC vers des mouvements oscillatoires typiques d’une instabilité de l’AC suite à la perte de fonction de l’Anillin. Sticky est une protéine corticale lors de la cytokinèse dont le rôle et les partenaires d’interaction restent controversés. Pour approfondie nos connaissance de ce sujet, nous avons effectué une étude structurelle et fonctionnelle de Sticky. Cette étude démontre que Sticky possède deux mécanismes de localisation corticale. Le premier dépend de l’Anillin et le deuxième dépend de la petite GTPase Rho1, le régulateur maître de la cytokinèse. Sticky est capable de se localiser à l’AC en présence de l’un ou l’autre de ces deux mécanismes, mais chacun semble être essentiel pour la réussite de la cytokinèse. Le domaine minimal d’interaction entre la Sticky et l’Anillin a été identifié. Une version d’Anillin qui manque le site de liaison à la Sticky est incapable de supporter l’achèvement de la cytokinèse, et les cellules échouent la cytokinèse d’une manière semblable aux cellules dont l’expression de Sticky est diminuée. Similairement, les cellules exprimant une protéine Sticky mutée au site d’interaction avec Rho1-GTP, sont incapables de compléter la cytokinèse lorsque les niveaux endogènes de Sticky sont diminués par ARNi. Ceci suggère que Sticky agit avec Anillin et Rho1 au niveau du cortex pour guider la transition d’un AC dynamique vers un AM stable. Par la mise en évidence et la caractérisation d’un nouveau mécanisme moléculaire essentiel à la cytokinèse, cette thèse constitue des avancements importants au niveau de la cytokinèse. / Cytokinesis is a multistep process that allows two sister cells to undergo complete separation following mitosis. Cytokinesis requires the formation of a contractile ring (CR) that will drive cleavage furrow ingression at the equator of the cell. One of the crucial steps in this process is the transition from a dynamic CR to a more stable structure named the midbody ring (MR), which directs the final separation or abscission. Our knowledge of the molecular mechanisms involved in the CR-to-MR transition would presumably improve our understanding of the molecular complexes involved throughout cytokinesis from initiation to abscission. Defects that occur during this transition can lead to the formation of bi-nucleate tetraploid cells that are often observed in pathological conditions such as cancer. I have used Drosophila melanogaster Schneider’s S2 cells to study the CR-to-MR transition. My findings have highlighted a previously uncharacterized maturation process essential for the transition. More specifically, I demonstrate that the Citron Kinase, Sticky, and the Septin, Peanut, have opposing actions on the scaffold protein Anillin to either retain or extrude, respectively, membrane-positive proteins during the CR-to-MR transition. Indeed, Sticky depletion by RNAi led to uncontrolled loss of membrane-associated Anillin at the MR. Conversely, Peanut depletion led to inhibition of MR maturation by membrane extrusion. Co-depletion of Sticky and Peanut led to oscillatory movements of the CR, typical of Anillin depletion. Sticky is a cortical protein during cytokinesis whose role and interacting partners are controversial. I have performed a structure/function analysis of Sticky to better define its role and regulation during cytokinesis. My work shows that Sticky has two mechanisms of cortical localization. The first is through an Anillin interaction and the second is through the small GTPase Rho1, a master regulator of cytokinesis. Sticky can localize to the cortex in the absence of either one of these mechanisms. However, loss of both inhibits its localization. Following the identification of the minimal interaction sites of Anillin and Sticky, I expressed an Anillin mutant that lacked part of this site and found that cells failed cytokinesis in a similar manner to cells depleted of Sticky. Mutation of the Rho1 binding site on Sticky produced similar cytokinesis failures. Altogether, the results suggest that Sticky interacts with Anillin and Rho1 at the cortex to guide the transition from dynamic CR to stable MR. This thesis advances our understanding of cytokinesis by highlighting a previously uncharacterized process of MR maturation and by defining the importance and regulation of Citron Kinase during this process.
|
7 |
Etude du maintien de l'adhérence dans les tissus prolifératifs / Study of Adhesion Maintenance During Cell Division in Epithelial Tissues.Guillot, Charlene 26 August 2014 (has links)
Les tissus épithéliaux présentent deux caractéristiques majeures, ils sont robustes (rôle de barrière) mais également plastiques lors de la morphogénèse. L'homéostasie des tissus épithéliaux repose sur la régulation de la balance prolifération/mort cellulaire. Dans ma thèse, je décris tout d'abord, les mécanismes moléculaires permettant à la cellule épithéliale de se diviser tout en maintenant l'intégrité du tissu. J'ai ensuite altéré cette intégrité, en utilisant le système de génération de clônes mosaïques, afin de comprendre comment la cohésion du tissu est maintenue. Ce travail m'a alors permis de comprendre comment l'adhérence est modulée, puis restaurée, au cours de la division cellulaire. Ainsi, j'ai montré que l'intégrité des tissus est assurée par l'action concomitante des forces d'adhésion et des forces de tension. Enfin, mon travail apporte également des éléments clés pour l'étude de la perte d'adhérence des cellules tumorales responsable en partie, de la progression des tumeurs solides en métastases. / Tissue homeostasis relies on the tight regulation of cell proliferation and cell death. Epithelial tissues are robust tissues that support the structure of developing embryos and adult organs and are effective barriers that physically protect the organism against pathogens. In my thesis, I have first described the molecular mechanisms responsible for maintaining tissue integrity during epithelial cell division. I have then abrogated this integrity by inducing mosaic clones within tissues to understand how tissue cohesion is maintained. This work shows how the continuity of adhesive properties is ensured during cell division. It also reveals new key elements that result in loss of adhesion in tissues and thus may be responsible for the progession from solid cancer to metastasis.
|
8 |
Déchiffrage des mécanismes d’assemblage des filaments de septinesBerger, Clothilde 05 1900 (has links)
Les septines sont des protéines conservées de la levure à l’homme qui sont impliquées
dans divers processus cellulaires tels que la cytokinèse, le transport vésiculaire et l’organisation
du cortex cellulaire. Il existe 13 gènes de septines retrouvés en plusieurs isoformes chez
l’humain, et seulement cinq chez Drosophila melanogaster, Sep1, Sep2, Pnut, Sep4 et Sep5, ce
qui en fait un modèle idéal vu son génome simple. Les septines sont composées d’un domaine
de liaison au GTP très conservé entre les espèces, dont le rôle reste à ce jour ambiguë, ainsi que
de régions N et C-terminales variables. Les septines s’assemblent entre elles pour former un
hexamère, composé de Sep1, Sep2 et Pnut chez Drosophila melanogaster, via l’interface N-C
et G des septines. Ces hexamères s’assemblent bout à bout afin de former les filaments de
septines. Ces filaments peuvent ensuite se regrouper et s’assembler en structures hautement
ordonnées telles que des anneaux, des tubes, des faisceaux de filaments, des cages et elles sont
retrouvées au sillon de clivage durant la cytokinèse. Le but était de déchiffrer les mécanismes
d’assemblage des filaments de septines qui mènent à la formation des différentes structures, afin
de mieux comprendre les mécanismes d’interaction entre les septines. Au sein des cellules S2
de Drosophila melanogaster, les septines sont retrouvées à trois structures hautement ordonnées
et dépendantes de Pnut endogène : des tubes cytoplasmiques, des anneaux cytoplasmiques et le
sillon de clivage durant la cytokinèse. Notre hypothèse est qu’il existe plusieurs mécanismes
qui régissent la formation des structures hautement ordonnées et que ceux-ci sont dépendants
des régions N et C terminales variables des septines qui sont impliquées dans plusieurs
interactions. Divers mutants de Sep1, Sep2 et Pnut tronqués en N et en C-terminal ont été
fusionnés à une protéine fluorescente et caractérisés par microscopie confocale. La localisation
de ces mutants a été répertoriée et analysée en présence des septines endogènes ou lors de la
déplétion de celles-ci. Nos résultats suggèrent que le domaine de liaison au GTP est suffisant
pour le recrutement des septines au sillon de clivage durant la cytokinèse, mais que la région N-terminale
est requise la formation des tubes et des anneaux cytoplasmiques dépendants de Pnut. / Septins are conserved from yeast to humans and are implicated in diverse cellular
processes such as cytokinesis, vesicular transport and cellular cortical organization. There are
13 known genes that encode for human septins, which also have many isoforms, while there
are only five septin genes in Drosophila melanogaster: Sep1, Sep2, Pnut, Sep4 and Sep5, which
makes it an ideal model system. Septins have a conserved GTP binding domain, whose role is
still not fully understood, and variable N-C-termini. Septins assemble together, via N-C and G
interfaces, to form a hexamer, that is composed of Sep1, Sep2 and Pnut in Drosophila
melanogaster, which assemble end-to-end to form non polar filaments. These filaments can
subsequently assemble together to form higher-ordered structures, such as rings, tubes, bundles,
and gauzes. Furthermore, septins are recruited to the cleavage furrow during cytokinesis
although their organization there is unclear. The aim of this project is to define septin assembly
mechanisms that can lead to the formation of different higher ordered structures. In Drosophila
melanogaster S2 cells, septins are recruited to three, readily observable septin dependent
structures: cytoplasmic rings, cytoplasmic tubes, and the cleavage furrow during cytokinesis.
Our hypothesis is that multiple mechanisms govern septin incorporation into these structures
and that these mechanisms differentially depend on septin N-C variable termini. A panel of
mutants of Sep1, Sep2 and Pnut truncated in N-C-termini were fused to fluorescent proteins and
their localization in S2 cells monitored by confocal microscopy, with or without depletion of
endogenous septins. My results suggest that the GTP binding domain is sufficient for septin
recruitment to the cleavage furrow during cytokinesis, but that the septin N-termini are required
for recruitment to the cytoplasmic tubes and rings.
|
9 |
Regulation of the Rab35 GTPase by Rab11FIP1 during cytokinesis, apico-basal polarity and collective cell migrationIannantuono, Nicholas 07 1900 (has links)
Le trafic vésiculaire joue un rôle crucial dans la sécrétion et l'internalisation des composantes extracellulaires ou membranaires. De plus, il contrôle la distribution spatio-temporelle de nombreuses protéines. En outre, ce processus peut contrôler la livraison de protéines à divers domaines des membranes plasmiques. Mes travaux de recherche se sont centrés sur l'étude des protéines Rab11-Family of Interacting Proteins de classe I (Rab11FIPs), plus précisément de Rab11FIP1 et de sa fonction dans différents processus cellulaires nécessitant le trafic vésiculaire, tels que la mitose, la cytokinèse, l'établissement de la polarité cellulaire et de la migration cellulaire, individuelle ou collective. En effet, ces processus nécessitent un contrôle vésiculaire finement régulé, par exemple, la mitose/cytokinèse nécessite le recrutement de différents complexes protéiques contenant des cargaisons liées aux vésicules. L'établissement de la polarité cellulaire nécessite le tri et la livraison de complexes protéiques à des membranes spécifiques et la migration cellulaire nécessite une polarisation complète de la cellule pour permettre un mouvement directionnel. Mes travaux ont élucidé une voie impliquant Rab11FIP1 et Rab35 dans le contrôle à la fois de la cytokinèse et de l'établissement de la polarité. En effet, alors que d'autres groupes ont publié que Rab35 est essentiel pour l'élimination de l'actine située au pont intercellulaire via le recrutement de MICAL1 et OCRL, j'ai montré que Rab11FIP1 est critique pour maintenir Rab35 dans cette région. De plus, j'ai montré que l'absence de Rab11FIP1 et la mauvaise localisation subséquente de Rab35 peuvent conduire à des phénotypes similaires à ceux observés lors de la dérégulation de l'abscission, tels que la binucléation et le retard de la cytokinèse, qui sont des défauts qui contribuent au développement de cancers. Ces défauts peuvent cependant être rétablies en utilisant de faibles doses de Latrunculin A pour dépolymériser de l'actine. De plus, j'ai montré que Rab11FIP1 et Rab35 semblent avoir des fonctions dans la polarité apico-basale des cellules Caco-2 et MCF-10a. Enfin, j'ai aussi montré que Rab35 est impliquée dans la régulation de la migration collective. En conclusion, mes données établissent Rab11FIP1 et Rab35 comme des régulateurs importants de divers processus cellulaires. Ces résultats constituent un point de départ important pour une étude plus approfondie de l'abscission, de l'établissement de la polarité cellulaire, de la formation du Apical Membrane Initiation Site (AMIS) et de la migration cellulaire collective. Cela aura des implications de grande envergure, car ces cascades de signalisation peuvent avoir un impact sur pratiquement tous les processus cellulaires. / Vesicular trafficking plays a crucial role in the secretion and internalization of extracellular or plasma membrane components. Moreover, it controls the spatiotemporal distribution of many proteins during different processes. Also, it can control the delivery of proteins to various domains of the plasma membranes. With this in mind, my research focused on the Rab11 Family of Interacting Proteins of Class I (Rab11FIPs), more specifically of Rab11FIP1 and its function in different cellular processes that require vesicular trafficking, those being mitosis, cytokinesis, establishment of cell polarity and cellular migration, both single and collective. Indeed, these processes require exquisite vesicular control, for example, mitosis/cytokinesis require the recruitment of different protein complexes containing vesicle-bound cargoes. Cell polarity establishment requires the sorting and delivery of protein complexes and cell migration requires fine-tuned polarization of the entire cell to allow for directional movement. My work has elucidated one such pathway involving Rab11FIP1 and Rab35 in the control of both cytokinesis and the establishment of polarity. Indeed, while others have shown that Rab35 is critical for the removal of actin in the intercellular bridge via recruitment of its cargoes MICAL1 and OCRL, I showed that Rab11FIP1 is vital for maintaining Rab35 in the midbody. In fact, I showed that lack of Rab11FIP1 and subsequent mislocalization of Rab35 can lead to similar phenotypes observed during dysregulated abscission, such as binucleation and cytokinesis delay, which are hallmarks of cancer. These phenotypes however, can be rescued using low doses of an actin depolymerizing drug called Latrunculin A. Furthermore, I showed that both Rab11FIP1 and Rab35 seem to have functions in the establishment of apico-basal polarity of both Caco-2 and MCF-10a. Finally, I showed that Rab35 seems to regulate the collectiveness of migrating cells. Altogether, these data establish Rab11FIP1 and Rab35 as important regulators of various cellular processes. These results will be an important stepping stone for further studies into abscission, establishment of cellular polarity, Apical Membrane Initiation Site (AMIS) formation, and collective cell migration. This will have far reaching implications, as these signaling cascades can impact virtually all cellular processes.
|
10 |
Characterizing cortical myosin mini-filament regulation, length and its macroscopic implications in cytokinetic dynamicsPatino Descovich, Carlos 09 1900 (has links)
No description available.
|
Page generated in 0.0563 seconds