Spelling suggestions: "subject:"dérivés partielle"" "subject:"dérivés partiellement""
21 |
Les équations aux dérivées partielles stochastiques avec obstacle / Stochastic partial differential equations with obstacleZhang, Jing 14 November 2012 (has links)
Cette thèse traite des Équations aux Dérivées Partielles Stochastiques Quasilinéaires. Elle est divisée en deux parties. La première partie concerne le problème d’obstacle pour les équations aux dérivées partielles stochastiques quasilinéaires et la deuxième partie est consacrée à l’étude des équations aux dérivées partielles stochastiques quasilinéaires dirigées par un G-mouvement brownien. Dans la première partie, on montre d’abord l’existence et l’unicité d’un problème d’obstacle pour les équations aux dérivées partielles stochastiques quasilinéaires (en bref OSPDE). Notre méthode est basée sur des techniques analytiques venant de la théorie du potentiel parabolique. La solution est exprimée comme une paire (u,v) où u est un processus prévisible continu qui prend ses valeurs dans un espace de Sobolev et v est une mesure régulière aléatoire satisfaisant la condition de Skohorod. Ensuite, on établit un principe du maximum pour la solution locale des équations aux dérivées partielles stochastiques quasilinéaires avec obstacle. La preuve est basée sur une version de la formule d’Itô et les estimations pour la partie positive d’une solution locale qui est négative sur le bord du domaine considéré. L’objectif de la deuxième partie est d’étudier l’existence et l’unicité de la solution des équations aux dérivées partielles stochastiques dirigées par G-mouvement brownien dans le cadre d’un espace muni d’une espérance sous-linéaire. On établit une formule d’Itô pour la solution et un théorème de comparaison. / This thesis deals with quasilinear Stochastic Partial Differential Equations (in short SPDE). It is divided into two parts, the first part concerns the obstacle problem for quasilinear SPDE and the second part solves quasilinear SPDE driven by G-Brownian motion. In the first part we begin with the existence and uniqueness result for the obstacle problem of quasilinear stochastic partial differential equations (in short OSPDE). Our method is based on analytical technics coming from the parabolic potential theory. The solution is expressed as a pair (u, v) where u is a predictable continuous process which takes values in a proper Sobolev space and v is a random regular measure satisfying minimal Skohorod condition. Then we prove a maximum principle for a local solution of quasilinear stochastic partial differential equations with obstacle. The proofs are based on a version of Itô’s formula and estimates for the positive part of a local solution which is negative on the lateral boundary. The objective of the second part is to study the well-posedness of stochastic partial differential equations driven by G-Brownian motion in the framework of sublinear expectation spaces. One can also establish an Itô formula for the solution and a comparison theorem.
|
22 |
EXTENSION DE LA NOTION DE PLATITUDE A DES SYSTEMES DECRITS PAR DES EQUATIONS AUX DERIVEES PARTIELLES LINEAIRESLaroche, Béatrice 18 December 2000 (has links) (PDF)
La notion de platitude aété bien définie et largement étudiée pour les systèmes dynamiques de dimension finie. Une des conséquences marquantes de cette propriété est de permettre la paramétrisation des trajectoires (état et commande) par des fonctions libres et leurs dérivées, rendant ainsi aisée la solution d'un problème important en contrôle des systèmes dynamiques: la planification de trajectoires. Pour les systèmes linéaires de dimension finie, on a coïncidence exacte entre platitude et commandabilité, via la mise sous forme de Brunovsky. La possibilité de définir une notion convenable de platitude en dimension infinie, et d'étendre la notion de forme de Brunovsky à certaines classes de systèmes de dimension infinie est examinée, et une définition de la platitude est proposée pour ces systèmes. L'étude de la platitude de l'équation générale de diffusion à une variable d'espace est complètement traitée. Une méthode d'obtention d'une paramétrisation d'une famille dense de trajectoires est proposée, et la canonicité de la représentation de ces trajectoires est démontrée. Divers cas d'étude sont proposés, avec des applications à la planification de trajectoires. L'étude complète de l'équation de Korteweg-De Vries mono-dimensionnelle linéaire est réalisée, ainsi que celle d'un problème de diffusion à deux variables d'espace, montrant les possibilités d'extension de la méthode à un cadre beaucoup plus général.
|
23 |
Imprévus et pièges des cordes vibrantes chez D'Alembert (1755-1783).<br />Doutes et certitudes sur les équations aux dérivées partielles, les séries et les fonctionsJouve, Guillaume 10 July 2007 (has links) (PDF)
Cette thèse se situe dans le cadre de l'entreprise de longue haleine d'édition critique et commentée des Oeuvres complètes de D'Alembert. Ce savant est indiscutablement le pionnier des équations aux dérivées partielles et de leur application aux sciences physiques. Toutefois, seule une partie de ses écrits sur le sujet a vraiment été examinée jusqu'ici par les historiens des sciences. Une étude approfondie de ses mémoires tardifs permet de modifier de nombreuses perspectives, notamment sur les points suivants: intégration et résolution des équations avec ou sans ce que nous appellerions des "conditions aux limites", problèmes de définition et de régularité des fonctions, convergence et divergence des séries, développement des fonctions en séries entières ou trigonométriques. Nous montrons ici la pertinence et le fécondité des résultats de D'Alembert, mais aussi de ses doutes et des pistes qu'il propose pour les éclairer.
|
24 |
ETUDE DU COMPORTEMENT THERMIQUE D'UN MATERIAU MULTICOUCHES LACUNAIRES ET CONTRIBUTION A LA MODELISATION ET LA SIMULATION NUMERIQUE DES DEPOTS A STRUCTURE COLONNAIRE.Vo Thi, Thu Huong 21 May 2007 (has links) (PDF)
Ce travail est motivé par un problème technologique (et économique) pour l'amélioration des écrans à tube cathodique et plus précisément du masque qui est une grille dont les trous permettent de diriger le faisceau électronique vers photophores situés sur la dalle de verre :<br />l'écran. L'apport d'énergie des électrons qui se déposent sur le masque entraîne son échauffement et du coup sa déformation nuisant à la qualité de l'image. La solution que nous avons<br />étudiée consiste à déposer des couches minces de matériaux choisis, entre autres, pour leurs propriétés thermiques. Cette thèse comporte deux parties :<br /><br />- La première consiste à modéliser l'échauffement du masque soumis au balayage électronique et vérifier si les solutions proposées permettent de réduire les gradients thermiques. En s'appuyant sur un calcul d'homogénéisation, nous avons proposé une formulation du comportement thermique de matériau sans couches minces prenant en compte la présence des trous sur le masque. Ensuite, nous avons étudié le problème d'évolution bidimensionnel obtenu en intégrant sur l'épaisseur du masque. A l'issu du travail précédent, une étude de l'influence de la présence des couches de différents matériaux sur la propagation latérale de la chaleur a été menée.<br /><br />- L'objectif de la seconde partie est la mise au point des modèles mathématiques du processus de dépôt des couches minces de matériaux sur le masque. Notre approche comprend deux types de modélisation : les modèles discrets et les modèles continus. Les modèles discrets sont basés sur des méthodes de type Monte Carlo. Les modèles continus sont décrits par des équations aux dérivées partielles stochastiques dont les solutions fournissent la hauteur du<br />dépôt en fonction du temps et de la position. Parmi les modèles continus existants, nous avons choisi d'axer notre étude sur les modèles incluant un effet d'ombrage car ils sont à même de<br />reproduire les structures colonnaires observées expérimentalement. L'étude de l'influence des différents termes intervenant dans les 2 modèles (MC et EDP) nous a permis de proposer un nouveau modèle continu dont les solutions sont proches de celles obtenues par les méthodes de Monte Carlo. Cette étude a été menée aussi bien en 1+1D qu'en 2+1D.
|
25 |
Equations différentielles stochastiques progressives rétrogrades couplées : équations aux dérivées partielles et discrétisationRiviere, Olivier 13 December 2005 (has links) (PDF)
Ce travail de thèse porte sur les équations différentielles stochastiques progressives rétrogrades, en particulier celles dont le coefficient de diffusion progressif dépend de toutes les inconnues. Nous proposons une manière originale d'aborder le problème, nous permettant de retrouver des résultats classiques d'existence et d'unicité de Pardoux-Tang ou Yong. Nous obtenons de surcroît, en adoptant l'approche Pardoux-Tang en solutions de viscosité, des représentations probabilistes de toute une nouvelle classe d'EDP paraboliques dont les coefficients de dérivation d'ordre 2 dépendent du gradient de la solution. Nous proposons également un schéma de discrétisation itératif dont nous prouvons la convergence et évaluons l'erreur sur un exemple bien particulier.
|
26 |
PROBLÈME DE GOURSAT POUR DES SYSTÈMES D'ÉQUATIONS AUX DÉRIVÉES PARTIELLES AVEC CONDITIONS DE LEVISeifoudini, Mohamed 07 December 2005 (has links) (PDF)
Nous étudions dans cette thèse un problème de Goursat pour des systèmes d'équations aux dérivées partielles avec les conditions de Levi. Nous améliorons<br />les résultats du Pr D. Gourdin qui a étudié le problème de Cauchy linéaire dans les espaces de Sobolev et dans les espaces C-infini sur R_t × R^n_x pour les opérateurs<br />matriciels faiblement hyperboliques à caractéristiques doubles en calculant le domaine de dépendance dans la première partie de cette thèse tout en rappelant le détail des démonstrations utilisées en les améliorant sur les diagonaliseurs. Dans seconde partie, nous étudions le problème de Goursat dans les espaces de Sobolev pour un système de N équations à N fonctions inconnues des variables (t, x, y) dans R_t×R_x×R_y^n.<br />Ce système peut être décrit comme une composition de deux opérateurs aux dérivées partielles à coefficients matriciels hyperboliques respectivement dans<br />la direction de t pour le premier et dans la direction de x pour le second avec des caractéristiques doubles et des conditions de Levi scalaires et avec un opérateur matriciel aux dérivées partielles additif résiduel spécifique. Nous calculons aussi le domaine de dépendance du problème de Goursat dont ses données sont sur t = 0 et x = 0 .
|
27 |
Inégalités de Sobolev logarithmiques pour des problèmes d'évolution non linéairesMalrieu, Florent 11 December 2001 (has links) (PDF)
Nous étudions des équations aux dérivées partielles non linéaires du type McKean-Vlasov. Nous leur associons des systèmes de particules en interaction de type champ moyen pour lesquels nous établissons des inégalités de Sobolev logarithmiques à temps fini. Grâce à un résultat supplémentaire de propagation du chaos, nous déduisons, dans certains cas, le comportement en temps long de l'équation non linéaire en fonction de celui du système de particules. Enfin, nous établissons des intervalles de confiance exacts pour la convergence de méthodes de Monte-Carlo pour les schémas d'Euler explicites et implicites associés à des processus de diffusion. Ces résultats s'appliquent notamment pour les systèmes de particules cités plus haut.
|
28 |
Algorithmes d'optimisation et de contrôle d'interface libreOrriols, Antonin 15 December 2006 (has links) (PDF)
La production industrielle d'aluminium met en jeu plusieurs aspects physiques, à la fois chimiques, thermiques et magnétohydrodynamiques (MHD). L'une de ses particularités est la coexistence dans une cuve de deux fluides non miscibles, ce qui conduit à la présence d'une interface libre. Ce procédé consomme près de 2% de l'électricité mondiale, la moitié étant perdue par effet Joule. L'enjeu est de réduire ce coût sans déstabiliser le procédé: il s'agit typiquement d'un problème de contrôle optimal, que nous traitons en considérant une modélisation MHD de la cuve. Deux approches sont utilisées pour effectuer cette optimisation, à savoir considérer une contrainte d'état non linéaire basée sur un couplage entre les équations de Maxwell et de Navier-Stokes multifluides, et une contrainte d'état linéaire résultant d'une approximation shallow water de la précédente. Après une courte introduction à la modélisation du procédé et aux concepts du contrôle optimal basé sur le principe de Pontryagin, nous décrivons dans un premier temps le contrôle de l'évolution de l'interface modélisée par l'approximation shallow water. S'ensuivent un travail de parallèlisation du logiciel de simulation du procédé dans le cadre non linéaire et la recherche numérique d'actionneurs acceptables pour son contrôle. Enfin, un algorithme d'optimisation de la forme de l'interface est proposé sous une contrainte d'état non linéaire simplifiée, à savoir les équations de Navier-Stokes bifluides en dimension deux.
|
29 |
Recalage de structures légères aléatoires en vue de leur contrôle actifGouttebroze, Camille 10 February 2010 (has links) (PDF)
Le contrôle actif nécessite un modèle numérique représentatif de la structure réelle dont on souhaite diminuer les vibrations. Les méthodes de recalage sont les plus efficaces pour obtenir ce modèle. Les plus répandues se basent sur la minimisation d'une fonction objectif construite à partir de la solution d'Équations aux Dérivées Partielles (EDP) paramétrées. Le coût d'évaluation de cette fonction peut vite exploser lorsque les modèles sont trop complexes ou trop nombreux, ce qui arrive quand on souhaite une grande famille de structures similaires ou une structure dont le comportement varie à cause d'un vieillissement ou de phénomènes aléatoires. On parle alors de recalage multimodèle. Afin de construire une approximation de la fonction coût, nous introduisons une nouvelle méthode de résolution des EDP paramétrées, la Méthode Éléments Finis sur Algèbre Polynomiale (MÉFAP). Elle présente l'avantage d'introduire les variabilités paramétriques dans le modèle numérique sans changer la base éléments finis. Ceci est réalisé grâce à un anneau de polynômes multivariable. Nous mettons en œuvre la MÉFAP afin d'obtenir une approximation de l'erreur en relation de comportement modifiée, qui est un estimateur de la qualité d'un modèle numérique vis-à-vis de résultats expérimentaux. Nous traitons des cas de recalage simple puis du recalage multimodèle. Les exemples présentés sont représentatifs d'un ensembles de cartes électroniques. Ils comprennent des cas 1D ou 2D, piézoélectriques ou purement mécaniques, des structures virtuelles ou réelles, des modèles déterministes ou stochastiques.
|
30 |
Le modèle "gaz de cercles" et son application à l'extraction de houppiersHorvath, Peter 03 December 2007 (has links) (PDF)
Nous présentons le modèle de gaz de cercles (GDC) qui permet de décrire un ensemble de cercles de rayon approximativement fixe. Il est fondé sur la théorie récente des contours actifs d'ordre supérieur (CAOS). Pour certains paramètres, le modèle favorise la création de cercles stables de rayon approximativement fixe au lieu de créer des réseaux. Nous montrons dans cette thèse comment déterminer ces paramètres. Le modèle général de GDC peut être appliqué dans des domaines variés, mais souffre d'un inconvénient: les minima locaux correspondant aux cercles peuvent piéger l'algorithme de descente de gradient, produisant ainsi des cercles `fantômes'. Nous résolvons ce problème en calculant, via le développement de Taylor de l'énergie, les paramètres qui permettent de positionner les cercles sur les points d'inflexion plutôt que sur les minima. Il est possible de créer une autre formulation pour les modèles CAOS, fondée sur les champs de phase. Nous abordons le problème d'extraction de houppiers par la construction d'un modèle de champs de phase de GDC. Les images utilisées sont des images couleur-infrarouge (CIR) et panchromatiques. Nous introduisons deux modèles d'attache aux données. Le premier décrit l'utilisation d'une seule bande parmi les trois disponibles et est fondé sur le gradient de l'image et sur les distributions gaussiennes. Le deuxième utilise les trois bandes spectrales des images CIR. Ces modèles permettent d'avoir des résultats plus précis que par des modèles plus traditionnels. Ces modèles peuvent être appliqués pour la détection d'autres objets circulaires.
|
Page generated in 0.0814 seconds