• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 11
  • 10
  • 7
  • 7
  • 1
  • 1
  • 1
  • Tagged with
  • 73
  • 18
  • 16
  • 13
  • 13
  • 10
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Evaluation of Foliar Fertilizer or Cytokinin Mixtures in Combination with Common Postemergence Soybean Herbicides

Hydrick, Huntington Tyler 11 August 2017 (has links)
In an effort to reduce application costs and to integrate plant health management strategies in soybean, growers may combine POST herbicides with foliar fertilizers or cytokinin mixtures. Field experiments were conducted at the Delta Research and Extension Center in Stoneville, MS in 2015 and 2016 to evaluate soybean [Glycine max (L.) Merr.] injury, weed control, and agronomic performance when combining blended or single-nutrient foliar fertilizers with POST herbicide applications. Field experiments were also conducted at the Delta Research and Extension Center in Stoneville, MS in 2015 and 2016 to evaluate the influence of cytokinin mixtures on soybean injury and weed control when combined with common POST soybean herbicides.
42

Molecular And Biochemical Role Of Auxin And Cytokinin In Dedifferentiation And Organogenesis Of Arabidopsis

Kakani, Aparna 11 December 2009 (has links)
Cell dedifferentiation is a cell fate regression process in which the cell fate memory of a differentiated cell is erased, leading to regain stem cell characteristics. Auxin regulates both cell dedifferentiation and differentiation in plants. It is unknown how auxin controls the two opposite processes. Here the minimal auxin requirements for cell dedifferentiation were found, molecular markers associated with the cell dedifferentiation event were identified. When cellular auxin concentration exceeds the level of meristem cell, most differentiated cells undergo dedifferentiation. In differentiated cells, the polar auxin efflux system prevents cell dedifferentiation by reducing auxin accumulation, particularly in the presence of exogenous auxin. Classic plant tissue culture experiments have shown that exposure of cell culture to a high auxin to cytokinin ratio promotes root formation and a low auxin to cytokinin ratio leads to shoot regeneration. Since the auxin level is highly elevated in the shoot meristem tissues, it is unclear how a low auxin to cytokinin ratio promotes the regeneration of shoots. To identify genes mediating the cytokinin and auxin interaction during organogenesis in vitro, three allelic mutants that display root instead of shoot regeneration in response to a low auxin to cytokinin ratio are identified using a forward genetic approach in Arabidopsis. Molecular characterization shows that the mutations disrupt the AUX1 gene, which has been reported to regulate auxin influx in plants. Meanwhile, it was found that cytokinin substantially stimulates auxin accumulation and redistribution in calli and some specific tissues of Arabidopsis seedlings. In the aux1 mutants, the cytokinin regulated auxin accumulation and redistribution is substantially reduced. These results suggest that auxin elevation and other changes stimulated by cytokinin, instead of low auxin or exogenous auxin directly applied, is essential for shoot regeneration. In this study, as a part of interaction between auxin and cytokinin it was identified that the induction of ARR5 and ARR6 expression by cytokinin is subjected to the regulation of auxin. The expression of ARR5 and ARR6 follows a mutual exclusive pattern in response to the induction of exogenous auxin in Arabidopsis seedlings and calli. The results suggest that auxin interacts with the cytokinin via a gene and tissue specific induction of the negative regulators in the cytokinin signaling pathway.
43

Studies on the anti-tumor effects of cytokinins on myeloid leukemia cells.

January 2006 (has links)
Yau Wai Lok. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 195-205). / Abstracts in English and Chinese. / ACKNOWLEDGEMENTS --- p.i / ABBREVIATIONS --- p.ii / ABSTRACT --- p.vii / 撮要 --- p.x / PUBLICATIONS --- p.xii / TABLE OF CONTENTS --- p.xiii / Chapter CHAPTER 1: --- GENERAL INTRODUCTION / Chapter 1.1 --- Hematopoiesis & Leukemia --- p.1 / Chapter 1.1.1 --- An Overview on Hematopoiesis --- p.1 / Chapter 1.1.2 --- An Overview of Leukemia --- p.4 / Chapter 1.1.2.2 --- Classification and Epidemiology of Leukemia --- p.5 / Chapter 1.1.2.3 --- Conventional Approaches to Leukemia Therapy --- p.8 / Chapter 1.1.2.4 --- Novel Approaches to Leukemia Therapy --- p.9 / Chapter 1.1.2.4.1 --- Differentiation Therapy --- p.10 / Chapter 1.1.2.4.2 --- Induction of Apoptosis --- p.10 / Chapter 1.1.2.4.3 --- Natural Products as a Source of Anti-leukemia Drug --- p.11 / Chapter 1.2 --- Cytokinins --- p.12 / Chapter 1.2.1 --- Historical Development and Occurrence of Cytokinins --- p.12 / Chapter 1.2.2 --- Functions of Cytokinins and the Signal Transduction of Cytokinins in Plants --- p.13 / Chapter 1.2.3 --- Phytochemistry and Metabolism of Cytokinins --- p.15 / Chapter 1.2.3.1 --- Chemical Structures of Cytokinins --- p.15 / Chapter 1.2.3.2 --- Biosynthesis of Cytokinins in Plants --- p.19 / Chapter 1.2.3.3 --- Metabolisms of Cytokinins in Plants and Animals --- p.22 / Chapter 1.2.4 --- Biological and Pharmacological Activities of Cytokinins in Animals --- p.23 / Chapter 1.2.4.1 --- Anti-aging Effect --- p.24 / Chapter 1.2.4.2 --- Anti-thrombosis Effect and Inhibition of Blood Platelet Aggregation --- p.24 / Chapter 1.2.4.3 --- Anti-tumor Effect --- p.25 / Chapter 1.3 --- Aims and Scopes of This Investigation --- p.27 / Chapter CHAPTER 2: --- MATERIALS AND METHODS / Chapter 2.1 --- Materials --- p.29 / Chapter 2.1.1 --- Animals --- p.29 / Chapter 2.1.2 --- Cell Lines --- p.29 / Chapter 2.1.3 --- "Cell Culture Medium, Buffers and Other Reagents" --- p.32 / Chapter 2.1.4 --- Reagents and Buffers for Flow Cytometry --- p.37 / Chapter 2.1.5 --- Reagents for DNA Extraction --- p.41 / Chapter 2.1.6 --- Cellular DNA Fragmentation ELISA Kit --- p.42 / Chapter 2.1.7 --- Reagents for Total RNA Isolation --- p.44 / Chapter 2.1.8 --- Reagents and Buffers for Reverse Transcription-Polymerase Chain Reaction (RT-PCR) --- p.46 / Chapter 2.1.9 --- Reagents and Buffers for Gel Electrophoresis for Nucleic Acids --- p.50 / Chapter 2.1.10 --- Reagents for Measuring Caspase Activity --- p.51 / Chapter 2.2 --- Methods --- p.54 / Chapter 2.2.1 --- Culture of the Tumor Cell Lines --- p.54 / Chapter 2.2.2 --- "Isolation, Preparation and Culture of Murine Peritoneal Macrophages" --- p.55 / Chapter 2.2.3 --- Determination of Cell Proliferation by [ 3H]-TdR Incorporation Assay --- p.55 / Chapter 2.2.4 --- Cytotoxicity Measurement by LDH Release Assay --- p.56 / Chapter 2.2.5 --- Determination of Cell Viability --- p.57 / Chapter 2.2.6 --- Determination of Anti-leukemic Activity In Vivo --- p.58 / Chapter 2.2.7 --- Analysis of Cell Cycle Profile/DNA Content by Flow Cytometry --- p.59 / Chapter 2.2.8 --- Measurement of Apoptosis --- p.59 / Chapter 2.2.9 --- Assessment of differentiation-associated characteristics --- p.63 / Chapter 2.2.10 --- Gene Expression Study --- p.67 / Chapter 2.2.11 --- Measurement of Caspase Activity --- p.68 / Chapter 2.2.12 --- Statistical Analysis --- p.70 / Chapter CHAPTER 3: --- STUDIES ON THE ANTI-PROLIFERATIVE EFFECT OF CYTOKININS ON LEUKEMIA CELLS / Chapter 3.1 --- Introduction --- p.71 / Chapter 3.2 --- Results --- p.72 / Chapter 3.2.1 --- Effect of Various Cytokinins and Their Riboside Derivatives on the Proliferation of Murine Myelomonocytic Leukemia WEHI-3B JCS Cells In Vitro --- p.72 / Chapter 3.2.2 --- Cytotoxicity of Kinetin and Kinetin Riboside on the WEHI-3B JCS Cells In Vitro --- p.86 / Chapter 3.2.3 --- Effects of Kinetin and Kinetin Riboside on the Proliferation of Various Leukemia Cell Lines In Vitro --- p.90 / Chapter 3.2.4 --- Cytotoxicity of Kinetin and Kinetin Riboside on Non-tumor Cell Lines and Primary Myeloid Cells In Vitro --- p.103 / Chapter 3.2.5 --- Kinetic and Reversibility Studies of the Anti-proliferative Effect of Kinetin and Kinetin Riboside on the WEHI-3B JCS Cells In Vitro --- p.107 / Chapter 3.2.6 --- Effects of Kinetin and Kinetin Riboside on the Cell Cycle Profile of WEHI-3B JCS Cells In Vitro --- p.115 / Chapter 3.2.7 --- Expression of Cell Cycle Related Genes in Kinetin- and Kinetin Riboside-treated WEHI-3B JCS Cells In Vitro --- p.118 / Chapter 3.2.8 --- Effects of Kinetin and Kinetin Riboside on the In Vivo Tumorigenicity of WEHI-3B JCS Cells --- p.123 / Chapter 3.2.9 --- In Vivo Anti-tumor Effect of Kinetin and Kinetin Riboside on WEHI-3B JCS Cells --- p.126 / Chapter 3.3 --- Discussion --- p.129 / Chapter CHAPTER 4: --- STUDIES ON THE APOPTOSIS-INDUCING EFFECT OF CYTOKININS / Chapter 4.1 --- Introduction --- p.134 / Chapter 4.2 --- Results --- p.136 / Chapter 4.2.1 --- Induction of DNA Fragmentation of Cytokinins in the Murine Myeloid Leukemia WEHI-3B JCS Cells In Vitro --- p.136 / Chapter 4.2.2 --- Mitochondrial Membrane Potential of Kinetin- and Kinetin Riboside-treated WEHI-3B JCS Cells In Vitro --- p.144 / Chapter 4.2.3 --- Caspase Activities of Kinetin- and Kinetin Riboside-treated WEHI-3B JCS Cells In Vitro --- p.147 / Chapter 4.2.4 --- Induction of Reactive Oxygen Species in Kinetin- and Kinetin Riboside-treated WEHI-3B JCS Cells In Vitro --- p.154 / Chapter 4.2.5 --- Expression of Apoptosis Regulatory Genes in Kinetin- and Kinetin Riboside-treated WEHI-3B JCS Cells In Vitro --- p.157 / Chapter 4.3 --- Discussion --- p.163 / Chapter CHAPTER 5: --- STUDIES ON THE DIFFERENTIATION-INDUCING EFFECT OF CYTOKININS / Chapter 5.1 --- Introduction --- p.168 / Chapter 5.2 --- Results --- p.170 / Chapter 5.2.1 --- Morphology of Kinetin- and Kinetin Riboside-treated WEHI-3B JCS Cells --- p.170 / Chapter 5.2.2 --- Cell Size and Granularity of Kinetin- and Kinetin Riboside-treated WEHI-3B JCS Cells --- p.175 / Chapter 5.2.3 --- Changes in Surface Antigen Expression of Kinetin- and Kinetin Riboside-treated WEHI-3B JCS Cells --- p.178 / Chapter 5.2.4 --- Monocytic Serine Esterase Activity in Kinetin- and Kinetin Riboside-treated WEHI-3B JCS Cells --- p.185 / Chapter 5.3 --- Discussion --- p.188 / Chapter CHAPTER 6: --- CONCLUSIONS AND FUTURE PERSPECTIVES --- p.190 / REFERENCES --- p.195
44

Effect of cytokinin, gibberellin, and nitrogen applications on the growth of eldarica pine seedlings

Darwiche, Amal Omar, 1964- January 1989 (has links)
A greenhouse experiment was conducted over a ninety day period to test the effect of different nitrogen fertilizer regimes and several application rates of compounds with gibberellin and cytokinin activity (GA4/7 and BA, respectively) on the growth and development of Pinus brutia var. eldarica. Nitrogen produced no significant effects and this was attributed to its abundance in the potting medium, to begin with. All levels of growth regulators used showed a highly significant effect on vegetative development. A reduction in root collar diameter, shoot elongation, needle nitrogen content and oven-dry weight, was observed, especially when the medium and high hormonal rates were used. Phytotoxicity increased with the increase in concentration of both chemicals. Ba induced a proliferation of adventitious buds along the stem of saplings, but this was accompanied with rapid new top growth and branching at the top only when BA was applied in conjunction with GA4/7.
45

A biochemical study of budbreak and plant growth regulators in table grapes

Lombard, Petrus Johannes 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2002. / ENGLISH ABSTRACT: The cultivation of table grapes in the warmer areas of South Africa, indeed worldwide, is complicated by rest breaking problems in spring due to delayed budbreak. In order to overcome these problems rest breaking agents, mainly hydrogen cyanamide, are applied. However, instead of alleviating the problem, additional problems such as uneven budbreak and reduced production are often induced. This study was initiated to further understand the physiological processes occurring during budbreak and how the application of hydrogen cyanamide influences these processes. The following aspects were investigated in this study: a. The effect of hydrogen cyanamide on tissue cytokinin (specifically zeatin riboside) levels of Sultanina table grape vines after application at different times before natural budbreak was studied over two seasons. In 1997, hydrogen cyanamide was applied at three weeks before induced budbreak and in 1998 at six weeks before induced budbreak. One year-old canes were sampled weekly after hydrogen cyanamide application, divided into distal and proximal sections, then further divided into buds, bark and wood tissues and the zeatin riboside (ZR) levels determined. A relatively high amount of chilling coupled to late hydrogen cyanamide application in 1997 led to a large effect on ZR release, but did not lead to significant shifting of the budbreak pattern. Zeatin riboside peaks were observed in buds, internode wood and bark of treated vines compared to control vines. The peaks were higher in distal portions compared to proximal portions in all tissues. The relatively lower chilling and earlier application of hydrogen cyanamide in 1998 had a larger effect on the budbreak pattern while the bud ZR peak was shifted earlier. The distal portion bud ZR . peak was again higher than the proximal portion bud ZR peak. In 1997, as sampling was not initiated early enough, bud ZR peaks were only observed after budbreak, while in 1998 bud ZR peaks were observed before and after budbreak. The effect of these ZR increases on the development of inflorescence primordia, subsequent bunch development and ultimately production, are discussed. b. Free xylem sap was sampled at cane and spur pruned lengths from unpruned canes of Sultanina from budswell until after budbreak in 1999 and from three table grape cultivars, i.e Sultanina, Alphonse Lavalleé and Sunred Seedless, in 2001 and ZR levels determined. The ZR levels in the buds of these three table grape cultivars, pruned to different cane lengths were also determined. One year old canes of these cultivars, were each pruned to long canes (14 buds) and short spurs (2 buds). The ZR content in buds of these canes at distal and proximal positions were determined weekly from budswell until after budbreak in 1999. Xylary ZR peaks occurred before 50% budbreak. Spur xylary ZR levels of all three cultivars followed a similar pattern, although at lower ZR levels than that of the canes. This is similar to previous studies on xylary ZR levels of apple shoots. The high levels of free ZR found in xylem sap at the distal portions of canes support the hypothesis of a cumulative ZR build-up effect as cane length increases. Spur pruning resulted in earlier budbreak and a higher final budbreak than cane pruning. The proximal portions of shoots, whether spur pruned or the proximal portions of canes, showed elevated ZR levels in all cultivars. This difference in ZR levels in bud tissue of different portions of the cane would suggest a difference in ZR consumption or turnover. The results of this study have important management implications for the cultivation of vines in warmer areas in which hydrogen cyanamide is used to alleviate budbreak problems. / AFRIKAANSE OPSOMMING: Die verbouing van tafeldruiwe in die warmer gebiede van Suid-Afrika, soos straks wêreldwyd, word bemoeilik deur rusbreekprobleme in die lente weens vertraagde bot. Rusbreekmiddels, meestal waterstofsiaanamied, word gevolglik toegedien om hierdie probleme te probeer oorkom. In plaas van opheffing van die probleem, veroorsaak hierdie toedienings somtyds addisionele probleme soos ongelyke bot en verlaagde produksie. Hierdie studie is aangepak om die fisiologiese prosesse wat tydens bot plaasvind, beter te verstaan, asook hoe die toediening van waterstofsiaanamied hierdie prosesse beïnvloed. Die volgende is in hierdie studie ondersoek: a. Die invloed van waterstofsiaanamied op lootweefsel sitokinien (naamlik zeatin ribosied, ZR) vlakke van 'n Sultanina tafeldruif wingerd is oor twee seisoene ondersoek na toediening op verskillende tye voor bot. Waterstofsiaanamied is in 1997 drie weke en in 1998 ses weke voor geïnduseerde bot toegedien. Een jaar oue lote is weekliks gemonster na waterstofsiaanamied toediening, verdeel in apikale en basale gedeeltes en verder verdeel in ogies, bas en houtweefsel en die ZR vlakke bepaal. Relatief hoër vlakke koue, gekoppel met later watersiaanamied toediening het in 1997 tot 'n groot effek op ZR vlakke gelei, maar het nie die botpatroon wesentlik verskuif nie. Zeatin ribosied pieke is waargeneem in ogies, internode hout en bas van behandelde wingerd in vergelyking met kontrole wingerd. Die pieke was hoër in apikale gedeeltes in vergelyking met basale gedeeltes in alle weefsels. Die relatief laer koue en vroeër toediening van waterstofsiaanamied in 1998 het 'n groter effek op die botpatroon gehad, terwyl die ogie ZR piek vroeër geskuif is. Die apikale gedeelte se ogie ZR piek was weereens hoër as die basale gedeelte se ogie ZR piek. Monstering was nie vroeg genoeg begin in 1997 nie, aangesien ogie ZR pieke slegs na bot waargeneem is, terwylogie ZR pieke in 1998 voor en na bot waargeneem is. Die effek van hierdie verhoging in ZR vlakke op die ontwikkeling van blom primordia, daaropvolgende tros ontwikkeling en uiteindelik produksie, is bespreek. b. Vry xileemsap is gemonster van langdraer en kortdraer gedeeltes van ongesnoeide lote van Sultanina vanaf ogieswel tot na bot in 1999 en vanaf drie tafeldruif kultivars, naamlik Sultanina, Alphonse lavalleé en Sunred Seedless, in 2001 en die ZR vlakke bepaal. Die ZR vlakke van ogies van hierdie drie kultivars, gesnoei tot verskillende lootlengtes is ook bepaal. Eenjarige lote van hierdie kultivars is gesnoei tot langdraers (14 ogies) en kortdraers (2 ogies). Die ZR vlakke in ogies geleë op apikale en basale gedeeltes van hierdie lote is weekliks in 1999 bepaal vanaf ogieswel tot na bot Xileemsap ZR pieke is waargeneem voor 50% bot. Kortdraer xileemsap ZR vlakke het 'n soortgelyke patroon as die langdraers gevolg vir al drie kultivars, alhoewel teen laer ZR vlakke as die langdraers. Hierdie waarneming is soortgelyk aan vorige studies op xileemsap ZR vlakke van appel lote. Die hoë ZR vlakke gevind in die xileemsap van die apikale gedeeltes van lote ondersteun die hipotese van 'n kumulatiewe opbou van ZR soos die lengte van die loot toeneem. Die snoei van lote as kortdraers het gelei tot vroeër bot en 'n hoër finale bot persentasie as die snoei van langdraers. Die basale gedeeltes van lote het verhoogde ZR vlakke in al drie kultivars getoon, onafhanklik van die feit dat dit vanaf die kortdraer of die basale gedeelte van 'n langdraer was. Hierdie verskil in ZR vlakke in ogie weefsel van verskillende gedeeltes van die loot impliseer 'n verskil in ZR verbruik of omset. The resultate van hierdie studie het belangrike bestuursimplikasies vir die verbouing van wingerd in warmer gebiede, waar waterstofsiaanamied gebruik word om botprobleme te oorkom.
46

Mécanismes moléculaires de la signalisation longue distance dépendante de l’interaction nitrate/cytokinine, chez Arabidopsis thaliana / Molecular basis of the nitrate / cytokinin dependent long distance signaling in Arabidopsis thaliana

Poitout, Arthur 17 November 2017 (has links)
Les plantes sont des organismes sessiles se développant dans un environnement hétérogène et fluctuant. La capacité d'acquisition des nutriments par le système racinaire est donc un caractère important pour leur croissance et leur développement.L'azote (N), notamment sous forme nitrate (NO3-), fait partie de ces éléments qui sont limitant pour la croissance des plantes mais aussi très mobiles dans le sol donc fréquemment distribués de façon hétérogène. Les plantes s'adaptent à cette contrainte en modulant le développement racinaire ainsi que la capacité de transport de ce nutriment dans les différentes parties du système racinaire en fonction de la disponibilité en NO3- et du besoin en azote (N) de la plante entière. Cette adaptation repose donc sur la combinaison de deux voies de signalisation, i) une signalisation locale dépendante de la disponibilité en NO3- dans le milieu extérieur ii) une signalisation longue distance (ou systémique) racines-feuilles-racines relative au besoin en N de la plante entière.Toutefois, les bases moléculaires de la signalisation longue distance comme les mécanismes de régulation qui y sont associés ne sont pas totalement connus. Ils reposent sur l'intégration au niveau des parties aériennes de signaux d'origine racinaire, provenant des racines exposées au NO3- mais aussi de celles qui en sont privées. Les parties aériennes jouent alors un rôle majeur dans la modulation de la physiologie et du développement racinaire en condition de disponibilité hétérogène en NO3-. Des études précédentes ont montré que la biosynthèse de cytokinines est essentielle pour la mise en place de cette réponse adaptative. De plus, il est connu qu'après un apport de NO3-, la biosynthèse de cette hormone dans les racines puis son accumulation dans les parties aériennes est augmentée. Dans ce contexte, nous avons émis l'hypothèse que les cytokinines pourraient correspondre à un messager racines/feuilles important pour la signalisation systémique NO3--dépendante.L'objectif de mon projet de thèse consistait à comprendre comment les parties aériennes contrôlent l'acquisition racinaire du NO3- en condition de disponibilité hétérogène en NO3-. Pour reproduire cette condition en laboratoire, le système de 'split-root', permettant de séparer le système racinaire en deux parties isolées pouvant être traitées différemment, a été utilisé pour exposer les plantes à différentes conditions de disponibilité en NO3-. Dans ces différentes conditions, les réponses moléculaires, métaboliques et physiologiques ont été caractérisées chez des plantes sauvages d'Arabidopsis et comparées à celles de mutants affectés dans la biosynthèse, le transport acropetal ou encore dans la perception des cytokinines. La combinaison de ces différentes approches m'a ainsi permis de démontrer que les cytokinines, et plus précisément les trans-zéatines, sont effectivement un messager racines-feuilles crucial pour la mise en place des réponses de la racine à une disponibilité hétérogène en NO3-. De plus, j'ai montré que l'apport hétérogène en NO3- comparé à l'apport homogène entraîne une importante reprogrammation de l'expression génique dans les parties aériennes qui est largement dépendante de ce transport de trans-zéatines vers les feuilles. Enfin, l'intégration de ces données transcriptomiques au sein de réseaux géniques a permis d'identifier des gènes candidats intéressants comme acteurs possibles de la signalisation feuilles-racines. / Plants are sessile organisms growing in a heterogeneous and fluctuating environment. Thus, foraging for nutrients is an important trait for plant growth and development. Nitrogen (N), especially as nitrate (NO3-) form, is one limiting element for plant growth but is also highly mobile in the soil leading to frequent heterogeneity distribution. Plants are managing this constraint through the regulation of root development and NO3- uptake in the different parts of the root system according to the spatial NO3- availability and the N needs of the whole plant. This adaptation relies on a dual signaling pathway involving i) a local signaling related to external NO3- supply and ii) a root-shoot-root long-distance (systemic) signaling related to the plant N needs..However, the molecular basis of the long-distance signaling as well as the regulatory mechanisms associated with, are not fully understood. They rely on the integration at the shoot level of signals originating from both NO3--supplied and N-deprived root parts. Therefore, the shoots have a key role for an efficient adaptation to heterogeneous NO3- environment through the adjustment of root physiology and development. Previously, cytokinin biosynthesis has been shown to be essential for both molecular and morphological root responses to NO3- heterogeneous environment. Moreover, it is known that upon NO3- supply, de novo biosynthesis of this hormone in the roots is increased along with its accumulation in the shoots. In this context, we hypothesized that cytokinins could correspond to an important root to shoot signal involved in NO3--dependent systemic signaling.The main objective of my PhD project was to decipher and understand how the shoots control root NO3- acquisition in response to spatial NO3- heterogeneity. To do so, we used the 'split-root' system, in which physically isolated roots of a same plant are challenged with different NO3- environments. In this framework, we characterized physiological, metabolic and molecular responses of Arabidopsis wild-type plants that we compared to responses of mutants impaired in cytokinin biosynthesis, acropetal transport or perception. The combination of these different approaches allowed me to demonstrate that cytokinins, and especially trans-zeatin species are indeed a root to shoot messenger that is crucial for root responses to spatial NO3- heterogeneity. Moreover, I have shown that NO3- heterogeneous supply compared to homogeneous supply triggers a substantial reprogramming of gene expression in aerial part, which largely depends on this trans-zeatin transport toward the shoots. Finally, the integration of these transcriptomic modifications into gene networks led to the identification of interesting candidate genes to characterize the shoot-to-root signaling.
47

Divisão espacial da atividade das enzimas PEPC e da NR e sua regulação por citocininas em folhas de Guzmania monostachia induzidas ao CAM / Spatial division of PEPC and NR enzymes activity and its regulation by cytokinins in CAM induced leaves of Guzmania monostachia

Pereira, Paula Natália 07 August 2012 (has links)
Estudos anteriores realizados no Laboratório de Fisiologia Vegetal do IBUSP com Guzmania monostachia demonstraram que quando essas plantas são submetidas ao déficit hídrico ocorre a indução do CAM, com maior expressão desse metabolismo na porção foliar apical. Para outra espécie (Vriesea gigantea), foi verificada a maior atividade da enzima nitrato redutase (NR) na porção basal durante o período diurno. Em uma bromélia terrestre (Ananas comosus) foi observada a sinalização por citocininas tanto na indução da expressão gênica, quanto na ativação da NR. Outros laboratórios evidenciaram que plantas de Mesembryanthemum crystallinum induzidas ao CAM apresentaram uma provável regulação negativa da fosfoenolpiruvato carboxilase (PEPC) por citocininas. Em decorrência desses conhecimentos acumulados, surgiram novos questionamentos: haveria variações diuturnas da atividade das enzimas PEPC e NR nas diferentes porções das folhas de G. monostachia induzidas ao CAM? A maior disponibilidade de esqueletos carbônicos à noite (acúmulo de acidez) influenciaria positivamente a atividade da NR, deslocando seu pico de atividade para o período noturno? As variações dos teores endógenos de citocininas acompanhariam as possíveis mudanças da atividade da PEPC e da NR, indicando, assim, a participação dessa classe hormonal na regulação dessas enzimas? O presente trabalho teve por objetivo principal investigar uma possível regulação da atividade das enzimas PEPC e NR por citocininas em folhas destacadas da bromélia epífita com tanque, Guzmania monostachia (Bromeliaceae) induzidas ao CAM. Foi esperado com esta pesquisa aprofundar os estudos sobre a inter-relação entre o comportamento fotossintético, a capacidade de assimilação de nitrogênio e a possível regulação das atividades da PEPC e da NR por citocininas endógenas. Análises de acidez titulável, ácidos orgânicos, amido endógeno e da atividade da enzima malato desidrogenase (MDH) foram realizadas, confirmando a indução do CAM nas folhas isoladas de G. monostachia mantidas em polietilenoglicol (PEG) a uma concentração de 30%. O uso desse composto foi eficiente na redução do conteúdo relativo de água e na imposição da deficiência hídrica foliar. Além disso, pôde-se verificar a maior expressão do CAM na porção apical das folhas mantidas em PEG 30%, quando comparada à porção basal. Análises da atividade da PEPC e da NR permitiram verificar a separação espacial dessas enzimas. A primeira apresentou maior atividade no ápice foliar, enquanto a segunda mostrou a maior atividade na porção basal. Apesar disso, não foi observada a separação temporal dessas enzimas, uma vez que ambas apresentaram picos de atividade noturna. A maior atividade da NR durante o período escuro (01 hora) foi verificada nas folhas-controle ou sob deficiência hídrica. Esse resultado sugere que outros fatores, diferentes do metabolismo CAM, influenciaram para a ocorrência da maior atividade dessa enzima durante o período noturno. Os resultados obtidos ainda sugerem que as citocininas possivelmente atuaram como um regulador negativo para a atividade da PEPC durante o dia, uma vez que os maiores níveis endógenos desse hormônio foram observados durante esse período, enquanto a maior atividade dessa enzima foi verificada durante a noite, quando os teores de Z+iP decaíram significativamente. A aplicação de Z ou iP resultou também num decréscimo da atividade dessa enzima. Por outro lado, as citocininas atuaram como um provável regulador positivo para a atividade da NR, uma vez que a maior atividade noturna dessa enzima foi antecedida em 3 ou 6 horas pelos maiores níveis endógenos de citocininas na porção basal das folhas mantidas em água ou PEG 30%, respectivamente. A aplicação de citocininas-livres aumentou significativamente a atividade da NR na base das folhas destacadas mantidas em água ou PEG 30% / Prior studies undertaken in the Laboratory of Plant Physiology on IBUSP with Guzmania monostachia have shown that during water shortage, CAM induction occurs with greater expression in the apical portion of the leaf. In the case of another species (Vriesea gigantean), more intense nitrate reductase (NR) enzyme activity was observed in the basal portion during the daytime. In a certain terrestrial bromeliad (Ananas comosus), signaling by cytokinins, both in the induction of gene expression as well as NR activation, was observed. According to other laboratories, the cytokinins seem to play a negative regulation of phosphoenolpyruvate carboxylase (PEPC) in CAM induced Mesembryanthemum crystallinum plants. As a result of accumulated knowledge, new questions have arisen, such as: Are there daily variations in PEPC and NR enzymes activity in the different portions of CAM induced leaves of G. monostachia? Would the more pronounced nocturnal availability of carbon skeletons (accumulation of acidity) positively influence NR activity, with consequential displacement of its peak of activity to this period? Would variations in endogenous cytokinins concentration accompany possible changes in PEPC and NR activity, thereby indicating the participation of this hormonal class in their regulation? The main aim in the present study was to investigate the possible regulation of PEPC and NR activity by cytokinins in detached CAM-induced leaves of the epiphyte tank bromeliad Guzmania monostachia (Bromeliaceae). The expectations with this research were to study more deeply the inter-relationship between photosynthetic behavior, the capacity for nitrogen assimilation and the possible regulation of PEPC and NR activity by endogenous cytokinins. Analyses of titratable acidity, organic acids, endogenous starch and malate dehydrogenase (MDH) enzyme activity confirmed CAM induction in isolated leaves of G. monostachia kept in polyethylene glycol (PEG) at a concentration of 30%. The use of this compound was efficient in reducing relative water content and imposing leaf water deficiency. Furthermore, compared to the basal portion, greater CAM expression could be observed in the apical portion of leaves kept in PEG 30%. Analyses of PEPC and NR activity allowed detecting their mutual spatial separation, seeing that, in the first greater activity was concentrated in the leaf apex, while in the second this was more pronounced in the basal portion. Even so, no temporal separation could be observed, since peak of activity for both occurred at night. The peak of nocturnal NR activity (1 hour) was observed in control leaves or those undergoing water deficiency, thereby implying that factors, other than CAM metabolism, exerted an influence on the occurrence of more intense activity of this enzyme at this time. Furthermore, there were indications that cytokinins possibly act as a negative regulator of PEPC activity during the daytime, when the highest endogenous levels of this hormone were observed, whereas it was apparent that the most intense activity of this enzyme actually occurred at night, when Z+iP rates decreased significantly. Z or iP application also induced a decrease in the activity of this enzyme. On the other hand, the cytokinins acted as a positive regulator of NR activity, since the nocturnal peak of activity of this enzyme was preceded by 3 or 6 hours by higher endogenous levels of cytokinins in the basal portion of leaves maintained in water or PEG 30%, respectively. The application of free cytokinins induced a significant increase in NR activity in the base of detached leaves kept in water or PEG 30%
48

Studies On The Molecular Mechanism Of Cytokinin Action: Involvement Of Ca2+, Protein Kinase And Concurrent Protein Synthesis In Signaling Of Cytokinin-Induced Expression Of Pathogenesis-Related Enzymes In Cucumber

Barwe, Sonali P 11 1900 (has links)
Phytohormones act as signals to regulate plant growth and development by modulation of gene expression in response to internal developmental cues or external environmental stimuli, such as light and pathogen infection. There are five major classes of phytohormones, viz. auxins, cytokinins, gibberellins, ethylene and abscisic acid. Of these, cytokinins, 6N substituted adenine derivatives, are of special importance owing to their possible diverse roles in plant growth and development. They induce cell division, cell expansion in cotyledon, chloroplast and etioplast development, suppression of apical dominance and senescence, and differentiation of in vitro cultured cells. However, very little is known about the mechanism of cytokinin action at the molecular level. Cytokinins have been demonstrated to modulate the expression of genes coding for several enzymes including nitrate reductase, ribulose-l,5-bisphosphate carboxylase, RNA polymerase I, and pathogenesis-related (PR) enzymes, i.e. chitinases and β-1,3- glucanases. One of the important questions regarding cytokinin regulation of enzyme activities and/or the accumulation of their corresponding proteins and mRNAs is how the cytokinin signal is transduced. There is considerable evidence from earlier reports demonstrating that pathogens alter hormone physiology of the host plant and it has been proposed that the infection-associated enzyme changes might be mediated by phytohormones. In the present study, two PR enzymes, viz. cucumber chitinase and β-l,3-glucanase, have been chosen to examine the mode of regulation of their gene expression by cytokinins, including the identification of cytokinin signal transduction components. Plant chitinases and glucanases are important enzymes in plant defense mechanisms against fungal pathogens as they degrade the major fungal cell wall components, chitin and β-1,3-glucan, respectively. Besides their role in plant defense, they are known to be involved in diverse physiological and developmental processes, such as embryogenesis, seed germination and flower development, and are also developmentally and hormonally regulated. Initially, in order to study the effects of various cytokinins on chitinase and β-1,3-gIucanase enzyme activities and their gene expression, cotyledons excised from seven-day-old dark-grown cucumber seedlings were treated with water, and cytokinins, viz. benzyladenine, kinetin, zeatin and zeatin riboside. It was observed that chitinase and β-l,3-ghucanase enzyme activities and their transcripts were induced to varying extents following treatments of cotyledons with the cytokinins tested. However, a maximum increase in enzyme activities and their transcript levels was noticed in zeatin-treated cotyledons. Therefore, zeatin was used for further studies. The main objective of the present study was to investigate the cytokinin signal transduction mechanism involving the induction of expression of chitinase and β-1-3-glucanase. In order to obtain insights into the downstream components of the cytokinin-signaling pathway, effects of several agonists and antagonists of the signal transduction components on zeatin-induced chitinase and β-l,3-glucanase activities, and their protein and transcript levels were monitored by enzyme assay, by immunoblot analysis, and by northern analysis, respectively. Treatment of excised dark-grown cucumber cotyledons with staurosporine, a broad spectrum protein kinase inhibitor, reduced the zeatin-induced chitinase and β-l,3-glucanase enzyme activities and the accumulation of their proteins and transcripts. On the other hand, treatment with sodium fluoride, a general inhibitor of protein phosphatases, stimulated the basal chitinase and β-1,3-glucanase enzyme activities and their protein and transcript accumulation, whereas it had no effect on the zeatin-induced enzyme activities and their protein and transcript accumulation. These findings suggested that protein phosphorylation is critical in the cytokinin induction of expression of chitinase and β-l,3-glucanase. Since Ca2+ is known to be an important second messenger in several plant signal transduction pathways, the possible involvement of Ca2+ in the cytokinin-induced expression of chitinase andβ-l,3-glucanase was examined. The results of the present investigation showed that the chitinase and β-1,3-ghicanase activities and their proteins and transcripts were appreciably increased by exogenous CaCl2 treatment in control cotyledons. Treatment of cotyledons with zeatin plus CaCl2 did not result in a further increase in either these enzyme activities or their protein and transcript accumulation as compared to zeatin or CaCl2 treatment alone. The lack of additivity of zeatin plus CaCl2 treatment indicated a common mechanism of action of zeatin and Ca2+ in the induction of these enzyme activities and their gene expression. To test the occurrence of influx of extracellular Ca2+ by cytokinin, cotyledons were treated with the plasma membrane Ca2+ channel blocker, verapamil, and Ca2+ ionophore A23187. Verapamil treatment inhibited the zeatin-induced chitinase and β-1,3-ghicanase enzyme activities and their protein and transcript accumulation. An increase in the intracellular Ca2+ levels by means of Ca2+ ionophore treatment resulted in a significant increase in basal chitinase and β-l,3-glucanase activities and their protein and transcript accumulation. These results suggested that an influx of extracellular Ca2+ leading to increased levels of cytosolic Ca2+ is required for the cytokinin induction of expression of these enzymes. The correlation of chitinase and β-1,3-glucanase enzyme activities and their protein and transcript accumulation in the zeatin-treated cotyledons suggested that the cytokinin zeatin stimulates chitinase and β-l,3-glucanase accumulation at the mRNA level and that the increase in enzyme activities is due to an increase in the amount of the enzyme protein and not by the activation of the existing enzyme. Further, the effect of zeatin on both the enzyme activities and their transcript levels under conditions that inhibit protein synthesis was studied. Treatment of excised dark-grown cucumber cotyledons with cycloheximide, an inhibitor of protein synthesis, in the presence of zeatin, completely nullified the stimulatory effect of zeatin. These results indicated the requirement of cytokinin-induced enhanced concurrent protein synthesis in the observed stimulation of chitinase and β-l,3-glucanase enzyme activities as well as their transcript accumulation Ca2+ In an attempt to isolate the full length cucumber β-l,3-glucanase cDNA from a cucumber cDNA library, we isolated and sequenced one cDNA clone, which was 978 bp long and had a potential polyadenylation signal A ATA A starting 172 bases before the polyadenylation tail A deduced amino acid sequence of the cDNA, which was 242 amino acids in length, apparently encoded a partial β-amyrin synthase. Sequence comparison of the deduced partial amino acid sequence of cucumber β-amyrin synthase with other known plant β-amyrin synthase sequences available in databases revealed significant homologies to β-amyrin synthases from Panax, Pisum and Glycyrrhiza. Southern blot analysis indicated that there was only one β-amyrin synthase gene in the cucumber genome. RT-PCR analysis performed on total RNA isolated from zeatin- and salicylic acid-treated cotyledons using forward and reverse primers designed from the internal regions of the cDNA showed that the transcript levels of β-amyrin synthase were enhanced by both zeatin and salicylic acid. In conclusion, we have demonstrated that chitinase and β-l,3-glucanase accumulation is stimulated by exogenous cytokinin treatment of excised cucumber cotyledons, and this effect is correlated with the content of chitinase and β-1,3-glucanase transcripts as judged by northern analyses. Further, the findings reported in the thesis suggested that Ca2+ influx from extracellular space, protein phosphorylation by staurosporine-sensitive protein kinase(s) and concurrent protein synthesis are required for the signaling of cytokinin-induced expression of both these pathogenesis-related enzymes.
49

Physiological and molecular characterization of habituated and non- habituated soybean callus lines (Glycine max (L.) Merr cv. Acme)

Du Plessis, Sandra. 20 December 2013 (has links)
A cytokinin habituated soybean callus has been isolated, utilizing the cytokinin soybean bioassay. The habituated callus line was subsequently characterized with a non-habituated callus line in relationship to levels of endogenous growth substances, ultrastructure, nitrogen metabolism and pattern of gene expression. The cytokinin habituated soybean callus contained a higher level of endogenous cytokinin-like activity in comparison to the non-habituated callus. This higher level of cytokinin present is in part due to a lower rate of degradation. The habituated callus tissue produced very low levels of ethylene, while the non-habituated callus produced ethylene at a much higher rate (57 fold higher), than the habituated callus. In contrast to what was found in habituated sugarbeet callus, only low levels of putrescine could be detected in both callus types. The putrescine content of habituated callus tissue was lower than that of non-habituated callus tissue. The ultrastructure of habituated callus cells exhibited several differences to what was observed in the non-habituated callus. Habituated callus cells appeared to have a thinner cell wall than that of the non-habituated callus cells. The cristae of the mitochondria in habituated cells were thicker than that of the non-habituated callus cells, indicating a lower metabolic activity. On day 14 of the growth period the nuclei of habituated callus demonstrated active RNA synthesis as indicated by the presence of several vacuolated nucleoli. Although no significant differences between proline levels of habituated callus and proline levels of non-habituated callus were observed, it was demonstrated that there was a difference in proline metabolism between the habituated and non-habituated calli. Utilizing an inhibitor of OAT, gabaculine, it was shown that in habituated callus tissue proline originated from ornithine during the first 14 days of growth. During the second half of the growth period, which characteristically consists of tissue with low biosynthetic activity, proline originated from glutamate. The production of proline in habituated callus from ornithine also corresponded to a period of high NH₄⁺ content in both callus types, while the production of proline from glutamate corresponded to a period of low NH₄⁺ content in the cells of both callus types. No such correlation was observed in proline metabolism of non-habituated callus. A similar turning point was observed in the activity of OAT of both callus types. Although the specific activity of OAT in both callus types mirrored their changes in RNA concentration, the percentage inhibition of OAT by gabaculine was not significant from day 14 in both callus types. This may indicate a change in the catalyzing properties of OAT in both callus types. It was further demonstrated that the non-habituated callus tissue contained some inhibitor inactivating OAT activity. With the use of gabaculine it was further shown that, in contrast to what was found in other habituated calli, there is no metabolic link between proline metabolism and putrescine synthesis. Both the habituated callus and the non-habituated callus exhibited a high nitrogen influx during the first 14 days of the growth period. The low NH₄⁺ content present in both callus types during the second half of the growth period coincided with higher levels of amino acids present in both callus types. The levels of precursor amino acids (glutamate, aspartate and alanine) did not fluctuate during the growth period, indicating a tight control on amino acid pools. Levels of amino acids further down the path of metabolism did not fluctuate drastically and there appeared to be very little difference between the levels of different amino acids measured in the habituated and nonhabituated calli. Serine was the dominant amino acid in both callus types. Total RNA concentrations of habituated callus were low in comparison to that of the non-habituated callus, except for a striking 12 fold increase on day 14 of the growth period. RNA concentrations of non-habituated callus increased gradually during the growth period and the highest concentration was recorded 21 days after subculturing. Several polypeptides were observed in the habituated callus that were not present in the non-habituated callus, utilizing IEF. Three polypeptides exhibited a change in concentration from day 6 to day 14 of the growth period in both the habituated and nonhabituated callus. These polypeptides appeared to decrease in nonhabituated callus, while they increased in the habituated callus. A complete cDNA library was constructed for both of the habituated and nonhabituated callus lines. Six different clones, that were over expressed in the habituated callus tissue, were isolated via subtractive techniques. One clone was characterized and showed homology to the glutamate/aspartate transport protein, the membrane component, of E. coli. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 1998.
50

Characterization and control of micropropagation problems in aloe, devil's claw and banana.

Bairu, Michael Wolday. January 2008 (has links)
The development of the science of micropropagation from the very initial concept of totipotency to the modern day advancement and sophistication has been affected by a wide range of problems such as hyperhydricity, shoot-tip necrosis and somaclonal variation. These problems are largely the result of the obvious fact of trying to grow plants in an environment that is different from the one plants are used to naturally. The extent of these problems ranges from minor technical inconvenience to significant economic loss. Characterization and control of micropropagation problems has been one of the priorities of plant tissue culture research due to the enormous contribution of this discipline for plant production, improvement and conservation. The prevalence and severity of these tissue culture problems varies widely among plant species. The rationale of this research project was therefore, to identify plant species most affected by the problems studied, characterize the problem and find mechanism(s) to control or minimize the damage caused by the problem. The literatures reviewed provide sufficient background information for the experimental chapters. Due to the different nature of the problems and variation in the plant species they affect, the model plant, the methodologies used and parameters analysed were also different. The findings of these investigations, in their own different way, addressed certain problems that individually and collectively pose difficulties to the micropropagation industry. The difference in the content of the experimental chapters is therefore the result of the broader objective of the research project to tackle such difficulties. The success and failure of tissue culture system greatly depends on the choice of PGR’s. This choice can be made based on comparative study of their biological activity. Some promising reports on the role of topolins in micropropagation led to the idea of testing these cytokinins for their potential in tissue culture. As a prerequisite to subsequent investigations, the biological activity of some selected topolins and BA derivatives was tested using the soybean callus bioassay. The activity of the cytokinins tested varied significantly. The results demonstrated that the structure of a cytokinin dictates its activity. Modifications of side-chain improved the activity of oT but had no effect on pT. The presence of the methyl group had an enhancing effect on cytokinin activity of topolins or at least it did not reduce it. BA derivatives BA9THP (conjugated at N9 position), 3FBA and 2Cl6(3OHBA)R (halogenated derivatives) also showed good cytokinin activity and hold good promise for future research. In an attempt to alleviate hyperhydricity in Aloe polyphylla and optimize the micropropagation protocol, meta-topolin and its derivatives were tested at various concentrations together with BA and zeatin. Of all the cytokinins tested mT produced the best results in terms of shoot and root growth. Five μM was found to be the optimum concentration at which complete control of hyperhydricity was achieved without compromising shoot and root growth. Plantlets rooted in a multiplication media. BA generally had a negative effect on growth and development both in vitro and ex vitro. Acclimatization of plantlets was achieved easily by initially transferring plantlets to a mist house (for three weeks) followed by transfer to the greenhouse. The type of cytokinin also had an effect on ex vitro growth with BA-treated plants producing the lowest shoot and root biomass. Various experiments were conducted to characterize and control factors affecting STN in Harpagophytum procumbens. Media type and strength, PGR, carbon sources, sub-culturing, calcium and boron were tested. Results indicated that all of the tissue culture components tested affected STN. From the different media types tested, half strength was MS found to be the preferred medium. Increasing cytokinin concentration increased the incidence of STN and the problem was aggravated by the addition of auxin to the multiplication medium. Optimum shoot multiplication was achieved by omitting auxin and using the cytokinin mTR. Plantlets produced basal callus which interfered with rooting. The quantity of this basal callus was minimum when mTR was used. Sub-culturing plantlets onto fresh medium every two weeks helped minimize STN. Off all the sugars tested 3% sucrose was optimum. Other sugars either aggravated STN or inhibited growth when compared at equi-molar concentration. Increasing the concentration of either Ca or B prevented the development of necrotic shoots. When the concentration of both elements is increased simultaneously negative effects on both growth and STN were observed. Using 6 mM Ca in half strength MS medium was optimum. B was toxic at higher concentrations. Plantlets rooted readily in half strength cytokinin-free MS media supplemented with 2.5 μM IAA. Rooted plantlets produced using the optimized protocol were acclimatized successfully by transferring directly to a greenhouse in a 1:1 ratio of sand and soil mixture. The effect of meta-toplins on micropropagation and somaclonal variation of banana was investigated. Tissue cultured explants of cultivars ‘Williams’ and ‘Grand Naine’ were cultured in MS media containing the cytokinins BA, mT, MemT, MemTR and mTR at various concentrations. Results of the investigation revealed that superior multiplication and lower abnormality index was recorded from the mTR and mT treatments at 22.2 μM concentration. These treatments, however, had an inhibitory effect on rooting. The effect of these treatments (22.2 μM mT and mTR) in comparison with equi-molar concentration of BA on somaclonal variation of ‘Williams’ banana was tested using RAPD-PCR at the 7th multiplication cycle. No significant difference was found between the treatments. It should however be highlighted that cultures were initially maintained for three multiplication cycles in media containing BA. The inherent stability and initial effect of BA could have influenced the results. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.

Page generated in 0.0652 seconds