• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 8
  • Tagged with
  • 19
  • 14
  • 13
  • 11
  • 11
  • 10
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fusion de données de télédétection haute résolution pour le suivi de la neige / Fusion of high resolution remote sensing data for snow monitoring

Masson, Théo 19 December 2018 (has links)
Les acquisitions de télédétection ont des caractéristiques complémentaires en termes de résolution spatiale et temporelle et peuvent mesurer différents aspects de la couverture neigeuse (propriétés physiques de surface, type de neige, etc.). En combinant plusieurs acquisitions, il devrait être possible d'obtenir un suivi précis et continu de la neige. Cependant, cet objectif se heurte à la complexité du traitement des images satellites et à la confusion possible entre les différents matériaux observés. Plus particulièrement, l’accès à l’information fractionnelle, c’est-à-dire à la proportion de neige dans chaque pixel, nécessite de retrouver la proportion de l’ensemble des matériaux qui se trouvent dans celui-ci. Ces proportions sont accessibles via des méthodes d’inversions ou démélange spectral se basant sur la résolution spectrale des images obtenues. Le défi général est alors d’arriver à exploiter correctement les différentes informations de natures différentes qui nous sont apportées par les différentes acquisitions afin de produire des cartes d’enneigement précises. Les objectifs de la thèse sont alors au nombre de trois et peuvent se résumer par trois grandes interrogations qui permettent de traiter les différents points évoqués:- Quelles sont les limitations actuelles de l’état de l'art pour l’observation spatiale optique de la neige ?- Comment exploiter les séries temporelles pour s’adapter à la variabilité spectrale des matériaux ?- Est-il possible de généraliser la fusion de données pour une acquisition multimodale à partir de capteurs optiques ?Une étude complète des différents produits de neige issus du satellite MODIS est ainsi proposée, permettant l’identification des nombreuses limitations dont la principale est le haut taux d’erreurs lors de la reconstitution de la fraction (environ 30%). Parmi ces résultats sont notamment identifiés des problèmes liés aux méthodes de démélange face à la variabilité spectrale des matériaux. Face à ces limitations nous avons exploité les séries temporelles MODIS pour proposer une nouvelle approche d’estimation des endmembers, étape critique du démélange spectral. La faible évolution temporelle du milieu (hors neige) est alors utilisée pour contraindre l’estimation des endmembers non seulement sur l’image d’intérêt, mais également sur les images des jours précédents. L’efficacité de cette approche bien que démontrée ici reste sujette aux limitations de résolution spatiale intrinsèques au capteur. Des expérimentations sur la fusion de donnée, à même de pouvoir améliorer la qualité des images, ont par conséquent été réalisées. Devant les limitations de ces méthodes dans le cas des capteurs multispectraux utilisés, une nouvelle approche de fusion a été proposée. Via la formulation d’un nouveau modèle et sa résolution, la fusion entre des capteurs optiques de tous types peut être réalisée sans considération de recouvrement spectral. Les différentes expérimentations sur l’estimation de cartes de neige montrent un intérêt certain d’une meilleure résolution spatiale pour isoler les zones enneigées. Ce travail montre ainsi les nouvelles possibilités de développement pour l’observation de la neige, mais également les évolutions de l’utilisation combinée des images satellites pour l’observation de la Terre en général. / Remote sensing acquisitions have complementary characteristics in terms of spatial and temporal resolution and can measure different aspects of snow cover (e.g., surface physical properties and snow type). By combining several acquisitions, it should be possible to obtain a precise and continuous monitoring of the snow. However, this task has to face the complexity of processing satellite images and the possible confusion between different materials observed. In particular, the estimation of fractional information, i.e., the amount of snow in each pixel, requires to know the proportion of the materials present in a scene. These proportions can be obtained performing spectral unmixing. The challenge is then to effectively exploit the information of different natures that are provided by the multiple acquisitions in order to produce accurate snow maps.Three main objectives are addressed by this thesis and can be summarized by the three following questions:- What are the current limitations of state-of-the-art techniques for the estimation of snow cover extent from optical observations?- How to exploit a time series for coping with the spectral variability of materials?- How can we take advantage of multimodal acquisitions from optical sensors for estimating snow cover maps?A complete study of the various snow products from the MODIS satellite is proposed. It allows the identification of numerous limitations, the main one being the high rate of errors during the estimation of the snow fraction (approximately 30%).The experimental analysis allowed to highlight the sensitivity of the spectral unmixing methods against the spectral variability of materials.Given these limitations, we have exploited the MODIS time series to propose a new endmembers estimation approach, addressing a critical step in spectral unmixing. The low temporal evolution of the medium (except snow) is then used to constrain the estimation of the endmembers not only on the image of interest, but also on images of the previous days. The effectiveness of this approach, although demonstrated here, remains limited by the spatial resolution of the sensor.Data fusion has been considered aiming at taking advantage of multiple acquisitions with different characteristics in term of resolution available on the same scene. Given the limitations of the actual methods in the case of multispectral sensors, a new fusion approach has been proposed. Through the formulation of a new model and its resolution, the fusion between optical sensors of all types can be achieved without consideration of their characteristics. The various experiments on the estimation of snow maps show a clear interest of a better spatial resolution to isolate the snow covered areas. The improvement in spectral resolution will improve future approaches based on spectral unmixing.This work explores the new possibilities of development for the observation of snow, but also for the combined use of the satellite images for the observation of the Earth in general.
2

Contributions to Hyperspectral Unmixing / Contribution au démélange hyperspectral

Nakhostin, Sina 13 December 2017 (has links)
Le démelangeage spectral est un domaine de recherche actif qui trouve des applications dans des domaines variés comme la télédétection, le traitement des signaux audio ou la chimie. Dans le contexte des capteurs hyper spectraux, les images acquises sont souvent de faible résolution spatiale, principalement à cause des limites technologiques liées aux capteurs. Ainsi, les pixels sont constitués des mélanges des différentes signatures spectrales des matériaux présents dans la scène observée. Le démélangeage hyperspectral correspond à la procédure inverse permettant d'identifier la présence de ces matériaux ainsi que leur abondance par pixel. Déterminer le nombre total de matériaux dans l'image et par pixel est un problème difficile. Des approches à base de modèle de mélange linéaire ont été développées mais l’hypothèse sous-jacente de linéarité est parfois mise à mal dans des scénarios réels. Le problème est amplifié lorsqu'un même matériel présente une forte variabilité de signatures spectrales. De plus, la présence de nombreuses signatures parasites (ou anomalies) rend l'estimation plus difficile. Ces différents problèmes sont abordés dans cette thèse au travers de solutions théoriques et algorithmiques. La première contribution porte sur un démélangeage non-linéaire parcimonieux basé sur des approches à noyaux (SAGA+), qui estime et enlevé de l'analyse simultanément les anomalies. La deuxième contribution majeure porte sur une méthode de démélangeage supervisée basée sur la théorie du transport optimal (OT-unmixing) et permet d'intégrer la variabilité potentielle des matériaux observés. Un cas d'étude réel, dans le contexte du projet CATUT, et visant l'estimation des températures de surface par imagerie aéroportée, est finalement décrit dans la dernière partie de ce travail. / Spectral Unmixing has been an active area of research during the last years and found its application in domains including but not limited to remote sensing, audio signal processing and chemistry. Despite their very high spectral resolution, hyperspectral images (HSI) are known to be of low spatial resolution. This low resolution is a relative notion and is due to technological limitations of the HSI captors. As a consequence the values of HSI pixels are likely to be mixtures Of diferent materials in the scene. hyperspectral Unmixing then can be dened as an inverse procedure that consists in identifying in each pixel the amount of pure elements contributing to the pixels mixture. The total number of pure elements (also called endmembers) and the number of them included in one pixel are two informations tricky to retrieve. The simplest situation is when both the total number and type of endmembers within the scene are known and associated with a linear mixing process assumption. Though efficient in some situations, this linearity assumption does not generally hold in real world scenarios. Also in most cases the knowledge regarding the endmember signature of a specic material is not exact, raising the need to account for variations among different representations of the same material. Last but not least existence of anomalies and noise is a ubiquitous issue affecting the accuracy of the estimations. In this thesis, the three aforementioned issues were mainly brought into light and by introducing two original algorithms, defined within different mathematical frameworks, solutions to these open problems has provided. The first contribution using the applications of kernel theory proposes a new unsupervised algorithm (SAGA+) for representation of the non-linear manifold embedding the data while through a simultaneous anomaly detection procedure makes sure that the representation of the manifold hall is not being distorted at the presence of anomalies. The second major contribution of this PhD focuses mainly on the issue of endmember variability and by exploiting the notion of overcomplete dictionary tries to address this problem. This supervised algorithm (OT-unmixing) which is based on the optimal transport theory is comparable to the second step of SAGA+, as it solves an inversion problem and calculates the sparse representation of the original pixels through generation of the abundance maps. A case study in the context of CATUT project for land surface temperature estimation is described in the last part of this work where the two algorithms used for unmixing of airborne hyperspectral remote sensing.
3

Nonlinear unmixing of Hyperspectral images / Démélange non-linéaire d'images hyperspectrales

Altmann, Yoann 07 October 2013 (has links)
Le démélange spectral est un des sujets majeurs de l’analyse d’images hyperspectrales. Ce problème consiste à identifier les composants macroscopiques présents dans une image hyperspectrale et à quantifier les proportions (ou abondances) de ces matériaux dans tous les pixels de l’image. La plupart des algorithmes de démélange suppose un modèle de mélange linéaire qui est souvent considéré comme une approximation au premier ordre du mélange réel. Cependant, le modèle linéaire peut ne pas être adapté pour certaines images associées par exemple à des scènes engendrant des trajets multiples (forêts, zones urbaines) et des modèles non-linéaires plus complexes doivent alors être utilisés pour analyser de telles images. Le but de cette thèse est d’étudier de nouveaux modèles de mélange non-linéaires et de proposer des algorithmes associés pour l’analyse d’images hyperspectrales. Dans un premier temps, un modèle paramétrique post-non-linéaire est étudié et des algorithmes d’estimation basés sur ce modèle sont proposés. Les connaissances a priori disponibles sur les signatures spectrales des composants purs, sur les abondances et les paramètres de la non-linéarité sont exploitées à l’aide d’une approche bayesienne. Le second modèle étudié dans cette thèse est basé sur l’approximation de la variété non-linéaire contenant les données observées à l’aide de processus gaussiens. L’algorithme de démélange associé permet d’estimer la relation non-linéaire entre les abondances des matériaux et les pixels observés sans introduire explicitement les signatures spectrales des composants dans le modèle de mélange. Ces signatures spectrales sont estimées dans un second temps par prédiction à base de processus gaussiens. La prise en compte d’effets non-linéaires dans les images hyperspectrales nécessite souvent des stratégies de démélange plus complexes que celles basées sur un modèle linéaire. Comme le modèle linéaire est souvent suffisant pour approcher la plupart des mélanges réels, il est intéressant de pouvoir détecter les pixels ou les régions de l’image où ce modèle linéaire est approprié. On pourra alors, après cette détection, appliquer les algorithmes de démélange non-linéaires aux pixels nécessitant réellement l’utilisation de modèles de mélange non-linéaires. La dernière partie de ce manuscrit se concentre sur l’étude de détecteurs de non-linéarités basés sur des modèles linéaires et non-linéaires pour l’analyse d’images hyperspectrales. Les méthodes de démélange non-linéaires proposées permettent d’améliorer la caractérisation des images hyperspectrales par rapport au méthodes basées sur un modèle linéaire. Cette amélioration se traduit en particulier par une meilleure erreur de reconstruction des données. De plus, ces méthodes permettent de meilleures estimations des signatures spectrales et des abondances quand les pixels résultent de mélanges non-linéaires. Les résultats de simulations effectuées sur des données synthétiques et réelles montrent l’intérêt d’utiliser des méthodes de détection de non-linéarités pour l’analyse d’images hyperspectrales. En particulier, ces détecteurs peuvent permettre d’identifier des composants très peu représentés et de localiser des régions où les effets non-linéaires sont non-négligeables (ombres, reliefs,...). Enfin, la considération de corrélations spatiales dans les images hyperspectrales peut améliorer les performances des algorithmes de démélange non-linéaires et des détecteurs de non-linéarités. / Spectral unmixing is one the major issues arising when analyzing hyperspectral images. It consists of identifying the macroscopic materials present in a hyperspectral image and quantifying the proportions of these materials in the image pixels. Most unmixing techniques rely on a linear mixing model which is often considered as a first approximation of the actual mixtures. However, the linear model can be inaccurate for some specific images (for instance images of scenes involving multiple reflections) and more complex nonlinear models must then be considered to analyze such images. The aim of this thesis is to study new nonlinear mixing models and to propose associated algorithms to analyze hyperspectral images. First, a ost-nonlinear model is investigated and efficient unmixing algorithms based on this model are proposed. The prior knowledge about the components present in the observed image, their proportions and the nonlinearity parameters is considered using Bayesian inference. The second model considered in this work is based on the approximation of the nonlinear manifold which contains the observed pixels using Gaussian processes. The proposed algorithm estimates the relation between the observations and the unknown material proportions without explicit dependency on the material spectral signatures, which are estimated subsequentially. Considering nonlinear effects in hyperspectral images usually requires more complex unmixing strategies than those assuming linear mixtures. Since the linear mixing model is often sufficient to approximate accurately most actual mixtures, it is interesting to detect pixels or regions where the linear model is accurate. This nonlinearity detection can be applied as a pre-processing step and nonlinear unmixing strategies can then be applied only to pixels requiring the use of nonlinear models. The last part of this thesis focuses on new nonlinearity detectors based on linear and nonlinear models to identify pixels or regions where nonlinear effects occur in hyperspectral images. The proposed nonlinear unmixing algorithms improve the characterization of hyperspectral images compared to methods based on a linear model. These methods allow the reconstruction errors to be reduced. Moreover, these methods provide better spectral signature and abundance estimates when the observed pixels result from nonlinear mixtures. The simulation results conducted on synthetic and real images illustrate the advantage of using nonlinearity detectors for hyperspectral image analysis. In particular, the proposed detectors can identify components which are present in few pixels (and hardly distinguishable) and locate areas where significant nonlinear effects occur (shadow, relief, ...). Moreover, it is shown that considering spatial correlation in hyperspectral images can improve the performance of nonlinear unmixing and nonlinearity detection algorithms.
4

Apport de la prise en compte de la variabilité intra-classe dans les méthodes de démélange hyperspectral pour l'imagerie urbaine / Enhancing urban hyperspectral unmixing considering intra-class variability

Revel, Charlotte 19 December 2016 (has links)
Au cours de cette thèse nous nous sommes intéressés à la problématique du démélange hyperspectral en milieux urbains. En particulier nous nous sommes penchés sur la prise en compte du phénomène de variabilité intra-classe dans les méthodes de démélange. La mise en évidence de la variabilité intra-classe a été le point de départ de cette étude. Nous avons ainsi constaté que ce phénomène était non-négligeable dans les milieux urbains et qu'il devait être pris en compte. En nous basant sur des modèles de mélange existants dans la littérature nous avons développé deux nouveaux modèles de mélange prenant en compte cette variabilité intra-classe. Le premier est un modèle de mélange linéaire. Le second est un modèle linéaire-quadratique qui permet de prendre en compte les réflexions multiples sur les bâtiments. Dans un premier temps nous ne nous sommes intéressés qu'au cas des modèles linéaires. Comme aucune méthode de la littérature ne permet d'effectuer le démélange à partir de nos modèles de mélange nous avons développé deux méthodes UP-NMF et IP-NMF. UP-NMF est une adaptation de la méthode NMF à notre modèle de mélange. Pour rendre compte de la notion de classes de matériaux purs une contrainte sur l'inertie des classes a été ajoutée à UP-NMF pour obtenir IP-NMF. Les premiers tests ont été effectués sur données semi-synthétiques et ont permis de déterminer l'impact de l'initialisation de ces méthodes sur leurs performances et de fixer le paramètre d'inertie. Les performances de UP-NMF et IP-NMF ont été comparées à celles des méthodes standards de démélange. Les seconds tests ont été effectués sur une portion d'image de Toulouse. Dans cette partie nous avons mis en évidence que, contrairement à des méthodes standards, les résultats de IP-NMF étaient peu sensibles à une erreur sur l'estimation du nombre de classes pures. Finalement nous avons développé une méthode de démélange linéaire-quadratique, LQIP-NMF, en nous basant sur le modèle que nous avons mis en place. Les tests de LQIP-NMF ont montré qu'en cas de trop forte variabilité intra-classe les effets de non-linéarité étaient de second ordre et qu'il ne semblait pas pertinent de les prendre en compte. / This work is devoted to unmixing for urban areas. We particularly focused on the impact of intra-class variability on unmixing. We first described the results of a study highlighting intra-class variability assessed in real images. It appeared that this phenomenon was significant and had to be included in the mixing models. Based on the state of the art we developed 2 new mixing models dealing with intra-class variability. The first one is a linear one. The second one is a linear-quadratic one which allows to consider multiple scattering effects on buildings. First only the linear mixing model was considered. Currently it does not exist any unmixing method able to deal with this new model. So two methods were developed, UP-NMF and IP-NMF. UP-NMF is a new unmixing method based on an extension of the standard NMF. To overcome UP-NMF limitations an extended method is proposed, IP-NMF, which limit the spreading of each class by adding an inertia constraint in the cost function. These methods were firstly tested on a semi-synthetic data set. These tests allowed us to study the impact of the initialisation on our methods performance and also to fix the inertia parameter. We also compared the results of UP-NMF and IP-NMF to the results obtained with standard methods. The second tests were performed on an image taken above Toulouse. It appeared that IP-NMF is less sensitive to an error in the estimation of classes number than standard methods. Finally we developed a linear-quadratic method, LQIP-NMF, dealing with the non-linear mixing model previously described. In cases of high intra-class variability, the quadratic terms are drowned in the large variability of materials. So it seems that it is not relevant to taking into account these non-linearities.
5

Méthodes de démélange non-linéaires pour l'imagerie hyperspectrale

Nguyen Hoang, Nguyen 03 December 2013 (has links) (PDF)
Dans cette thèse, nous avons présenté les aspects de la technologie d'imagerie hyperspectrale en concentrant sur le problème de démélange non-linéaire. Pour cette tâche, nous avons proposé trois solutions. La première consiste à intégrer les avantages de l'apprentissage de variétés dans les méthodes de démélange classique pour concevoir leurs versions non-linéaires. Les résultats avec les données générées sur une variété bien connue - le "Swissroll"- donne des résultats prometteurs. Les méthodes fonctionnent beaucoup mieux avec l'augmentation de la non-linéarité. Cependant, l'absence de contrainte de non-négativité dans ces méthodes reste une question ouverte pour des améliorations à trouver. La deuxième proposition vise à utiliser la méthode de pré-image pour estimer une transformation inverse de l'espace de données entrées des pixels vers l'espace des abondances. L'ajout des informations spatiales sous forme "variation totale" est également introduit pour rendre l'algorithme plus robuste au bruit. Néanmoins, le problème d'obtention des données de réalité terrain nécessaires pour l'étape d'apprentissage limite l'application de ce type d'algorithmes.
6

Méthodes de démélange non-linéaires pour l'imagerie hyperspectrale / Non-linear unmixing methods for hyperspectral imaging

Nguyen Hoang, Nguyen 03 December 2013 (has links)
Dans cette thèse, nous avons présenté les aspects de la technologie d'imagerie hyperspectrale en concentrant sur le problème de démélange non-linéaire. Pour cette tâche, nous avons proposé trois solutions. La première consiste à intégrer les avantages de l'apprentissage de variétés dans les méthodes de démélange classique pour concevoir leurs versions non-linéaires. Les résultats avec les données générées sur une variété bien connue - le "Swissroll"- donne des résultats prometteurs. Les méthodes fonctionnent beaucoup mieux avec l'augmentation de la non-linéarité. Cependant, l'absence de contrainte de non-négativité dans ces méthodes reste une question ouverte pour des améliorations à trouver. La deuxième proposition vise à utiliser la méthode de pré-image pour estimer une transformation inverse de l'espace de données entrées des pixels vers l'espace des abondances. L'ajout des informations spatiales sous forme "variation totale" est également introduit pour rendre l'algorithme plus robuste au bruit. Néanmoins, le problème d'obtention des données de réalité terrain nécessaires pour l'étape d'apprentissage limite l'application de ce type d'algorithmes. / In this thesis , we present several aspects of hyperspectral imaging technology , while focusing on the problem of non- linear unmixing . We have proposed three solutions for this task. The first one is integrating the advantages of manifold learning in classical unmixing methods to design their nonlinear versions . Results with data generated on a well-known manifold- the " Swissroll " - seem promising. The methods work much better with the increase in non- linearity compared with their linear version. However, the absence of constraint of non- negativity in these methods remains an open question for improvements . The second proposal is using the pre-image method for estimating an inverse transformation of the data form pixel space to abundance of space . The adoption of spatial information as " total variation " is also introduced to make the algorithm more robust to noise . However, the problem of obtaining ground truth data required for learning step limits the application of such algorithms.
7

Méthodes Bayésiennes pour le démélange d'images hyperspectrales / Bayesian methods for hyperspectral image unmixing

Eches, Olivier 14 October 2010 (has links)
L’imagerie hyperspectrale est très largement employée en télédétection pour diverses applications, dans le domaine civil comme dans le domaine militaire. Une image hyperspectrale est le résultat de l’acquisition d’une seule scène observée dans plusieurs longueurs d’ondes. Par conséquent, chacun des pixels constituant cette image est représenté par un vecteur de mesures (généralement des réflectances) appelé spectre. Une étape majeure dans l’analyse des données hyperspectrales consiste à identifier les composants macroscopiques (signatures) présents dans la région observée et leurs proportions correspondantes (abondances). Les dernières techniques développées pour ces analyses ne modélisent pas correctement ces images. En effet, habituellement ces techniques supposent l’existence de pixels purs dans l’image, c’est-à-dire des pixels constitué d’un seul matériau pur. Or, un pixel est rarement constitué d’éléments purs distincts l’un de l’autre. Ainsi, les estimations basées sur ces modèles peuvent tout à fait s’avérer bien loin de la réalité. Le but de cette étude est de proposer de nouveaux algorithmes d’estimation à l’aide d’un modèle plus adapté aux propriétés intrinsèques des images hyperspectrales. Les paramètres inconnus du modèle sont ainsi déduits dans un cadre Bayésien. L’utilisation de méthodes de Monte Carlo par Chaînes de Markov (MCMC) permet de surmonter les difficultés liées aux calculs complexes de ces méthodes d’estimation. / Hyperspectral imagery has been widely used in remote sensing for various civilian and military applications. A hyperspectral image is acquired when a same scene is observed at different wavelengths. Consequently, each pixel of such image is represented as a vector of measurements (reflectances) called spectrum. One major step in the analysis of hyperspectral data consists of identifying the macroscopic components (signatures) that are present in the sensored scene and the corresponding proportions (concentrations). The latest techniques developed for this analysis do not properly model these images. Indeed, these techniques usually assume the existence of pure pixels in the image, i.e. pixels containing a single pure material. However, a pixel is rarely composed of pure spectrally elements, distinct from each other. Thus, such models could lead to weak estimation performance. The aim of this thesis is to propose new estimation algorithms with the help of a model that is better suited to the intrinsic properties of hyperspectral images. The unknown model parameters are then infered within a Bayesian framework. The use of Markov Chain Monte Carlo (MCMC) methods allows one to overcome the difficulties related to the computational complexity of these inference methods.
8

Méthodes avancées de séparation de sources applicables aux mélanges linéaires-quadratiques / Advanced methods of source separation applicable to linear-quadratic mixtures

Jarboui, Lina 18 November 2017 (has links)
Dans cette thèse, nous nous sommes intéressés à proposer de nouvelles méthodes de Séparation Aveugle de Sources (SAS) adaptées aux modèles de mélange non-linéaires. La SAS consiste à estimer les signaux sources inconnus à partir de leurs mélanges observés lorsqu'il existe très peu d'informations disponibles sur le modèle de mélange. La contribution méthodologique de cette thèse consiste à prendre en considération les interactions non-linéaires qui peuvent se produire entre les sources en utilisant le modèle linéaire-quadratique (LQ). A cet effet, nous avons développé trois nouvelles méthodes de SAS. La première méthode vise à résoudre le problème du démélange hyperspectral en utilisant un modèle linéaire-quadratique. Celle-ci se repose sur la méthode d'Analyse en Composantes Parcimonieuses (ACPa) et nécessite l'existence des pixels purs dans la scène observée. Dans le même but, nous proposons une deuxième méthode du démélange hyperspectral adaptée au modèle linéaire-quadratique. Elle correspond à une méthode de Factorisation en Matrices Non-négatives (FMN) se basant sur l'estimateur du Maximum A Posteriori (MAP) qui permet de prendre en compte les informations a priori sur les distributions des inconnus du problème afin de mieux les estimer. Enfin, nous proposons une troisième méthode de SAS basée sur l'analyse en composantes indépendantes (ACI) en exploitant les Statistiques de Second Ordre (SSO) pour traiter un cas particulier du mélange linéaire-quadratique qui correspond au mélange bilinéaire. / In this thesis, we were interested to propose new Blind Source Separation (BSS) methods adapted to the nonlinear mixing models. BSS consists in estimating the unknown source signals from their observed mixtures when there is little information available on the mixing model. The methodological contribution of this thesis consists in considering the non-linear interactions that can occur between sources by using the linear-quadratic (LQ) model. To this end, we developed three new BSS methods. The first method aims at solving the hyperspectral unmixing problem by using a linear-quadratic model. It is based on the Sparse Component Analysis (SCA) method and requires the existence of pure pixels in the observed scene. For the same purpose, we propose a second hyperspectral unmixing method adapted to the linear-quadratic model. It corresponds to a Non-negative Matrix Factorization (NMF) method based on the Maximum A Posteriori (MAP) estimate allowing to take into account the available prior information about the unknown parameters for a better estimation of them. Finally, we propose a third BSS method based on the Independent Component Analysis (ICA) method by using the Second Order Statistics (SOS) to process a particular case of the linear-quadratic mixture that corresponds to the bilinear one.
9

Endmember Variability in hyperspectral image unmixing / Variabilité spectrale dans le démélange d'images hyperspectrales

Drumetz, Lucas 25 October 2016 (has links)
La finesse de la résolution spectrale des images hyperspectrales en télédétection permet une analyse précise de la scène observée, mais leur résolution spatiale est limitée, et un pixel acquis par le capteur est souvent un mélange des contributions de différents matériaux. Le démélange spectral permet d'estimer les spectres des matériaux purs (endmembers) de la scène, et leurs abondances dans chaque pixel. Les endmembers sont souvent supposés être parfaitement représentés par un seul spectre, une hypothèse fausse en pratique, chaque matériau ayant une variabilité intra-classe non négligeable. Le but de cette thèse est de développer des algorithmes prenant mieux en compte ce phénomène. Nous effectuons le démélange localement, dans des régions bien choisies de l'image où les effets de la variabilité sont moindres, en éliminant automatiquement les endmembers non pertinents grâce à de la parcimonie collaborative. Dans une autre approche, nous raffinons l'estimation des abondances en utilisant la structure de groupe d'un dictionnaire d'endmembers extrait depuis les données. Ensuite, nous proposons un modèle de mélange linéaire étendu, basé sur des considérations physiques, qui modélise la variabilité spectrale par des facteurs d'échelle, et développons des algorithmes d'optimisation pour en estimer les paramètres. Ce modèle donne des résultats facilement interprétables et de meilleures performances que d'autres approches de la littérature. Nous étudions enfin deux applications de ce modèle pour confirmer sa pertinence. / The fine spectral resolution of hyperspectral remote sensing images allows an accurate analysis of the imaged scene, but due to their limited spatial resolution, a pixel acquired by the sensor is often a mixture of the contributions of several materials. Spectral unmixing aims at estimating the spectra of the pure materials (called endmembers) in the scene, and their abundances in each pixel. The endmembers are usually assumed to be perfectly represented by a single spectrum, which is wrong in practice since each material exhibits a significant intra-class variability. This thesis aims at designing unmixing algorithms to better handle this phenomenon. First, we perform the unmixing locally in well chosen regions of the image where variability effects are less important, and automatically discard wrongly estimated local endmembers using collaborative sparsity. In another approach, we refine the abundance estimation of the materials by taking into account the group structure of an image-derived endmember dictionary. Second, we introduce an extended linear mixing model, based on physical considerations, modeling spectral variability in the form of scaling factors, and develop optimization algorithms to estimate its parameters. This model provides easily interpretable results and outperforms other state-of-the-art approaches. We finally investigate two applications of this model to confirm its relevance.
10

Méthodes pour l'analyse des champs profonds extragalactiques MUSE : démélange et fusion de données hyperspectrales ;détection de sources étendues par inférence à grande échelle / Methods for the analysis of extragalactic MUSE deep fields : hyperspectral unmixing and data fusion;detection of extented sources with large-scale inference

Bacher, Raphael 08 November 2017 (has links)
Ces travaux se placent dans le contexte de l'étude des champs profonds hyperspectraux produits par l'instrument d'observation céleste MUSE. Ces données permettent de sonder l'Univers lointain et d'étudier les propriétés physiques et chimiques des premières structures galactiques et extra-galactiques. La première problématique abordée dans cette thèse est l'attribution d'une signature spectrale pour chaque source galactique. MUSE étant un instrument au sol, la turbulence atmosphérique dégrade fortement le pouvoir de résolution spatiale de l'instrument, ce qui génère des situations de mélange spectral pour un grand nombre de sources. Pour lever cette limitation, des approches de fusion de données, s'appuyant sur les données complémentaires du télescope spatial Hubble et d'un modèle de mélange linéaire, sont proposées, permettant la séparation spectrale des sources du champ. Le second objectif de cette thèse est la détection du Circum-Galactic Medium (CGM). Le CGM, milieu gazeux s'étendant autour de certaines galaxies, se caractérise par une signature spatialement diffuse et de faible intensité spectrale. Une méthode de détection de cette signature par test d'hypothèses est développée, basée sur une stratégie de max-test sur un dictionnaire et un apprentissage des statistiques de test sur les données. Cette méthode est ensuite étendue pour prendre en compte la structure spatiale des sources et ainsi améliorer la puissance de détection tout en conservant un contrôle global des erreurs. Les codes développés sont intégrés dans la bibliothèque logicielle du consortium MUSE afin d'être utilisables par l'ensemble de la communauté. De plus, si ces travaux sont particulièrement adaptés aux données MUSE, ils peuvent être étendus à d'autres applications dans les domaines de la séparation de sources et de la détection de sources faibles et étendues. / This work takes place in the context of the study of hyperspectral deep fields produced by the European 3D spectrograph MUSE. These fields allow to explore the young remote Universe and to study the physical and chemical properties of the first galactical and extra-galactical structures.The first part of the thesis deals with the estimation of a spectral signature for each galaxy. As MUSE is a terrestrial instrument, the atmospheric turbulences strongly degrades the spatial resolution power of the instrument thus generating spectral mixing of multiple sources. To remove this issue, data fusion approaches, based on a linear mixing model and complementary data from the Hubble Space Telescope are proposed, allowing the spectral separation of the sources.The second goal of this thesis is to detect the Circum-Galactic Medium (CGM). This CGM, which is formed of clouds of gas surrounding some galaxies, is characterized by a spatially extended faint spectral signature. To detect this kind of signal, an hypothesis testing approach is proposed, based on a max-test strategy on a dictionary. The test statistics is learned on the data. This method is then extended to better take into account the spatial structure of the targets, thus improving the detection power, while still ensuring global error control.All these developments are integrated in the software library of the MUSE consortium in order to be used by the astrophysical community.Moreover, these works can easily be extended beyond MUSE data to other application fields that need faint extended source detection and source separation methods.

Page generated in 0.0526 seconds