Spelling suggestions: "subject:"dérivés partielle"" "subject:"dérivés partiellement""
11 |
Contributions à l'adaptation de maillage anisotrope sur base hiérarchiqueBriffard, Thomas 24 April 2018 (has links)
Cette thèse est la poursuite des travaux entrepris dans [13] pour le développement d’un nouvel estimateur d’erreur de type hiérarchique. Cet estimateur permet d’adapter un maillage et d’obtenir des solutions plus précises d’une équation aux dérivées partielles. La méthode est relativement générale et peut s’appliquer à une grande variété de problèmes, et permet théoriquement de traiter des approximations de n’importe quel degré. Elle mène, lorsque la solution le permet, à des maillages fortement anisotropes et se compare avantageusement aux méthodes basées sur la définition d’une métrique. Des améliorations substantielles à la méthode ont été apportées dans le cadre de ce travail. Les principaux objectifs étant de réduire fortement les coûts de calcul associés à la méthode et de la rendre beaucoup plus robuste de manière générale. Ainsi, on a revu et amélioré les algorithmes de reconstruction des gradients par un scaling approprié, de réinterpolation des champs en introduisant une méthode de krigeage. On a également introduit un algorithme de remaillage des coquilles à l’aide d’une méthode dite de «ear clipping» originale en 3D. L’algorithme de déplacement de sommets a également été revu. Enfin la gestion des frontières courbes est également considérée. De nombreux exemples bi et tridimensionnels sont présentés pour illustrer l’efficacité de l’estimateur. Des problèmes académiques sont d’abord considérés, y compris des problèmes singuliers où on montre que l’on obtient des taux de convergence optimaux (par rapport au nombre de degrés de liberté). Par la suite, on s’intéresse à différents domaines d’applications, notamment en mécanique des fluides et en neurosciences. Enfin, un algorithme général pour l’adaptation de maillage dans le cas instationnaire sera également décrit et testé. / This thesis is the continuation of the work undertaken in [13] for the development of a new a posteriori error estimator based on hierarchical basis. This estimator allows to adapt a finite element mesh and to obtain more accurate solutions of various partial differential equations. Most importantly, it leads, whenever possible, to strongly anisotropic meshes, and compares favorably with methods based on the definition of a metric. The method is fairly general and can be applied to approximations of any degree and to a wide variety of problems. In this work, several significant improvements have been added to the initial method. The objectives being to substantially reduce the calculation costs associated with the method and to make it much more robust. Many substantial contributions have been made to the various algorithms. Let’s mention the introduction of an appropriate scaling in the gradient recovery method, kriging for the reinterpolation of the different fields during adaptation, an original ear clipping method in 3D for local remeshing. A different approach for nodes displacement is also condirered. Finally we detailled how we take care of curved borders. Many bi and three-dimensional examples are presented to illustrate the efficiency of the estimator. Academic problems are first considered, including classical singular problems where optimal rates of convergence are observed (relative to the number of degrees of freedom). Applications in different fields such as fluid mechanics and neurosciences are then considered. Finally an algorithm for time-dependent problems is presented and tested.
|
12 |
Homogénéisation de l'effet Hall et de la magnétorésistance dans des compositesPater, Laurent 18 June 2013 (has links) (PDF)
Les conducteurs composites sont constitués d'hétérogénéités microscopiques mais apparaissent comme homogènes à l'échelle macroscopique. La description de leur comportement nécessite l'homogénéisation des équations de conduction régissant chacune de leurs phases. Cette thèse s'intéresse à certaines lois effectives pour les conducteurs composites en présence d'un champ magnétique constant. Dans le premier chapitre, on rappelle quelques résultats d'électrophysique (effet Hall, magnétorésistance) et de la théorie de l'homogénéisation (H-convergence) ainsi que son extension à des problèmes à forte conductivité. Dans le chapitre deux, on étudie l'effet Hall dans des composites bidimensionnels à deux phases très contrastées et on compare le résultat d'homogénéisation à celui obtenu avec une structure fibrée renforcée. Le troisième chapitre généralise ce cas particulier et étend la loi comportementale obtenue à des matériaux cylindriques non périodiques sans hypothèse géométrique sur leur section. Les chapitres deux et trois soulignent des différences importantes entre la dimension deux et la dimension trois au niveau des problèmes de conduction à fort contraste. Un quatrième chapitre est consacré à l'étude de la magnétorésistance en dimension trois et met en avant une forte interaction entre la direction du champ magnétique et l'énergie dissipée dans le matériau complétant ainsi un résultat antérieur en dimension deux.
|
13 |
Homogénéisation stochastique quantitative / Quantitative stochastic homogenizationBordas, Alexandre 24 September 2018 (has links)
Cette thèse porte sur l’homogénéisation quantitative d’équations aux dérivées partielles paraboliques, et de problèmes elliptiques discrets. Dans l’introduction, nous voyons comment de tels problèmes, même lorsque les coefficients sont déterministes, résultent d’un modèle aléatoire. Nous donnons ensuite une notion de ce qu’est l’homogénéisation : que se passe-t-il lorsque les coefficients eux-mêmes sont aléatoires, est-il possible de considérer qu’un environnement présentant des inhomogénéités sur de très petites échelles, se comporte d’une manière proche d’un environnement fictif qui serait homogène ?Nous donnons ensuite une interprétation de cette question en terme de marche aléatoire en conductances aléatoires, puis donnons une idée des outils utilisés dans les preuves des deux chapitres suivants. Dans le chapitre II, nous démontrons un résultat d’homogénéisation quantitative pour une équation parabolique – l’équation de la chaleur par exemple – dans un environnement admettant des coefficients aléatoires et dépendant du temps. La méthode utilisée consiste à considérer les solutions d’un tel problème comme optimiseurs de fonctionnelles qui seront définies au préalable, puis d’utiliser la propriété cruciale de sous-additivité de ces quantités, afin d’en déduire une convergence puis un résultat de concentration, qui permettra d’en déduire une vitesse de convergence des solutions vers la solution du problème homogénéisé, Dans le chapitre III, nous adaptons ces méthodes pour un problème elliptique sur le graphe Zd. / This thesis deals with quantitative stochastic homogenization of parabolic partial differential equations, and discrete elliptic problems. In the introduction, we see how can such problems come from random models, even when the coefficients are deterministic. Then, we introduce homogenization : what happen if the coefficients themselves are random ? Could we consider that an environment with microscopical random heterogeneities behaves, at big scale, as a fictious deterministic homogeneous environment ? Then, we give a random walk in random environment interpretation and the sketch of the proofs in the two following chapters. In chapter II, we prove a quantitative homogenization result for parabolic PDEs, such as heat equation, in environment admitting time and space dependent coefficients. The method of the proof consists in considering solutions of such problems as minimizers of variational problems. The first step is to express solutions as minimizers, and then to use the capital property of subadditivity of the corresponding quantities, in order to deduce convergence and concentration result. From that, we deduce a rate of convergence of the actual solutions to the homogenized solution. In chapter III, we adapt these methods to a discrete elliptic problem on the lattice Zd.
|
14 |
Homogénéisation et correcteurs pour quelques problèmes hyperboliquesGaveau, Florian 08 December 2009 (has links) (PDF)
Les travaux présentés dans cette thèse concernent des résultats d'homogénéisation et de correcteur pour des problèmes hyperboliques dans des milieux hétérogènes avec des conditions aux bords mixtes. Les problèmes de ce type modélisent la propagation des ondes dans des milieux hétérogènes. Dans le premier chapitre on rappelle une partie de l'ensemble des outils permettant l'étude asymptotique de problèmes posés dans un milieu hétérogène. Le second chapitre est consacré à l'étude de l'équation des ondes dans un domaine perforé de façon non périodique. Pour cela, on effectue une hypothèse de H^0-convergence sur la partie elliptique de l'opérateur. Cette notion introduite par M. Briane, A. Damlamian et P. Donato généralise la notion de H-convergence introduite quelques années auparavant par F. Murat et L. Tartar pour des domaines perforés. On démontre deux résultats principaux, un résultat d'homogénéisation et un second de correcteur qui permet d'améliorer la convergence de la solution du problème sous des hypothèses légèrement plus fortes. Pour cela on reprend le correcteur de G. Cardone, P. Donato et A. Gaudiello et on explicite quelques unes de ces propriétés. Dans le troisième chapitre, on considère une équation des ondes non-linéaire posée dans un domaine périodiquement perforé dont la non-linéarité porte sur la dérivée en temps de la solution. On suppose que la non-linéarité est majorée par une fonction polynomiale monotone dont l'exposant permet d'avoir une injection de Sobolev convenable. On étudie d'abord l'existence et l'unicité de la solution de ce problème à l'aide d'une méthode de Galerkin, puis on montre un résultat d'homogénéisation de ce problème. Dans le quatrième chapitre, on étudie le problème de l'équation des ondes dans un domaine non perforé. Dans un premier temps, on retrouve le résultat classique d'homogénéisation en utilisant la méthode de l'éclatement périodique introduite par D. Cioranescu, A. Damlamian et G. Griso. Ensuite, sous des hypothèses un peu plus fortes des données initiales on montre un résultat de correcteur faisant intervenir l'opérateur de moyennisation qui est l'adjoint de l'opérateur d'éclatement.
|
15 |
Sur la stabilité de la solution numérique pour un problème particulier d'équations aux dérivées partielles de type hyperboliqueCosnier, Jean 26 June 1969 (has links) (PDF)
.
|
16 |
Discrétisation des équations différentielles aux dérivées partielles avec préservation de leurs symétriesValiquette, Francis January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
17 |
Quelques problèmes d’écoulements multi-fluide : analyse mathématique, modélisation numérique et simulation / Multi-fluid flows : mathematical analysis, modelling and simulationBenjelloun, Saad 03 December 2012 (has links)
La présente thèse comporte trois parties indépendantes.<br>La première partie présente une preuve d'existence de solutions faibles globales pour un modèle de sprays de type Vlasov-Navier-Stokes-incompressible avec densité variable. Ce modèle est obtenu par une limite formelle à partir d'un modèle Vlasov-Navier-Stokes-incompressible avec fragmentation, où seules deux valeurs de rayons de particules sont considérées : un rayon r1 pour les particules avant fragmentation, et un rayon r2<<r1 pour les particules obtenues par fragmentation. Le modèle asymptotique est obtenu dans la limite r2 tendant vers zéro. La démonstration s'appuie sur des techniques de régularisation et de troncature en vitesse, sur le théorème de Schauder et enfin sur une méthode de compacité de Lions-Di-Perna pour l'élimination des régularisations introduites dans le système initial.La deuxième partie concerne la modélisation de l'impact d'une vague de liquide sur une paroi. L'objectif de cette partie est d'obtenir un modèle pour la fuite du gaz environnant sur les "côtés" de la vague. Un modèle numérique est réalisé en remplaçant la vague liquide par une masse solide indéformable et un schéma VFFC-ALE est conçu pour la simulation numérique du modèle. La mise sans dimension des équations permet de montrer les nombres sans dimension qui régissent le phénomène de fuite. La vitesse moyenne de fuite est comparée à la vitesse dans le cas d'un fluide incompressible (pour lequel on a une expression exacte). Enfin, via la simulation numérique, une étude paramétrique est réalisée en fonction des nombres sans dimensions.Dans la troisième partie on présente une méthode numérique pour la simulation d'un modèle Vlasov-Boltzmann-Euler pour les sprays. Cette méthode couple le schéma VFFC à la méthode PIC (Particle In Cell). Les résultats présentés concernent l'écoulement d'un spray dans un pipeline courbe qu'on modélise par un système Vlasov-Boltzmann-Euler quasi-1D. / This thesis contains three independent parts.The first part presents a proof of existence of weak global solutions to a Vlasov-incompressible-Navier-Stokes system with variable density. This system is obtained formally from a classical Vlasov-incompressible-Navier-Stokes model with fragmentation for which only two values for the particules radii are considered: a radius r1 for non fragmented particules and a radius r2<<r1 for particules created by fragmentation. The asymptotic model is obtained in the limit r2 vanishing.The second part deals with the modeling of a wave impact on a rigid wall. The purpose of our work is to study and model the escape of the gas between the liquid and the wall. In the numerical model we have replaced the liquid wave with a solid mass, and developed an ALE-VFFC code for the numerical simulation of the system. Scaling the system of equations allows us to obtain the dimensionless numbers governing the escape phenomena. The mean escape velocity is compared to the velocity in the case of incompressible gas. Finally, a parametric study with respect to the dimensionless numbers is carried out.We present in the third part the principles of the coupling between an efficient numerical method for hyperbolic systems (and non conservative equations arising in multiphase flows), namely the FVCF scheme, on the one hand; and a particle method for the Vlasov-Boltzmann equation (of PIC-DSMC type), on the other hand. Numerical results illustrating this coupling are shown for a problem involving a spray (droplets inside an underlying gas) in a pipe which is mcdeled by a 1D fluid-kinetic system.
|
18 |
Modèles de fusion et diffusion par équations aux dérivées partielles : application à la sismique azimutalePop, Sorin 11 November 2008 (has links)
Ce mémoire porte sur le développement de nouvelles méthodes de fusion d’images à partir d’un formalisme à base d’Equations aux Dérivées Partielles (EDP). Les deux premiers chapitres bibliographiques portent sur les 2 domaines au centre de notre problématique : la fusion et les EDP. Le Chapitre 3 est consacré à la présentation progressive de notre modèle EDP de fusion constitué par un terme de fusion (diffusion inverse isotrope) et un terme de régularisation. De plus, un des attraits de l’approche EDP est de pouvoir traiter avec le formalisme des données bruitées. L’association d’un terme de diffusion dépendant du type de données à traiter est donc abordée. Le chapitre 4 est consacré à l’application des modèles de fusion-diffusion aux données sismiques. Pour répondre aux besoins de filtrage de ces données sismiques, nous proposons deux méthodes originales de diffusion 3D. Nous présenterons dans ce mémoire l’approche de fusion 3D intégrant une de ces méthodes nommée SFPD (Seismic Fault Preserving Diffusion). / This thesis focuses on developing new methods for image fusion based on Partial Differential Equations (PDE). The starting point of the proposed fusion approach is the enhancement process contained in most classical diffusion models. The aim of enhancing contours is similar to one of the purpose of the fusion: the relevant information (equivalent to the contours) must be found in the output image. In general, the contour enhancement uses an inverse diffusion equation. In our model of fusion, the evolution of each input image is led by such equation. This single equation must necessarily be accompanied by a global information detector useful to select the signal to be injected. In addition, an inverse diffusion equation, like any Gaussian deconvolution, raises problems of stability and regularization of the solution. To resolve these problems, a regularization term is integrated into the model. The general model of fusion is finally similar to an evolving cooperative system, where the information contained in each image starts moving towards relevant information, leading to a convergent process. The essential interest of PDE approach is to deal with noisy data by combining in a natural way two processes: fusion and diffusion. The fusion-diffusion proposed model is easy to adapt to different types of data by tuning the PDE. In order to adapt the fusion-diffusion model to a specific application, I propose 2 diffusion models: “Seismic fault preserving diffusion” and “3D directional diffusion”. The aim is to denoise 3D seismic data. These models are integrated into the fusion-diffusion approach. One of them is successfully transferred to the industrial partner: french oil company Total. The efficiency of our models (fusion and fusion-diffusion) is proven through an experimental plan in both noisy and noisy-free data.
|
19 |
Observateurs en dimension infinie. Application à l'étude de quelques problèmes inverses / Infinite-dimensional observers. Application to the study of some inverse problemsHaine, Ghislain 22 October 2012 (has links)
Dans un grand nombre d'applications modernes, on est amené à estimer l'état initial (ou final) d'un système infini-dimensionnel (typiquement un système gouverné par une Équation aux Dérivées Partielles (EDP) d'évolution) à partir de la connaissance partielle du système sur un intervalle de temps limité. Un champ d'applications dans lequel apparaît fréquemment ce type de problème d'identification est celui de la médecine. Ainsi, la détection de tumeurs par tomographie thermo-acoustique peut se ramener à des problèmes de reconstruction de données initiales. D'autres méthodes nécessitent l'identification d'un terme source, qui, sous certaines hypothèses, peut également se réécrire sous la forme d'un problème de reconstruction de données initiales. On s'intéresse dans cette thèse à la reconstruction de la donnée initiale d'un système d'évolution, en travaillant autant que possible sur le système infini-dimensionnel, à l'aide du nouvel algorithme développé par Ramdani, Tucsnak et Weiss (Automatica 2010). Nous abordons en particulier l'analyse numérique de l'algorithme dans le cadre des équations de Schrödinger et des ondes avec observation interne. Nous étudions les espaces fonctionnels adéquats pour son utilisation dans les équations de Maxwell, avec observations interne et frontière. Enfin, nous tentons d'étendre le cadre d'application de cet algorithme lorsque le système initial est perturbé ou que le problème inverse n'est plus bien posé, avec application à la tomographie thermo-acoustique / In a large class of modern applications, we have to estimate the initial (or final) state of an infinite-dimensional system (typically a system governed by a Partial Differential Equation) from its partial measurement over some finite time interval. This kind of identification problems arises in medical imaging. For instance, the detection of sick cells (tumor) by thermoacoustic tomography can be viewed as an initial data reconstruction problem. Some other methods need the identification of a source term, which can be rewritten, under some assumptions, under the form of an initial data reconstruction problem. In this thesis, we are dealing with the reconstruction of the initial state of a system of evolution, working as much as possible on the infinite-dimensional system, using the new algorithm developed by Ramdani, Tucsnak and Weiss (Automatica 2010). We perform in particular the numerical analysis of the algorithm in the case of Schrödinger and wave equations, with internal observation. We study the suitable functional spaces for its use in Maxwell?s equations, with internal and boundary observation. In the last chapter, we try to extend the framework of this algorithm when the initial system is perturbed or when the inverse problem is ill-posed, with application to thermoacoustic tomography
|
20 |
On the Cauchy problem for the Water Waves equations / Sur le problème de Cauchy pour l'équation des vaguesPoyferré, Thibault de 02 June 2017 (has links)
Cette thèse à pour objet l'étude de certains aspects du problème de Cauchy pour l'équation des vagues. Dans la première partie, on utilise une formulation paradifférentielle pour prouver un critère d'explosion pour les vagues de gravités. On montre ensuite des estimations de Strichartz pour les vagues de capillarités, avant de les utiliser pour résoudre le problème de Cauchy à faible régularité. Dans la deuxième partie, on prouve des estimations a priori pour les vagues de gravité avec fond émergent. / This thesis studies some aspects of the Cauchy problem for the water waves equation. In the first part, we use a paradifferential formulation to prove a blow-up criterion for gravity waves. We then show some Strichartz estimates for capillary waves, and use them to solve the Cauchy problem at low regularity. In the second part, we prove a priori estimates for gravity waves with an emerging bottom.
|
Page generated in 0.0781 seconds