241 |
Preserving dynamic reconfiguration consistency in aspect oriented middlewareSurajbali, Bholanathsingh, Grace, Paul, Coulson, Geoff January 2010 (has links)
Aspect-oriented middleware is a promising technology for the realisation of dynamic reconfiguration in heterogeneous distributed systems. However, like other dynamic reconfiguration approaches, AO-middleware-based reconfiguration requires that the consistency of the system is maintained across reconfigurations. AO-middleware-based reconfiguration is an ongoing research topic and several consistency approaches have been proposed. However, most of these approaches tend to be targeted at specific contexts, whereas for distributed systems it is crucial to cover a wide range of operating conditions. In this paper we propose an approach that offers distributed, dynamic reconfiguration in a consistent manner, and features a flexible framework-based consistency management approach to cover a wide range of operating conditions. We evaluate our approach by investigating the configurability and transparency of our approach and also quantify the performance overheads of the associated consistency mechanisms.
|
242 |
Prediction games : machine learning in the presence of an adversaryBrückner, Michael January 2012 (has links)
In many applications one is faced with the problem of inferring some functional relation between input and output variables from given data. Consider, for instance, the task of email spam filtering where one seeks to find a model which automatically assigns new, previously unseen emails to class spam or non-spam. Building such a predictive model based on observed training inputs (e.g., emails) with corresponding outputs (e.g., spam labels) is a major goal of machine learning.
Many learning methods assume that these training data are governed by the same distribution as the test data which the predictive model will be exposed to at application time. That assumption is violated when the test data are generated in response to the presence of a predictive model. This becomes apparent, for instance, in the above example of email spam filtering. Here, email service providers employ spam filters and spam senders engineer campaign templates such as to achieve a high rate of successful deliveries despite any filters.
Most of the existing work casts such situations as learning robust models which are unsusceptible against small changes of the data generation process. The models are constructed under the worst-case assumption that these changes are performed such to produce the highest possible adverse effect on the performance of the predictive model. However, this approach is not capable to realistically model the true dependency between the model-building process and the process of generating future data. We therefore establish the concept of prediction games: We model the interaction between a learner, who builds the predictive model, and a data generator, who controls the process of data generation, as an one-shot game. The game-theoretic framework enables us to explicitly model the players' interests, their possible actions, their level of knowledge about each other, and the order at which they decide for an action.
We model the players' interests as minimizing their own cost function which both depend on both players' actions. The learner's action is to choose the model parameters and the data generator's action is to perturbate the training data which reflects the modification of the data generation process with respect to the past data.
We extensively study three instances of prediction games which differ regarding the order in which the players decide for their action. We first assume that both player choose their actions simultaneously, that is, without the knowledge of their opponent's decision. We identify conditions under which this Nash prediction game has a meaningful solution, that is, a unique Nash equilibrium, and derive algorithms that find the equilibrial prediction model. As a second case, we consider a data generator who is potentially fully informed about the move of the learner. This setting establishes a Stackelberg competition. We derive a relaxed optimization criterion to determine the solution of this game and show that this Stackelberg prediction game generalizes existing prediction models. Finally, we study the setting where the learner observes the data generator's action, that is, the (unlabeled) test data, before building the predictive model. As the test data and the training data may be governed by differing probability distributions, this scenario reduces to learning under covariate shift. We derive a new integrated as well as a two-stage method to account for this data set shift.
In case studies on email spam filtering we empirically explore properties of all derived models as well as several existing baseline methods. We show that spam filters resulting from the Nash prediction game as well as the Stackelberg prediction game in the majority of cases outperform other existing baseline methods. / Eine der Aufgabenstellungen des Maschinellen Lernens ist die Konstruktion von Vorhersagemodellen basierend auf gegebenen Trainingsdaten. Ein solches Modell beschreibt den Zusammenhang zwischen einem Eingabedatum, wie beispielsweise einer E-Mail, und einer Zielgröße; zum Beispiel, ob die E-Mail durch den Empfänger als erwünscht oder unerwünscht empfunden wird. Dabei ist entscheidend, dass ein gelerntes Vorhersagemodell auch die Zielgrößen zuvor unbeobachteter Testdaten korrekt vorhersagt.
Die Mehrzahl existierender Lernverfahren wurde unter der Annahme entwickelt, dass Trainings- und Testdaten derselben Wahrscheinlichkeitsverteilung unterliegen. Insbesondere in Fällen in welchen zukünftige Daten von der Wahl des Vorhersagemodells abhängen, ist diese Annahme jedoch verletzt. Ein Beispiel hierfür ist das automatische Filtern von Spam-E-Mails durch E-Mail-Anbieter. Diese konstruieren Spam-Filter basierend auf zuvor empfangenen E-Mails. Die Spam-Sender verändern daraufhin den Inhalt und die Gestaltung der zukünftigen Spam-E-Mails mit dem Ziel, dass diese durch die Filter möglichst nicht erkannt werden.
Bisherige Arbeiten zu diesem Thema beschränken sich auf das Lernen robuster Vorhersagemodelle welche unempfindlich gegenüber geringen Veränderungen des datengenerierenden Prozesses sind. Die Modelle werden dabei unter der Worst-Case-Annahme konstruiert, dass diese Veränderungen einen maximal negativen Effekt auf die Vorhersagequalität des Modells haben. Diese Modellierung beschreibt die tatsächliche Wechselwirkung zwischen der Modellbildung und der Generierung zukünftiger Daten nur ungenügend. Aus diesem Grund führen wir in dieser Arbeit das Konzept der Prädiktionsspiele ein. Die Modellbildung wird dabei als mathematisches Spiel zwischen einer lernenden und einer datengenerierenden Instanz beschrieben. Die spieltheoretische Modellierung ermöglicht es uns, die Interaktion der beiden Parteien exakt zu beschreiben. Dies umfasst die jeweils verfolgten Ziele, ihre Handlungsmöglichkeiten, ihr Wissen übereinander und die zeitliche Reihenfolge, in der sie agieren.
Insbesondere die Reihenfolge der Spielzüge hat einen entscheidenden Einfluss auf die spieltheoretisch optimale Lösung. Wir betrachten zunächst den Fall gleichzeitig agierender Spieler, in welchem sowohl der Lerner als auch der Datengenerierer keine Kenntnis über die Aktion des jeweils anderen Spielers haben. Wir leiten hinreichende Bedingungen her, unter welchen dieses Spiel eine Lösung in Form eines eindeutigen Nash-Gleichgewichts besitzt. Im Anschluss diskutieren wir zwei verschiedene Verfahren zur effizienten Berechnung dieses Gleichgewichts. Als zweites betrachten wir den Fall eines Stackelberg-Duopols. In diesem Prädiktionsspiel wählt der Lerner zunächst das Vorhersagemodell, woraufhin der Datengenerierer in voller Kenntnis des Modells reagiert. Wir leiten ein relaxiertes Optimierungsproblem zur Bestimmung des Stackelberg-Gleichgewichts her und stellen ein mögliches Lösungsverfahren vor. Darüber hinaus diskutieren wir, inwieweit das Stackelberg-Modell bestehende robuste Lernverfahren verallgemeinert. Abschließend untersuchen wir einen Lerner, der auf die Aktion des Datengenerierers, d.h. der Wahl der Testdaten, reagiert. In diesem Fall sind die Testdaten dem Lerner zum Zeitpunkt der Modellbildung bekannt und können in den Lernprozess einfließen. Allerdings unterliegen die Trainings- und Testdaten nicht notwendigerweise der gleichen Verteilung. Wir leiten daher ein neues integriertes sowie ein zweistufiges Lernverfahren her, welche diese Verteilungsverschiebung bei der Modellbildung berücksichtigen.
In mehreren Fallstudien zur Klassifikation von Spam-E-Mails untersuchen wir alle hergeleiteten, sowie existierende Verfahren empirisch. Wir zeigen, dass die hergeleiteten spieltheoretisch-motivierten Lernverfahren in Summe signifikant bessere Spam-Filter erzeugen als alle betrachteten Referenzverfahren.
|
243 |
Active evaluation of predictive modelsSawade, Christoph January 2012 (has links)
The field of machine learning studies algorithms that infer predictive models from data. Predictive models are applicable for many practical tasks such as spam filtering, face and handwritten digit recognition, and personalized product recommendation. In general, they are used to predict a target label for a given data instance. In order to make an informed decision about the deployment of a predictive model, it is crucial to know the model’s approximate performance. To evaluate performance, a set of labeled test instances is required that is drawn from the distribution the model will be exposed to at application time. In many practical scenarios, unlabeled test instances are readily available, but the process of labeling them can be a time- and cost-intensive task and may involve a human expert.
This thesis addresses the problem of evaluating a given predictive model accurately with minimal labeling effort. We study an active model evaluation process that selects certain instances of the data according to an instrumental sampling distribution and queries their labels. We derive sampling distributions that minimize estimation error with respect to different performance measures such as error rate, mean squared error, and F-measures. An analysis of the distribution that governs the estimator leads to confidence intervals, which indicate how precise the error estimation is. Labeling costs may vary across different instances depending on certain characteristics of the data. For instance, documents differ in their length, comprehensibility, and technical requirements; these attributes affect the time a human labeler needs to judge relevance or to assign topics. To address this, the sampling distribution is extended to incorporate instance-specific costs. We empirically study conditions under which the active evaluation processes are more accurate than a standard estimate that draws equally many instances from the test distribution.
We also address the problem of comparing the risks of two predictive models. The standard approach would be to draw instances according to the test distribution, label the selected instances, and apply statistical tests to identify significant differences. Drawing instances according to an instrumental distribution affects the power of a statistical test. We derive a sampling procedure that maximizes test power when used to select instances, and thereby minimizes the likelihood of choosing the inferior model. Furthermore, we investigate the task of comparing several alternative models; the objective of an evaluation could be to rank the models according to the risk that they incur or to identify the model with lowest risk. An experimental study shows that the active procedure leads to higher test power than the standard test in many application domains.
Finally, we study the problem of evaluating the performance of ranking functions, which are used for example for web search. In practice, ranking performance is estimated by applying a given ranking model to a representative set of test queries and manually assessing the relevance of all retrieved items for each query. We apply the concepts of active evaluation and active comparison to ranking functions and derive optimal sampling distributions for the commonly used performance measures Discounted Cumulative Gain and Expected Reciprocal Rank. Experiments on web search engine data illustrate significant reductions in labeling costs. / Maschinelles Lernen befasst sich mit Algorithmen zur Inferenz von Vorhersagemodelle aus komplexen Daten. Vorhersagemodelle sind Funktionen, die einer Eingabe – wie zum Beispiel dem Text einer E-Mail – ein anwendungsspezifisches Zielattribut – wie „Spam“ oder „Nicht-Spam“ – zuweisen. Sie finden Anwendung beim Filtern von Spam-Nachrichten, bei der Text- und Gesichtserkennung oder auch bei der personalisierten Empfehlung von Produkten. Um ein Modell in der Praxis einzusetzen, ist es notwendig, die Vorhersagequalität bezüglich der zukünftigen Anwendung zu schätzen. Für diese Evaluierung werden Instanzen des Eingaberaums benötigt, für die das zugehörige Zielattribut bekannt ist. Instanzen, wie E-Mails, Bilder oder das protokollierte Nutzerverhalten von Kunden, stehen häufig in großem Umfang zur Verfügung. Die Bestimmung der zugehörigen Zielattribute ist jedoch ein manueller Prozess, der kosten- und zeitaufwendig sein kann und mitunter spezielles Fachwissen erfordert.
Ziel dieser Arbeit ist die genaue Schätzung der Vorhersagequalität eines gegebenen Modells mit einer minimalen Anzahl von Testinstanzen. Wir untersuchen aktive Evaluierungsprozesse, die mit Hilfe einer Wahrscheinlichkeitsverteilung Instanzen auswählen, für die das Zielattribut bestimmt wird. Die Vorhersagequalität kann anhand verschiedener Kriterien, wie der Fehlerrate, des mittleren quadratischen Verlusts oder des F-measures, bemessen werden. Wir leiten die Wahrscheinlichkeitsverteilungen her, die den Schätzfehler bezüglich eines gegebenen Maßes minimieren. Der verbleibende Schätzfehler lässt sich anhand von Konfidenzintervallen quantifizieren, die sich aus der Verteilung des Schätzers ergeben. In vielen Anwendungen bestimmen individuelle Eigenschaften der Instanzen die Kosten, die für die Bestimmung des Zielattributs anfallen. So unterscheiden sich Dokumente beispielsweise in der Textlänge und dem technischen Anspruch. Diese Eigenschaften beeinflussen die Zeit, die benötigt wird, mögliche Zielattribute wie das Thema oder die Relevanz zuzuweisen. Wir leiten unter Beachtung dieser instanzspezifischen Unterschiede die optimale Verteilung her. Die entwickelten Evaluierungsmethoden werden auf verschiedenen Datensätzen untersucht. Wir analysieren in diesem Zusammenhang Bedingungen, unter denen die aktive Evaluierung genauere Schätzungen liefert als der Standardansatz, bei dem Instanzen zufällig aus der Testverteilung gezogen werden.
Eine verwandte Problemstellung ist der Vergleich von zwei Modellen. Um festzustellen, welches Modell in der Praxis eine höhere Vorhersagequalität aufweist, wird eine Menge von Testinstanzen ausgewählt und das zugehörige Zielattribut bestimmt. Ein anschließender statistischer Test erlaubt Aussagen über die Signifikanz der beobachteten Unterschiede. Die Teststärke hängt von der Verteilung ab, nach der die Instanzen ausgewählt wurden. Wir bestimmen die Verteilung, die die Teststärke maximiert und damit die Wahrscheinlichkeit minimiert, sich für das schlechtere Modell zu entscheiden. Des Weiteren geben wir eine Möglichkeit an, den entwickelten Ansatz für den Vergleich von mehreren Modellen zu verwenden. Wir zeigen empirisch, dass die aktive Evaluierungsmethode im Vergleich zur zufälligen Auswahl von Testinstanzen in vielen Anwendungen eine höhere Teststärke aufweist.
Im letzten Teil der Arbeit werden das Konzept der aktiven Evaluierung und das des aktiven Modellvergleichs auf Rankingprobleme angewendet. Wir leiten die optimalen Verteilungen für das Schätzen der Qualitätsmaße Discounted Cumulative Gain und Expected Reciprocal Rank her. Eine empirische Studie zur Evaluierung von Suchmaschinen zeigt, dass die neu entwickelten Verfahren signifikant genauere Schätzungen der Rankingqualität liefern als die untersuchten Referenzverfahren.
|
244 |
Interactive rendering techniques for focus+context visualization of 3D geovirtual environmentsTrapp, Matthias January 2013 (has links)
This thesis introduces a collection of new real-time rendering techniques and applications for focus+context visualization of interactive 3D geovirtual environments such as virtual 3D city and landscape models. These environments are generally characterized by a large number of objects and are of high complexity with respect to geometry and textures. For these reasons, their interactive 3D rendering represents a major challenge. Their 3D depiction implies a number of weaknesses such as occlusions, cluttered image contents, and partial screen-space usage.
To overcome these limitations and, thus, to facilitate the effective communication of geo-information, principles of focus+context visualization can be used for the design of real-time 3D rendering techniques for 3D geovirtual environments (see Figure). In general, detailed views of a 3D geovirtual environment are combined seamlessly with abstracted views of the context within a single image. To perform the real-time image synthesis required for interactive visualization, dedicated parallel processors (GPUs) for rasterization of computer graphics primitives are used. For this purpose, the design and implementation of appropriate data structures and rendering pipelines are necessary. The contribution of this work comprises the following five real-time rendering methods:
• The rendering technique for 3D generalization lenses enables the combination of different 3D city geometries (e.g., generalized versions of a 3D city model) in a single image in real time. The method is based on a generalized and fragment-precise clipping approach, which uses a compressible, raster-based data structure. It enables the combination of detailed views in the focus area with the representation of abstracted variants in the context area.
• The rendering technique for the interactive visualization of dynamic raster data in 3D geovirtual environments facilitates the rendering of 2D surface lenses. It enables a flexible combination of different raster layers (e.g., aerial images or videos) using projective texturing for decoupling image and geometry data. Thus, various overlapping and nested 2D surface lenses of different contents can be visualized interactively.
• The interactive rendering technique for image-based deformation of 3D geovirtual environments enables the real-time image synthesis of non-planar projections, such as cylindrical and spherical projections, as well as multi-focal 3D fisheye-lenses and the combination of planar and non-planar projections.
• The rendering technique for view-dependent multi-perspective views of 3D geovirtual environments, based on the application of global deformations to the 3D scene geometry, can be used for synthesizing interactive panorama maps to combine detailed views close to the camera (focus) with abstract views in the background (context). This approach reduces occlusions, increases the usage the available screen space, and reduces the overload of image contents.
• The object-based and image-based rendering techniques for highlighting objects and focus areas inside and outside the view frustum facilitate preattentive perception.
The concepts and implementations of interactive image synthesis for focus+context visualization and their selected applications enable a more effective communication of spatial information, and provide building blocks for design and development of new applications and systems in the field of 3D geovirtual environments. / Die Darstellung immer komplexerer raumbezogener Information durch Geovisualisierung stellt die existierenden Technologien und den Menschen ständig vor neue Herausforderungen. In dieser Arbeit werden fünf neue, echtzeitfähige Renderingverfahren und darauf basierende Anwendungen für die Fokus-&-Kontext-Visualisierung von interaktiven geovirtuellen 3D-Umgebungen – wie virtuelle 3D-Stadt- und Landschaftsmodelle – vorgestellt. Die große Menge verschiedener darzustellender raumbezogener Information in 3D-Umgebungen führt oft zu einer hohen Anzahl unterschiedlicher Objekte und somit zu einer hohen Geometrie- und Texturkomplexität. In der Folge verlieren 3D-Darstellungen durch Verdeckungen, überladene Bildinhalte und eine geringe Ausnutzung des zur Verfügung stehenden Bildraumes an Informationswert.
Um diese Beschränkungen zu kompensieren und somit die Kommunikation raumbezogener Information zu verbessern, kann das Prinzip der Fokus-&-Kontext-Visualisierung angewendet werden. Hierbei wird die für den Nutzer wesentliche Information als detaillierte Ansicht im Fokus mit abstrahierter Kontextinformation nahtlos miteinander kombiniert. Um das für die interaktive Visualisierung notwendige Echtzeit-Rendering durchzuführen, können spezialisierte Parallelprozessoren für die Rasterisierung von computergraphischen Primitiven (GPUs) verwendet werden. Dazu ist die Konzeption und Implementierung von geeigneten Datenstrukturen und Rendering-Pipelines notwendig. Der Beitrag dieser Arbeit umfasst die folgenden fünf Renderingverfahren.
• Das Renderingverfahren für interaktive 3D-Generalisierungslinsen: Hierbei wird die Kombination unterschiedlicher 3D-Szenengeometrien, z. B. generalisierte Varianten eines 3DStadtmodells, in einem Bild ermöglicht. Das Verfahren basiert auf einem generalisierten Clipping-Ansatz, der es erlaubt, unter Verwendung einer komprimierbaren, rasterbasierten Datenstruktur beliebige Bereiche einer 3D-Szene freizustellen bzw. zu kappen. Somit lässt sich eine Kombination von detaillierten Ansichten im Fokusbereich mit der Darstellung einer abstrahierten Variante im Kontextbereich implementieren.
• Das Renderingverfahren zur Visualisierung von dynamischen Raster-Daten in geovirtuellen 3D-Umgebungen zur Darstellung von 2D-Oberflächenlinsen: Die Verwendung von projektiven Texturen zur Entkoppelung von Bild- und Geometriedaten ermöglicht eine flexible Kombination verschiedener Rasterebenen (z.B. Luftbilder oder Videos). Somit können verschiedene überlappende sowie verschachtelte 2D-Oberflächenlinsen mit unterschiedlichen Dateninhalten interaktiv visualisiert werden.
• Das Renderingverfahren zur bildbasierten Deformation von geovirtuellen 3D-Umgebungen: Neben der interaktiven Bildsynthese von nicht-planaren Projektionen, wie beispielsweise zylindrischen oder sphärischen Panoramen, lassen sich mit diesem Verfahren multifokale 3D-Fischaugen-Linsen erzeugen sowie planare und nicht-planare Projektionen miteinander kombinieren.
• Das Renderingverfahren für die Generierung von sichtabhängigen multiperspektivischen Ansichten von geovirtuellen 3D-Umgebungen: Das Verfahren basiert auf globalen Deformationen der 3D-Szenengeometrie und kann zur Erstellung von interaktiven 3D-Panoramakarten verwendet werden, welche beispielsweise detaillierte Absichten nahe der virtuellen Kamera (Fokus) mit abstrakten Ansichten im Hintergrund (Kontext) kombinieren. Dieser Ansatz reduziert Verdeckungen, nutzt den zur Verfügung stehenden Bildraum in verbesserter Weise aus und reduziert das Überladen von Bildinhalten.
• Objekt-und bildbasierte Renderingverfahren für die Hervorhebung von Fokus-Objekten und Fokus-Bereichen innerhalb und außerhalb des sichtbaren Bildausschnitts, um die präattentive Wahrnehmung eines Benutzers besser zu unterstützen.
Die in dieser Arbeit vorgestellten Konzepte, Entwürfe und Implementierungen von interaktiven Renderingverfahren zur Fokus-&-Kontext-Visualisierung sowie deren ausgewählte Anwendungen ermöglichen eine effektivere Kommunikation raumbezogener Information und repräsentieren softwaretechnische Bausteine für die Entwicklung neuer Anwendungen und Systeme im Bereich der geovirtuellen 3D-Umgebungen.
|
245 |
HPI Future SOC Lab : proceedings 2011January 2013 (has links)
Together with industrial partners Hasso-Plattner-Institut (HPI) is currently establishing a “HPI Future SOC Lab,” which will provide a complete infrastructure for research on on-demand systems. The lab utilizes the latest, multi/many-core hardware and its practical implementation and testing as well as further development.
The necessary components for such a highly ambitious project are provided by renowned companies: Fujitsu and Hewlett Packard provide their latest 4 and 8-way servers with 1-2 TB RAM, SAP will make available its latest Business byDesign (ByD) system in its most complete version. EMC² provides high performance storage systems and VMware offers virtualization solutions. The lab will operate on the basis of real data from large enterprises.
The HPI Future SOC Lab, which will be open for use by interested researchers also from other universities, will provide an opportunity to study real-life complex systems and follow new ideas all the way to their practical implementation and testing.
This technical report presents results of research projects executed in 2011. Selected projects have presented their results on June 15th and October 26th 2011 at the Future SOC Lab Day events. / In Kooperation mit Partnern aus der Industrie etabliert das Hasso-Plattner-Institut (HPI) ein “HPI Future SOC Lab”, das eine komplette Infrastruktur von hochkomplexen on-demand Systemen auf neuester, am Markt noch nicht verfügbarer, massiv paralleler (multi-/many-core) Hardware mit enormen Hauptspeicherkapazitäten und dafür konzipierte Software bereitstellt. Das HPI Future SOC Lab verfügt über prototypische 4- und 8-way Intel 64-Bit Serversysteme von Fujitsu und Hewlett-Packard mit 32- bzw. 64-Cores und 1 - 2 TB Hauptspeicher. Es kommen weiterhin hochperformante Speichersysteme von EMC². SAP stellt ihre neueste Business by Design (ByD) Software zur Verfügung und auch komplexe reale Unternehmensdaten stehen zur Verfügung, auf die für Forschungszwecke zugegriffen werden kann.
Interessierte Wissenschaftler aus universitären und außeruniversitären Forschungsinstitutionen können im HPI Future SOC Lab zukünftige hoch-komplexe IT-Systeme untersuchen, neue Ideen / Datenstrukturen / Algorithmen entwickeln und bis hin zur praktischen Erprobung verfolgen.
In diesem Technischen Bericht werden die Ergebnisse der Forschungsprojekte des Jahres 2011 vorgestellt. Ausgewählte Projekte stellten ihre Ergebnisse am 15. Juni 2011 und 26. Oktober 2011 im Rahmen der Future SOC Lab Tag Veranstaltungen vor.
|
246 |
Repairing event logs using stochastic process modelsRogge-Solti, Andreas, Mans, Ronny S., van der Aalst, Wil M. P., Weske, Mathias January 2013 (has links)
Companies strive to improve their business processes in order to remain competitive. Process mining aims to infer meaningful insights from process-related data and attracted the attention of practitioners, tool-vendors, and researchers in recent years. Traditionally, event logs are assumed to describe the as-is situation. But this is not necessarily the case in environments where logging may be compromised due to manual logging. For example, hospital staff may need to manually enter information regarding the patient’s treatment. As a result, events or timestamps may be missing or incorrect.
In this paper, we make use of process knowledge captured in process models, and provide a method to repair missing events in the logs. This way, we facilitate analysis of incomplete logs. We realize the repair by combining stochastic Petri nets, alignments, and Bayesian networks. We evaluate the results using both synthetic data and real event data from a Dutch hospital. / Unternehmen optimieren ihre Geschäftsprozesse laufend um im kompetitiven Umfeld zu bestehen. Das Ziel von Process Mining ist es, bedeutende Erkenntnisse aus prozessrelevanten Daten zu extrahieren. In den letzten Jahren sorgte Process Mining bei Experten, Werkzeugherstellern und Forschern zunehmend für Aufsehen. Traditionell wird dabei angenommen, dass Ereignisprotokolle die tatsächliche Ist-Situation widerspiegeln. Dies ist jedoch nicht unbedingt der Fall, wenn prozessrelevante Ereignisse manuell erfasst werden. Ein Beispiel hierfür findet sich im Krankenhaus, in dem das Personal Behandlungen meist manuell dokumentiert. Vergessene oder fehlerhafte Einträge in Ereignisprotokollen sind in solchen Fällen nicht auszuschließen.
In diesem technischen Bericht wird eine Methode vorgestellt, die das Wissen aus Prozessmodellen und historischen Daten nutzt um fehlende Einträge in Ereignisprotokollen zu reparieren. Somit wird die Analyse unvollständiger Ereignisprotokolle erleichtert. Die Reparatur erfolgt mit einer Kombination aus stochastischen Petri Netzen, Alignments und Bayes'schen Netzen. Die Ergebnisse werden mit synthetischen Daten und echten Daten eines holländischen Krankenhauses evaluiert.
|
247 |
Context-aware semantic analysis of video metadataSteinmetz, Nadine January 2013 (has links)
Im Vergleich zu einer stichwortbasierten Suche ermöglicht die semantische Suche ein präziseres und anspruchsvolleres Durchsuchen von (Web)-Dokumenten, weil durch die explizite Semantik Mehrdeutigkeiten von natürlicher Sprache vermieden und semantische Beziehungen in das Suchergebnis einbezogen werden können. Eine semantische, Entitäten-basierte Suche geht von einer Anfrage mit festgelegter Bedeutung aus und liefert nur Dokumente, die mit dieser Entität annotiert sind als Suchergebnis. Die wichtigste Voraussetzung für eine Entitäten-zentrierte Suche stellt die Annotation der Dokumente im Archiv mit Entitäten und Kategorien dar. Textuelle Informationen werden analysiert und mit den entsprechenden Entitäten und Kategorien versehen, um den Inhalt semantisch erschließen zu können. Eine manuelle Annotation erfordert Domänenwissen und ist sehr zeitaufwendig. Die semantische Annotation von Videodokumenten erfordert besondere Aufmerksamkeit, da inhaltsbasierte Metadaten von Videos aus verschiedenen Quellen stammen, verschiedene Eigenschaften und Zuverlässigkeiten besitzen und daher nicht wie Fließtext behandelt werden können. Die vorliegende Arbeit stellt einen semantischen Analyseprozess für Video-Metadaten vor. Die Eigenschaften der verschiedenen Metadatentypen werden analysiert und ein Konfidenzwert ermittelt. Dieser Wert spiegelt die Korrektheit und die wahrscheinliche Mehrdeutigkeit eines Metadatums wieder. Beginnend mit dem Metadatum mit dem höchsten Konfidenzwert wird der Analyseprozess innerhalb eines Kontexts in absteigender Reihenfolge des Konfidenzwerts durchgeführt. Die bereits analysierten Metadaten dienen als Referenzpunkt für die weiteren Analysen. So kann eine möglichst korrekte Analyse der heterogen strukturierten Daten eines Kontexts sichergestellt werden. Am Ende der Analyse eines Metadatums wird die für den Kontext relevanteste Entität aus einer Liste von Kandidaten identifiziert - das Metadatum wird disambiguiert. Hierfür wurden verschiedene Disambiguierungsalgorithmen entwickelt, die Beschreibungstexte und semantische Beziehungen der Entitätenkandidaten zum gegebenen Kontext in Betracht ziehen. Der Kontext für die Disambiguierung wird für jedes Metadatum anhand der Eigenschaften und Konfidenzwerte zusammengestellt. Der vorgestellte Analyseprozess ist an zwei Hypothesen angelehnt: Um die Analyseergebnisse verbessern zu können, sollten die Metadaten eines Kontexts in absteigender Reihenfolge ihres Konfidenzwertes verarbeitet werden und die Kontextgrenzen von Videometadaten sollten durch Segmentgrenzen definiert werden, um möglichst Kontexte mit kohärentem Inhalt zu erhalten. Durch ausführliche Evaluationen konnten die gestellten Hypothesen bestätigt werden. Der Analyseprozess wurden gegen mehrere State-of-the-Art Methoden verglichen und erzielt verbesserte Ergebnisse in Bezug auf Recall und Precision, besonders für Metadaten, die aus weniger zuverlässigen Quellen stammen. Der Analyseprozess ist Teil eines Videoanalyse-Frameworks und wurde bereits erfolgreich in verschiedenen Projekten eingesetzt. / The Semantic Web provides information contained in the World Wide Web as machine-readable facts. In comparison to a keyword-based inquiry, semantic search enables a more sophisticated exploration of web documents. By clarifying the meaning behind entities, search results are more precise and the semantics simultaneously enable an exploration of semantic relationships. However, unlike keyword searches, a semantic entity-focused search requires that web documents are annotated with semantic representations of common words and named entities. Manual semantic annotation of (web) documents is time-consuming; in response, automatic annotation services have emerged in recent years. These annotation services take continuous text as input, detect important key terms and named entities and annotate them with semantic entities contained in widely used semantic knowledge bases, such as Freebase or DBpedia. Metadata of video documents require special attention. Semantic analysis approaches for continuous text cannot be applied, because information of a context in video documents originates from multiple sources possessing different reliabilities and characteristics. This thesis presents a semantic analysis approach consisting of a context model and a disambiguation algorithm for video metadata. The context model takes into account the characteristics of video metadata and derives a confidence value for each metadata item. The confidence value represents the level of correctness and ambiguity of the textual information of the metadata item. The lower the ambiguity and the higher the prospective correctness, the higher the confidence value. The metadata items derived from the video metadata are analyzed in a specific order from high to low confidence level. Previously analyzed metadata are used as reference points in the context for subsequent disambiguation. The contextually most relevant entity is identified by means of descriptive texts and semantic relationships to the context. The context is created dynamically for each metadata item, taking into account the confidence value and other characteristics. The proposed semantic analysis follows two hypotheses: metadata items of a context should be processed in descendent order of their confidence value, and the metadata that pertains to a context should be limited by content-based segmentation boundaries. The evaluation results support the proposed hypotheses and show increased recall and precision for annotated entities, especially for metadata that originates from sources with low reliability. The algorithms have been evaluated against several state-of-the-art annotation approaches. The presented semantic analysis process is integrated into a video analysis framework and has been successfully applied in several projects for the purpose of semantic video exploration of videos.
|
248 |
Evolution of model-driven engineering settings in practiceHebig, Regina January 2014 (has links)
Nowadays, software systems are getting more and more complex. To tackle this challenge most diverse techniques, such as design patterns, service oriented architectures (SOA), software development processes, and model-driven engineering (MDE), are used to improve productivity, while time to market and quality of the products stay stable. Multiple of these techniques are used in parallel to profit from their benefits. While the use of sophisticated software development processes is standard, today, MDE is just adopted in practice.
However, research has shown that the application of MDE is not always successful. It is not fully understood when advantages of MDE can be used and to what degree MDE can also be disadvantageous for productivity. Further, when combining different techniques that aim to affect the same factor (e.g. productivity) the question arises whether these techniques really complement each other or, in contrast, compensate their effects. Due to that, there is the concrete question how MDE and other techniques, such as software development process, are interrelated. Both aspects (advantages and disadvantages for productivity as well as the interrelation to other techniques) need to be understood to identify risks relating to the productivity impact of MDE.
Before studying MDE's impact on productivity, it is necessary to investigate the range of validity that can be reached for the results. This includes two questions. First, there is the question whether MDE's impact on productivity is similar for all approaches of adopting MDE in practice. Second, there is the question whether MDE's impact on productivity for an approach of using MDE in practice remains stable over time. The answers for both questions are crucial for handling risks of MDE, but also for the design of future studies on MDE success.
This thesis addresses these questions with the goal to support adoption of MDE in future. To enable a differentiated discussion about MDE, the term MDE setting'' is introduced. MDE setting refers to the applied technical setting, i.e. the employed manual and automated activities, artifacts, languages, and tools. An MDE setting's possible impact on productivity is studied with a focus on changeability and the interrelation to software development processes. This is done by introducing a taxonomy of changeability concerns that might be affected by an MDE setting. Further, three MDE traits are identified and it is studied for which manifestations of these MDE traits software development processes are impacted. To enable the assessment and evaluation of an MDE setting's impacts, the Software Manufacture Model language is introduced. This is a process modeling language that allows to reason about how relations between (modeling) artifacts (e.g. models or code files) change during application of manual or automated development activities. On that basis, risk analysis techniques are provided. These techniques allow identifying changeability risks and assessing the manifestations of the MDE traits (and with it an MDE setting's impact on software development processes).
To address the range of validity, MDE settings from practice and their evolution histories were capture in context of this thesis. First, this data is used to show that MDE settings cover the whole spectrum concerning their impact on changeability or interrelation to software development processes. Neither it is seldom that MDE settings are neutral for processes nor is it seldom that MDE settings have impact on processes. Similarly, the impact on changeability differs relevantly. Second, a taxonomy of evolution of MDE settings is introduced. In that context it is discussed to what extent different types of changes on an MDE setting can influence this MDE setting's impact on changeability and the interrelation to processes. The category of structural evolution, which can change these characteristics of an MDE setting, is identified. The captured MDE settings from practice are used to show that structural evolution exists and is common. In addition, some examples of structural evolution steps are collected that actually led to a change in the characteristics of the respective MDE settings. Two implications are: First, the assessed diversity of MDE settings evaluates the need for the analysis techniques that shall be presented in this thesis. Second, evolution is one explanation for the diversity of MDE settings in practice.
To summarize, this thesis studies the nature and evolution of MDE settings in practice. As a result support for the adoption of MDE settings is provided in form of techniques for the identification of risks relating to productivity impacts. / Um die steigende Komplexität von Softwaresystemen beherrschen zu können, werden heutzutage unterschiedlichste Techniken gemeinsam eingesetzt. Beispiele sind, Design Pattern, Serviceorientierte Architekturen, Softwareentwicklungsprozesse oder modellgetriebene Entwicklung (MDE). Ziel dabei ist die Erhöhung der Produktivität, so dass Entwicklungsdauer und Qualität stabil bleiben können. Während hoch entwickelte Softwareentwicklungsprozesse heute schon standardmäßig genutzt werden, fangen Firmen gerade erst an MDE einzusetzen.
Jedoch zeigen Studien, dass der erhoffte Erfolg von MDE nicht jedes Mal eintritt. So scheint es, dass noch kein ausreichendes Verständnis dafür existiert, inwiefern MDE auch Nachteile für die Produktivität bergen kann. Zusätzlich ist bei der Kombination von unterschiedlichen Techniken damit zu rechnen, dass die erreichten Effekte sich gegenseitig negieren anstatt sich zu ergänzen. Hier entsteht die Frage wie MDE und andere Techniken, wie Softwareentwicklungsprozesse, zusammenwirken. Beide Aspekte, der direkte Einfluss auf Produktivität und die Wechselwirkung mit anderen Techniken, müssen aber verstanden werden um den Risiken für den Produktivitätseinfluss von MDE zu identifizieren. Außerdem, muss auch die Generalisierbarkeit dieser Aspekte untersucht werden. Das betrifft die Fragen, ob der Produktivitätseinfluss bei jedem Einsatz von MDE gleich ist und ob der Produktivitätseinfluss über die Zeit stabil bleibt. Beide Fragen sind entscheidend, will man geeignete Risikobehandlung ermöglichen oder künftige Studien zum Erfolg von MDE planen.
Diese Dissertation widmet sich der genannten Fragen. Dafür wird zuerst der Begriff MDE Setting'' eingeführt um eine differenzierte Betrachtung von MDE-Verwendungen zu ermöglichen. Ein MDE Setting ist dabei der technische Aufbau, inklusive manueller und automatische Aktivitäten, Artefakten, Sprachen und Werkzeugen. Welche Produktivitätseinflüsse von MDE Settings möglich sind, wird in der Dissertation mit Fokus auf Änderbarkeit und die Wechselwirkung mit Softwareentwicklungsprozessen betrachtet. Dafür wird einerseits eine Taxonomie von Changeability Concerns'' (potentiell betroffene Aspekte von Änderbarkeit) vorgestellt. Zusätzlich, werden drei MDE Traits'' (Charakteristika von MDE Settings die unterschiedlich ausgeprägt sein können) identifiziert. Es wird untersucht welche Ausprägungen dieser MDE Traits Einfluss auf Softwareentwicklungsprozesse haben können. Um die Erfassung und Bewertung dieser Einflüsse zu ermöglichen wird die Software Manufaktur Modell Sprache eingeführt. Diese Prozessmodellierungssprache ermöglicht eine Beschreibung, der Veränderungen von Artefaktbeziehungen während der Anwendung von Aktivitäten (z.B. Codegenerierung). Weiter werden auf Basis dieser Modelle, Analysetechniken eingeführt. Diese Analysetechniken erlauben es Risiken für bestimmte Changeability Concerns aufzudecken sowie die Ausprägung von MDE Traits zu erfassen (und damit den Einfluss auf Softwareentwicklungsprozesse).
Um die Generalisierbarkeit der Ergebnisse zu studieren, wurden im Rahmen der Arbeit mehrere MDE Settings aus der Praxis sowie teilweise deren Evolutionshistorien erhoben. Daran wird gezeigt, dass MDE Settings sich in einem breiten Spektrum von Einflüssen auf Änderbarkeit und Prozesse bewegen. So ist es weder selten, dass ein MDE Setting neutral für Prozesse ist, noch, dass ein MDE Setting Einschränkungen für einen Prozess impliziert. Ähnlich breit gestreut ist der Einfluss auf die Änderbarkeit.Zusätzlich, wird diskutiert, inwiefern unterschiedliche Evolutionstypen den Einfluss eines MDE Settings auf Änderbarkeit und Prozesse verändern können. Diese Diskussion führt zur Identifikation der strukturellen Evolution'', die sich stark auf die genannten Charakteristika eines MDE Settings auswirken kann. Mithilfe der erfassten MDE Settings, wird gezeigt, dass strukturelle Evolution in der Praxis üblich ist. Schließlich, werden Beispiele aufgedeckt bei denen strukturelle Evolutionsschritte tatsächlich zu einer Änderung der Charakteristika des betreffenden MDE Settings geführt haben. Einerseits bestärkt die ermittelte Vielfalt den Bedarf nach Analysetechniken, wie sie in dieser Dissertation eingeführt werden. Zum Anderen erscheint es nun, dass Evolution zumindest zum Teil die unterschiedlichen Ausprägungen von MDE Settings erklärt.
Zusammenfassend wird studiert wie MDE Settings und deren Evolution in der Praxis ausgeprägt sind. Als Ergebnis, werden Techniken zur Identifikation von Risiken für Produktivitätseinflüsse bereitgestellt um den Einsatz von MDE Settings zu unterstützen.
|
249 |
HPI future SOC lab : proceedings 2013January 2014 (has links)
The “HPI Future SOC Lab” is a cooperation of the Hasso-Plattner-Institut (HPI) and industrial partners. Its mission is to enable and promote exchange and interaction between the research community and the industrial partners.
The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard- and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies.
This technical report presents results of research projects executed in 2013. Selected projects have presented their results on April 10th and September 24th 2013 at the Future SOC Lab Day events. / Das Future SOC Lab am HPI ist eine Kooperation des Hasso-Plattner-Instituts mit verschiedenen Industriepartnern. Seine Aufgabe ist die Ermöglichung und Förderung des Austausches zwischen Forschungsgemeinschaft und Industrie.
Am Lab wird interessierten Wissenschaftlern eine Infrastruktur von neuester Hard- und Software kostenfrei für Forschungszwecke zur Verfügung gestellt. Dazu zählen teilweise noch nicht am Markt verfügbare Technologien, die im normalen Hochschulbereich in der Regel nicht zu finanzieren wären, bspw. Server mit bis zu 64 Cores und 2 TB Hauptspeicher. Diese Angebote richten sich insbesondere an Wissenschaftler in den Gebieten Informatik und Wirtschaftsinformatik. Einige der Schwerpunkte sind Cloud Computing, Parallelisierung und In-Memory Technologien.
In diesem Technischen Bericht werden die Ergebnisse der Forschungsprojekte des Jahres 2013 vorgestellt. Ausgewählte Projekte stellten ihre Ergebnisse am 10. April 2013 und 24. September 2013 im Rahmen der Future SOC Lab Tag Veranstaltungen vor.
|
250 |
HPI future SOC lab : proceedings 2012January 2013 (has links)
The “HPI Future SOC Lab” is a cooperation of the Hasso-Plattner-Institut (HPI) and industrial partners. Its mission is to enable and promote exchange and interaction between the research community and the industrial partners.
The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard- and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies.
This technical report presents results of research projects executed in 2012. Selected projects have presented their results on June 18th and November 26th 2012 at the Future SOC Lab Day events. / Das Future SOC Lab am HPI ist eine Kooperation des Hasso-Plattner-Instituts mit verschiedenen Industriepartnern. Seine Aufgabe ist die Ermöglichung und Förderung des Austausches zwischen Forschungsgemeinschaft und Industrie.
Am Lab wird interessierten Wissenschaftlern eine Infrastruktur von neuester Hard- und Software kostenfrei für Forschungszwecke zur Verfügung gestellt. Dazu zählen teilweise noch nicht am Markt verfügbare Technologien, die im normalen Hochschulbereich in der Regel nicht zu finanzieren wären, bspw. Server mit bis zu 64 Cores und 2 TB Hauptspeicher. Diese Angebote richten sich insbesondere an Wissenschaftler in den Gebieten Informatik und Wirtschaftsinformatik. Einige der Schwerpunkte sind Cloud Computing, Parallelisierung und In-Memory Technologien.
In diesem Technischen Bericht werden die Ergebnisse der Forschungsprojekte des Jahres 2012 vorgestellt. Ausgewählte Projekte stellten ihre Ergebnisse am 18. April 2012 und 14. November 2012 im Rahmen der Future SOC Lab Tag Veranstaltungen vor.
|
Page generated in 0.0285 seconds