• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 9
  • 7
  • 3
  • 3
  • 1
  • Tagged with
  • 75
  • 75
  • 35
  • 31
  • 28
  • 16
  • 14
  • 14
  • 12
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Energy-Aware Topology Control and Data Delivery in Wireless Sensor Networks

Park, Seung-Jong 12 July 2004 (has links)
The objective of this thesis is to address the problem of energy conservation in wireless sensor networks by tackling two fundamental problems: topology control and data delivery. We first address energy-aware topology control taking into account throughput per unit energy as the primary metric of interest. Through both experimental observations and analysis, we show that the optimal topology is a function of traffic load in the network. We then propose a new topology control scheme, Adaptive Topology Control (ATC), which increases throughput per unit energy. Based on different coordinations among nodes, we proposed three ATC schemes: ATC-CP, ATC-IP, and ATC-MS. Through simulations, we show that three ATC schemes outperform static topology control schemes, and particularly the ATC-MS has the best performance under all environments. Secondly, we explore an energy-aware data delivery problem consisting of two sub-problems: downstream (from a sink to sensors) and upstream (from sensors to a sink) data delivery. Although we address the problems as two independent ones, we eventually solve those problems with two approaches: GARUDA-DN and GARUDA-UP which share a common structure, the minimum dominating set. For the downstream data delivery, we consider reliability as well as energy conservation since unreliable data delivery can increase energy consumption under high data loss rates. To reduce energy consumption and achieve robustness, we propose GARUDA-DN which is scalable to the network size, message characteristics, loss rate and the reliable delivery semantics. From ns2-based simulations, we show that GARUDA-DN performs significantly better than the basic schemes proposed thus far in terms of latency and energy consumption. For the upstream data delivery, we address an energy efficient aggregation scheme to gather correlated data with theoretical solutions: the shortest path tree (SPT), the minimum spanning tree (MST) and the Steiner minimum tree (SMT). To approximate the optimal solution in case of perfect correlation among data, we propose GARUDA-UP which combines the minimum dominating set (MDS) with SPT in order to aggregate correlated data. From discrete event simulations, we show that GARUDA-UP outperforms the SPT and closely approximates the centralized optimal solution, SMT, with less amount of overhead and in a decentralized fashion.
22

An Integrated Framework for Wireless Sensor Network Management

Karim, Lutful 19 June 2012 (has links)
Wireless Sensor Networks (WSNs) have significant potential in many application domains, and are poised for growth in many markets ranging from agriculture and animal welfare to home and office automation. Although sensor network deployments have only begun to appear, the industry still awaits the maturing of this technology to realize its full benefits. The main constraints to large scale commercial adoption of sensor networks are the lack of available network management and control tools for determining the degree of data aggregation prior to transforming it into useful information, localizing the sensors accurately so that timely emergency actions can be taken at exact location, and scheduling data packets so that data are sent based on their priority and fairness. Moreover, due to the limited communication range of sensors, a large geographical area cannot be covered, which limits sensors application domain. Thus, we investigate a scalable and flexible WSN architecture that relies on multi-modal nodes equipped with IEEE 802.15.4 and IEEE 802.11 in order to use a Wi-Fi overlay as a seamless gateway to the Internet through WiMAX networks. We focus on network management approaches such as sensors localization, data scheduling, routing, and data aggregation for the WSN plane of this large scale multimodal network architecture and find that most existing approaches are not scalable, energy efficient, and fault tolerant. Thus, we introduce an efficient approach for each of localization, data scheduling, routing, and data aggregation; and compare the performance of proposed approaches with existing ones in terms of network energy consumptions, localization error, end-to-end data transmission delay and packet delivery ratio. Simulation results, theoretical and statistical analysis show that each of these approaches outperforms the existing approaches. To the best of our knowledge, no integrated network management solution comprising efficient localization, data scheduling, routing, and data aggregation approaches exists in the literature for a large scale WSN. Hence, we e±ciently integrate all network management components so that it can be used as a single network management solution for a large scale WSN, perform experimentations to evaluate the performance of the proposed framework, and validate the results through statistical analysis. Experimental results show that our proposed framework outperforms existing approaches in terms of localization energy consumptions, localization accuracy, network energy consumptions and end-to-end data transmission delay.
23

Energy-efficient Data Aggregation Using Realistic Delay Model in Wireless Sensor Networks

Yan, Shuo 26 August 2011 (has links)
Data aggregation is an important technique in wireless sensor networks. The data are gathered together by data fusion routines along the routing path, which is called data-centralized routing. We propose a localized, Delay-bounded and Energy-efficient Data Aggregation framework(DEDA) based on the novel concept of DEsired Progress (DEP). This framework works under request-driven networks with realistic MAC layer protocols. It is based on localized minimal spanning tree (LMST) which is an energy-efficient structure. Besides the energy consideration, delay reliability is also considered by means of the DEP. A node’s DEP reflects its desired progress in LMST which should be largely satisfied. Hence, the LMST edges might be replaced by unit disk graph (UDG) edges which can progress further in LMST. The DEP metric is rooted on realistic degree-based delay model so that DEDA increases the delay reliability to a large extent compared to other hop-based algorithms. We also combine our DEDA framework with area coverage and localized connected dominating set algorithms to achieve two more resilient DEDA implementations: A-DEDA and AC-DEDA. The simulation results confirm that our original DEDA and its two enhanced variants save more energy and attain a higher delay reliability ratio than existing protocols.
24

Uma arquitetura escalável para recuperação e atualização de informações com relação de ordem total. / A scalable architecture for retrieving information with total order relationship.

Vladimir Emiliano Moreira Rocha 17 November 2017 (has links)
Desde o início do século XXI, vivenciamos uma explosão na produção de informações de diversos tipos, tais como fotos, áudios, vídeos, entre outros. Dentre essas informações, existem aquelas em que a informação pode ser dividida em partes menores, mas que devem ser relacionadas seguindo uma ordem total. Um exemplo deste tipo de informação é um arquivo de vídeo que foi dividido em dez segmentos identificados com números de 1 a 10. Para reproduzir o vídeo original a partir dos segmentos é necessário que seus identificadores estejam ordenados. A estrutura denominada tabela de hash distribuída (DHT) tem sido amplamente utilizada para armazenar, atualizar e recuperar esse tipo de informação de forma eficiente em diversos cenários, como monitoramento de sensores e vídeo sob demanda. Entretanto, a DHT apresenta problemas de escalabilidade quando um membro da estrutura não consegue atender as requisições recebidas, trazendo como consequência a inacessibilidade da informação. Este trabalho apresenta uma arquitetura em camadas denominada MATe, que trata o problema da escalabilidade em dois níveis: estendendo a DHT com a introdução de agentes baseados na utilidade e organizando a quantidade de requisições solicitadas. A primeira camada trata a escalabilidade ao permitir a criação de novos agentes com o objetivo de distribuir as requisições evitando que um deles tenha a escalabilidade comprometida. A segunda camada é composta por grupos de dispositivos organizados de tal forma que somente alguns deles serão escolhidos para fazer requisições. A arquitetura foi implementada para dois cenários onde os problemas de escalabilidade acontecem: (i) monitoramento de sensores; e (ii) vídeo sob demanda. Para ambos cenários, os resultados experimentais mostraram que MATe melhora a escalabilidade quando comparada com as implementações originais da DHT. / Since the beginning of the 21st century, we have experienced an explosive growth in the generation of information, such as photos, audios, videos, among others. Within this information, there are some in which the information can be divided and related following a total order. For example, a video file can be divided into ten segments identified with numbers from 1 to 10. To play the original video from these segments, their identifiers must be fully ordered. A structure called Distributed Hash Table (DHT) has been widely used to efficiently store, update, and retrieve this kind of information in several application domains, such as video on demand and sensor monitoring. However, DHT encounters scalability issues when one of its members fails to answer the requests, resulting in information loss. This work presents MATe, a layered architecture that addresses the problem of scalability on two levels: extending the DHT with the introduction of utility-based agents and organizing the volume of requests. The first layer manages the scalability by allowing the creation of new agents to distribute the requests when one of them has compromised its scalability. The second layer is composed of groups of devices, organized in such a way that only a few of them will be chosen to perform requests. The architecture was implemented in two application scenarios where scalability problems arise: (i) sensor monitoring; and (ii) video on demand. For both scenarios, the experimental results show that MATe improves scalability when compared to original DHT implementations.
25

Analysis of Time-related Properties in Real-time Data Aggregation Design

hu, xiaoxiang January 2018 (has links)
Data aggregation is extensively used in data management systems nowadays. Based on a data aggregation taxonomy named DAGGTAX, we propose an analytic process to evaluate the run-time platform and time-related parameters of Data Aggregation Processes (DAP) in a real-time system design, which can help designers to eliminate infeasible design decisions at early stage. The process for data aggregation design and analysis mainly includes the following outlined steps. Firstly, the user needs to specify the variation of the platform and DAP by figuring out the features of the system and time-related parameters respectively. Then, the user can choose one combination of the variations between the features of the platform and DAP, which forms the initial design of the system. Finally, apply the analytic method for feasibility analysis by schedulability analysis techniques. If there are no infeasibilities found in the process, then the design can be finished. Otherwise, the design must be altered from the run-time platform and DAP design stage, and the schedulability analysis will be applied again for the revised design until all the infeasibilities are fixed. In order to help designers to understand and describe the system and do feasibility analysis, we propose a new UML (Unified Modeling Language) profile that extends UML with concepts related to real-time data aggregation design. These extensions aim to accomplish the conceptual modeling of a real-time data aggregation. In addition, the transferring method based on UML profile to transfer the data aggregation design into a task model is proposed as well. In the end of the thesis, a case study, which applies the analytic process to analyze the architecture design of an environmental monitoring sensor network, is presented as a demonstration of our research.
26

Energy-efficient Data Aggregation Using Realistic Delay Model in Wireless Sensor Networks

Yan, Shuo January 2011 (has links)
Data aggregation is an important technique in wireless sensor networks. The data are gathered together by data fusion routines along the routing path, which is called data-centralized routing. We propose a localized, Delay-bounded and Energy-efficient Data Aggregation framework(DEDA) based on the novel concept of DEsired Progress (DEP). This framework works under request-driven networks with realistic MAC layer protocols. It is based on localized minimal spanning tree (LMST) which is an energy-efficient structure. Besides the energy consideration, delay reliability is also considered by means of the DEP. A node’s DEP reflects its desired progress in LMST which should be largely satisfied. Hence, the LMST edges might be replaced by unit disk graph (UDG) edges which can progress further in LMST. The DEP metric is rooted on realistic degree-based delay model so that DEDA increases the delay reliability to a large extent compared to other hop-based algorithms. We also combine our DEDA framework with area coverage and localized connected dominating set algorithms to achieve two more resilient DEDA implementations: A-DEDA and AC-DEDA. The simulation results confirm that our original DEDA and its two enhanced variants save more energy and attain a higher delay reliability ratio than existing protocols.
27

Automated Discovery of Real-Time Network Camera Data from Heterogeneous Web Pages

Ryan Merrill Dailey (8086355) 14 January 2021 (has links)
<div>Reduction in the cost of Network Cameras along with a rise in connectivity enables entities all around the world to deploy vast arrays of camera networks. Network cameras offer real-time visual data that can be used for studying traffic patterns, emergency response, security, and other applications. Although many sources of Network Camera data are available, collecting the data remains difficult due to variations in programming interface and website structures. Previous solutions rely on manually parsing the target website, taking many hours to complete. We create a general and automated solution for indexing Network Camera data spread across thousands of uniquely structured webpages. We analyze heterogeneous webpage structures and identify common characteristics among 73 sample Network Camera websites (each website has multiple web pages). These characteristics are then used to build an automated camera discovery module that crawls and indexes Network Camera data. Our system successfully extracts 57,364 Network Cameras from 237,257 unique web pages. </div>
28

Privacy Enhancing Data Reporting System For Participatory Sensing

Jakub Czajęcki, Tomasz January 2022 (has links)
Privacy is a crucial aspect of any system involving user-supplied data. There exist multiple approaches to protecting the identity and secrecy of users in data submission systems. In this thesis, I consider the case of privacy-enhancing of data reporting in Participatory Sensing systems. I conducted an extensive literature overview to explore privacy-oriented enhancements to data submission that are applicable in the PS systems. I designed a protocol for proximity-based data aggregation that utilizes Multi-party Secure Computations over Bluetooth Low Energy. Users are divided into groups that perform sub-aggregations and report results to central entities, protecting themselves from honest-but-curious adversary threats. I present a mobile app and web servers for central entities that follow the design of the protocol. I evaluated the achieved effectiveness and discuss the utility and privacy trade-offs. The implementation performs typically for an MPC system with high communication overhead, and is implemented over Bluetooth, with the additional time needed for discovering and connecting devices. The overall performance of the system suggests that deployments targeting 1-second intervals of data submission are feasible. Main use cases are sensitive measurements, such as medical data or highly private user information. / Sekretess är en avgörande aspekt av alla system som involverar data som tillhandahålls av användare. Det finns flera tillvägagångssätt för att skydda användarnas identitet och sekretess i datainlämningssystem. I den här avhandlingen behandlar jag fallet med integritetsförbättrande datarapportering i Participatory Sensing-system. Jag genomförde en omfattande litteraturöversikt för att utforska integritetsorienterade förbättringar av datainlämning som är tillämpliga i PS-systemen. Jag designade ett protokoll för närhetsbaserad dataaggregering som använder flerpartssäkra beräkningar över Bluetooth Low Energy. Användare är indelade i grupper som utför sub-aggregeringar och rapporterar resultat till centrala enheter, och skyddar sig själva från ärliga men nyfikna motståndarhot. Jag presenterar en mobilapp och webbservrar för centrala enheter som följer protokollets design. Jag utvärderade den uppnådda effektiviteten och diskuterade nytta och sekretessavvägningar. Implementeringen fungerar som man kan förvänta sig för ett MPC-system med höga kommunikationskostnader, och implementeras över Bluetooth, med den extra tid som krävs för att upptäcka och ansluta enheter. Systemets övergripande prestanda tyder på att implementeringar som är inriktade på 1-sekunds intervaller för datainlämning är genomförbara. Huvudsakliga användningsfall är känsliga mätningar, såsom medicinska data eller mycket privat användarinformation.
29

DISCOVERY OF LINEAR TRAJECTORIES IN GEOGRAPHICALLY DISTRIBUTED DATASETS

JHAVER, RISHI January 2003 (has links)
No description available.
30

AN ENERGY EFFICIENT COLLABORATIVE FRAMEWORK FOR EVENT NOTIFICATION AND DATA AGGREGATION IN WIRELESS SENSOR NETWORKS

CHUGH, SHRUTI 31 March 2004 (has links)
No description available.

Page generated in 0.1471 seconds