• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 11
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 116
  • 116
  • 54
  • 53
  • 52
  • 52
  • 48
  • 42
  • 33
  • 30
  • 28
  • 20
  • 18
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Database System Acceleration on FPGAs

Moghaddamfar, Mehdi 30 May 2023 (has links)
Relational database systems provide various services and applications with an efficient means for storing, processing, and retrieving their data. The performance of these systems has a direct impact on the quality of service of the applications that rely on them. Therefore, it is crucial that database systems are able to adapt and grow in tandem with the demands of these applications, ensuring that their performance scales accordingly. In the past, Moore's law and algorithmic advancements have been sufficient to meet these demands. However, with the slowdown of Moore's law, researchers have begun exploring alternative methods, such as application-specific technologies, to satisfy the more challenging performance requirements. One such technology is field-programmable gate arrays (FPGAs), which provide ideal platforms for developing and running custom architectures for accelerating database systems. The goal of this thesis is to develop a domain-specific architecture that can enhance the performance of in-memory database systems when executing analytical queries. Our research is guided by a combination of academic and industrial requirements that seek to strike a balance between generality and performance. The former ensures that our platform can be used to process a diverse range of workloads, while the latter makes it an attractive solution for high-performance use cases. Throughout this thesis, we present the development of a system-on-chip for database system acceleration that meets our requirements. The resulting architecture, called CbMSMK, is capable of processing the projection, sort, aggregation, and equi-join database operators and can also run some complex TPC-H queries. CbMSMK employs a shared sort-merge pipeline for executing all these operators, which results in an efficient use of FPGA resources. This approach enables the instantiation of multiple acceleration cores on the FPGA, allowing it to serve multiple clients simultaneously. CbMSMK can process both arbitrarily deep and wide tables efficiently. The former is achieved through the use of the sort-merge algorithm which utilizes the FPGA RAM for buffering intermediate sort results. The latter is achieved through the use of KeRRaS, a novel variant of the forward radix sort algorithm introduced in this thesis. KeRRaS allows CbMSMK to process a table a few columns at a time, incrementally generating the final result through multiple iterations. Given that acceleration is a key objective of our work, CbMSMK benefits from many performance optimizations. For instance, multi-way merging is employed to reduce the number of merge passes required for the execution of the sort-merge algorithm, thus improving the performance of all our pipeline-breaking operators. Another example is our in-depth analysis of early aggregation, which led to the development of a novel cache-based algorithm that significantly enhances aggregation performance. Our experiments demonstrate that CbMSMK performs on average 5 times faster than the state-of-the-art CPU-based database management system MonetDB.:I Database Systems & FPGAs 1 INTRODUCTION 1.1 Databases & the Importance of Performance 1.2 Accelerators & FPGAs 1.3 Requirements 1.4 Outline & Summary of Contributions 2 BACKGROUND ON DATABASE SYSTEMS 2.1 Databases 2.1.1 Storage Model 2.1.2 Storage Medium 2.2 Database Operators 2.2.1 Projection 2.2.2 Filter 2.2.3 Sort 2.2.4 Aggregation 2.2.5 Join 2.2.6 Operator Classification 2.3 Database Queries 2.4 Impact of Acceleration 3 BACKGROUND ON FPGAS 3.1 FPGA 3.1.1 Logic Element 3.1.2 Block RAM (BRAM) 3.1.3 Digital Signal Processor (DSP) 3.1.4 IO Element 3.1.5 Programmable Interconnect 3.2 FPGADesignFlow 3.2.1 Specifications 3.2.2 RTL Description 3.2.3 Verification 3.2.4 Synthesis, Mapping, Placement, and Routing 3.2.5 TimingAnalysis 3.2.6 Bitstream Generation and FPGA Programming 3.3 Implementation Quality Metrics 3.4 FPGA Cards 3.5 Benefits of Using FPGAs 3.6 Challenges of Using FPGAs 4 RELATED WORK 4.1 Summary of Related Work 4.2 Platform Type 4.2.1 Accelerator Card 4.2.2 Coprocessor 4.2.3 Smart Storage 4.2.4 Network Processor 4.3 Implementation 4.3.1 Loop-based implementation 4.3.2 Sort-based Implementation 4.3.3 Hash-based Implementation 4.3.4 Mixed Implementation 4.4 A Note on Quantitative Performance Comparisons II Cache-Based Morphing Sort-Merge with KeRRaS (CbMSMK) 5 OBJECTIVES AND ARCHITECTURE OVERVIEW 5.1 From Requirements to Objectives 5.2 Architecture Overview 5.3 Outlineof Part II 6 COMPARATIVE ANALYSIS OF OPENCL AND RTL FOR SORT-MERGE PRIMITIVES ON FPGAS 6.1 Programming FPGAs 6.2 RelatedWork 6.3 Architecture 6.3.1 Global Architecture 6.3.2 Sorter Architecture 6.3.3 Merger Architecture 6.3.4 Scalability and Resource Adaptability 6.4 Experiments 6.4.1 OpenCL Sort-Merge Implementation 6.4.2 RTLSorters 6.4.3 RTLMergers 6.4.4 Hybrid OpenCL-RTL Sort-Merge Implementation 6.5 Summary & Discussion 7 RESOURCE-EFFICIENT ACCELERATION OF PIPELINE-BREAKING DATABASE OPERATORS ON FPGAS 7.1 The Case for Resource Efficiency 7.2 Related Work 7.3 Architecture 7.3.1 Sorters 7.3.2 Sort-Network 7.3.3 X:Y Mergers 7.3.4 Merge-Network 7.3.5 Join Materialiser (JoinMat) 7.4 Experiments 7.4.1 Experimental Setup 7.4.2 Implementation Description & Tuning 7.4.3 Sort Benchmarks 7.4.4 Aggregation Benchmarks 7.4.5 Join Benchmarks 7. Summary 8 KERRAS: COLUMN-ORIENTED WIDE TABLE PROCESSING ON FPGAS 8.1 The Scope of Database System Accelerators 8.2 Related Work 8.3 Key-Reduce Radix Sort(KeRRaS) 8.3.1 Time Complexity 8.3.2 Space Complexity (Memory Utilization) 8.3.3 Discussion and Optimizations 8.4 Architecture 8.4.1 MSM 8.4.2 MSMK: Extending MSM with KeRRaS 8.4.3 Payload, Aggregation and Join Processing 8.4.4 Limitations 8.5 Experiments 8.5.1 Experimental Setup 8.5.2 Datasets 8.5.3 MSMK vs. MSM 8.5.4 Payload-Less Benchmarks 8.5.5 Payload-Based Benchmarks 8.5.6 Flexibility 8.6 Summary 9 A STUDY OF EARLY AGGREGATION IN DATABASE QUERY PROCESSING ON FPGAS 9.1 Early Aggregation 9.2 Background & Related Work 9.2.1 Sort-Based Early Aggregation 9.2.2 Cache-Based Early Aggregation 9.3 Simulations 9.3.1 Datasets 9.3.2 Metrics 9.3.3 Sort-Based Versus Cache-Based Early Aggregation 9.3.4 Comparison of Set-Associative Caches 9.3.5 Comparison of Cache Structures 9.3.6 Comparison of Replacement Policies 9.3.7 Cache Selection Methodology 9.4 Cache System Architecture 9.4.1 Window Aggregator 9.4.2 Compressor & Hasher 9.4.3 Collision Detector 9.4.4 Collision Resolver 9.4.5 Cache 9.5 Experiments 9.5.1 Experimental Setup 9.5.2 Resource Utilization and Parameter Tuning 9.5.3 Datasets 9.5.4 Benchmarks on Synthetic Data 9.5.5 Benchmarks on Real Data 9.6 Summary 10 THE FULL PICTURE 10.1 System Architecture 10.2 Benchmarks 10.3 Meeting the Objectives III Conclusion 11 SUMMARY AND OUTLOOK ON FUTURE RESEARCH 11.1 Summary 11.2 Future Work BIBLIOGRAPHY LIST OF FIGURES LIST OF TABLES
112

Implementace chytré továrny / Implementation of Smart Factory

Marek, Pavel January 2017 (has links)
This diploma thesis is focused on the study of concept of Internet of Things, concept of Industry 4.0 and on current conditions in smart factories. Based on these studies there was designed and implemented hardware and software adjustment for industrial machines and connection of these industrial machines to communication network. There was designed and programmed the application in the C# language. This application provides a data collection from industrial machines, provides various services for machines and humans and this application is processing and viewing necessary data. For these purposes the application is using a database system based on the SQLite. These tasks of designing and implementation are summarized to system, which is determined for smart factory implementation. This implementation is created according to Industry 4.0 concept.
113

Data-Grey-BoxWeb Services in Data-Centric Environments

Lehner, Wolfgang, Habich, Dirk, Preissler, Steffen, Richly, Sebastian, Assmann, Uwe, Grasselt, Mike, Maier, Albert 27 May 2022 (has links)
In data-centric environments, for example, in the field of scientific computing, the transmission of large amount of structured data to Web services is required. In service-oriented environments (SOA), the Simple Object Access Protocol (SOAP) is commonly used as the main transport protocol. However, the resulting 'by value' data transmission approach is not efficiently applicable in data-centric environments. One challenging bottleneck of SOAP arises from the XML serialization and deserialization when processing large SOAP messages. In this paper, we present an extended Web service framework which explicitly considers the data aspects of functional Web services. Aside from the possibility to integrate specialized data transfer methods in SOA, this framework allows the efficient and scalable data handling and processing within Web services. In this case, we combine the advantages of the functional perspective (SOA) and the data perspective to efficiently support data-centric environments.
114

Database as a service (DBaaS)

Lehner, Wolfgang, Sattler, Kai-Uwe 01 November 2022 (has links)
Modern Web or ¿Eternal-Beta¿ applications necessitate a flexible and easy-to-use data management platform that allows the evolutionary development of databases and applications. The classical approach of relational database systems following strictly the ACID properties has to be extended by an extensible and easy-to-use persistency layer with specialized DB features. Using the underlying concept of Software as a Service (SaaS) also enables an economic advantage based on the ¿economy of the scale¿, where application and system environments only need to be provided once but can be used by thousands of users. Within this tutorial, we are looking at the current state-of-the-art from different perspectives. We outline foundations and techniques to build database services based on the SaaS-paradigm. We discuss requirements from a programming perspective, show different dimensions in the context of consistency and reliability, and also describe different non-functional properties under the umbrella of Service-Level agreements (SLA).
115

CyberWater: An open framework for data and model integration

Ranran Chen (18423792) 03 June 2024 (has links)
<p dir="ltr">Workflow management systems (WMSs) are commonly used to organize/automate sequences of tasks as workflows to accelerate scientific discoveries. During complex workflow modeling, a local interactive workflow environment is desirable, as users usually rely on their rich, local environments for fast prototyping and refinements before they consider using more powerful computing resources.</p><p dir="ltr">This dissertation delves into the innovative development of the CyberWater framework based on Workflow Management Systems (WMSs). Against the backdrop of data-intensive and complex models, CyberWater exemplifies the transition of intricate data into insightful and actionable knowledge and introduces the nuanced architecture of CyberWater, particularly focusing on its adaptation and enhancement from the VisTrails system. It highlights the significance of control and data flow mechanisms and the introduction of new data formats for effective data processing within the CyberWater framework.</p><p dir="ltr">This study presents an in-depth analysis of the design and implementation of Generic Model Agent Toolkits. The discussion centers on template-based component mechanisms and the integration with popular platforms, while emphasizing the toolkit’s ability to facilitate on-demand access to High-Performance Computing resources for large-scale data handling. Besides, the development of an asynchronously controlled workflow within CyberWater is also explored. This innovative approach enhances computational performance by optimizing pipeline-level parallelism and allows for on-demand submissions of HPC jobs, significantly improving the efficiency of data processing.</p><p dir="ltr">A comprehensive methodology for model-driven development and Python code integration within the CyberWater framework and innovative applications of GPT models for automated data retrieval are introduced in this research as well. It examines the implementation of Git Actions for system automation in data retrieval processes and discusses the transformation of raw data into a compatible format, enhancing the adaptability and reliability of the data retrieval component in the adaptive generic model agent toolkit component.</p><p dir="ltr">For the development and maintenance of software within the CyberWater framework, the use of tools like GitHub for version control and outlining automated processes has been applied for software updates and error reporting. Except that, the user data collection also emphasizes the role of the CyberWater Server in these processes.</p><p dir="ltr">In conclusion, this dissertation presents our comprehensive work on the CyberWater framework's advancements, setting new standards in scientific workflow management and demonstrating how technological innovation can significantly elevate the process of scientific discovery.</p>
116

PLANT LEVEL IIOT BASED ENERGY MANAGEMENT FRAMEWORK

Liya Elizabeth Koshy (14700307) 31 May 2023 (has links)
<p><strong>The Energy Monitoring Framework</strong>, designed and developed by IAC, IUPUI, aims to provide a cloud-based solution that combines business analytics with sensors for real-time energy management at the plant level using wireless sensor network technology.</p> <p>The project provides a platform where users can analyze the functioning of a plant using sensor data. The data would also help users to explore the energy usage trends and identify any energy leaks due to malfunctions or other environmental factors in their plant. Additionally, the users could check the machinery status in their plant and have the capability to control the equipment remotely.</p> <p>The main objectives of the project include the following:</p> <ul> <li>Set up a wireless network using sensors and smart implants with a base station/ controller.</li> <li>Deploy and connect the smart implants and sensors with the equipment in the plant that needs to be analyzed or controlled to improve their energy efficiency.</li> <li>Set up a generalized interface to collect and process the sensor data values and store the data in a database.</li> <li>Design and develop a generic database compatible with various companies irrespective of the type and size.</li> <li> Design and develop a web application with a generalized structure. Hence the database can be deployed at multiple companies with minimum customization. The web app should provide the users with a platform to interact with the data to analyze the sensor data and initiate commands to control the equipment.</li> </ul> <p>The General Structure of the project constitutes the following components:</p> <ul> <li>A wireless sensor network with a base station.</li> <li>An Edge PC, that interfaces with the sensor network to collect the sensor data and sends it out to the cloud server. The system also interfaces with the sensor network to send out command signals to control the switches/ actuators.</li> <li>A cloud that hosts a database and an API to collect and store information.</li> <li>A web application hosted in the cloud to provide an interactive platform for users to analyze the data.</li> </ul> <p>The project was demonstrated in:</p> <ul> <li>Lecture Hall (https://iac-lecture-hall.engr.iupui.edu/LectureHallFlask/).</li> <li>Test Bed (https://iac-testbed.engr.iupui.edu/testbedflask/).</li> <li>A company in Indiana.</li> </ul> <p>The above examples used sensors such as current sensors, temperature sensors, carbon dioxide sensors, and pressure sensors to set up the sensor network. The equipment was controlled using compactable switch nodes with the chosen sensor network protocol. The energy consumption details of each piece of equipment were measured over a few days. The data was validated, and the system worked as expected and helped the user to monitor, analyze and control the connected equipment remotely.</p> <p><br></p>

Page generated in 0.2826 seconds