• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 146
  • 40
  • 28
  • 16
  • 11
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 4
  • 2
  • Tagged with
  • 354
  • 74
  • 55
  • 50
  • 40
  • 36
  • 33
  • 32
  • 30
  • 27
  • 26
  • 25
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Metabolomic studies of biotransformation-related changes in plant metabolism in response to isonitrosoacetophenone treatment

Madala, Ntakadzeni Edwin 24 July 2013 (has links)
D.Phil. (Biochemistry) / This thesis concerns a study of the effect of isonitrosoacetophenone on plant metabolism. Three different systems were investigated; cultured tobacco and sorghum cells as well as Arabidopsis thaliana plants, and a metabolomic approach was followed. Unlike most scientific studies, metabolomics is a discipline which is not driven by a specific hypothesis, but rather by the obtained data to add scientific insights to the topic under investigation. As such, the current study lacks a definite overarching hypothesis, but specific objectives were outlined and answered in each experimental chapter. This thesis is therefore presented as a compilation of nine chapters in which experimental/research work is described in Chapter 3- 8. It is important to note that each chapter is presented in accordance with the guidelines for the respective journal in which the corresponding manuscript was published or submitted to.
142

Perception responses of Nicotiana tabacum cells towards bacterial lipopolysaccharides.

Gerber, Isak 09 May 2008 (has links)
Because plants lack a circulating adaptive immune system, they have evolved multicomponent defense mechanisms to protect themselves against pathogen attack. These defense mechanisms/responses are either constitutively active in the plant, or they are inducible by pathogens. Understanding of the plant response to pathogen attack has advanced rapidly in recent years. Bacterial and fungal pathogenicity factors have been isolated, and mechanisms that are utilized by the plant to recognize the pathogen and initiate a plethora of defense mechanisms have been identified. In contrast to the well-documented effects of LPS on mammalian cells, the effects of LPS on plant cells have been far less studied. The present study focused on the involvement of lipopolysaccharides (LPS) isolated from the outer cell wall of the Gram-negative bacteria, Burkholderia cepacia (strain ASP B 2D), and yeast elicitor (YE, a cell wall preparation from Saccharomyces cerevisiae) on the molecular mechanisms and components involved in signal transduction and defense-related responses in suspension cultured cells derived from tobacco plants (Nicotiana tabacum cv. Samsun). LPS was extracted, analyzed by denaturing electrophoresis and characterized with regard to 2-keto-3-deoxyoctonate (KDO) content, carbohydrate content, and protein content. The purified LPS and YE were found to trigger defense- and resistance-related responses in the tobacco cells. These responses included a rapid influx of Ca2+ into the cytoplasm of transgenic aequorin-transformed tobacco cells, the production of reactive oxygen species (ROS) during the oxidative burst, alkalinization of the extracellular culture medium of the cells, and changes in the protein phosphorylation patterns of the cells. Time- and concentration-dependent studies for the induction of perception and signal transduction-related responses by YE and LPS indicated that 100 µg.ml-1 of either elicitor was sufficient to induce significant responses in the cells. YE and LPS both induced a rapid transient increase in cytosolic Ca2+ levels, returning to basal levels after seconds, followed by a second, larger and long-term increase in cytosolic Ca2+. The YE-induced cytosolic Ca2+ influx was 7.5 fold higher than that of LPS. Luminol-dependent chemiluminescence measurements of hydrogen peroxide (H2O2) produced during the YE- and LPS-induced oxidative burst reactions indicated 3.5 fold higher levels of H2O2 induced by YE than that induced by LPS. Total inhibition of H2O2 production by YE- and LPS-induced cells was observed upon treatment of the cells with the H2O2-degrading enzyme, catalase. ROS production was also analyzed by the H2DCF-DA-derived fluorescence assay. The degree of ROS production by YE-treated cells was larger than that of cells treated with LPS, suggesting that YE is a more potent inducer of plant defense responses than LPS. Categorization of the origins of the oxidative bursts, induced by YE and LPS, by the addition of a ROS scavenger (NAC), inhibitors of ROS production (DPI and DDC) and a nitric oxide scavenger (PTIO) indicated that YE and LPS induced different quantities of the same ROS species. The induced ROS included O2-·, H2O2 and perhaps other ROS species as well. In addition, both YE and LPS induced a remarkable burst of nitric oxide (NO), as determined by the 97% and 95% respective inhibitions of the H2DCF-DA-derived fluorescence by the nitric oxide scavenger PTIO. Alkalinization of the extracellular culture medium of the tobacco cells was observed after treatment of the cells with YE and LPS. Both of these elicitors induced a significant increase in extracellular pH from resting pH values of 5.7 to pH 6.3 by YE, and 6.0 by LPS. Notably, the YE-induced response returned to near basal pH levels after 50 min, while the LPS-induced response showed no signs of declining and fluctuated around pH 5.9 for the duration of the experiment. YE and LPS both induced the hyperphosphorylation of two distinct proteins with approximate molecular masses of 28 kDa and 2 kDa. Changes in the pattern of the [32P]-radiolabeled proteins pp28 became visible after 20 min of YE-elicitation and 30 min of LPS-elicitation and changes in pp2 phosphorylation became visible after 20 min treatment of the cells with both elicitors. Addition of the protein kinase inhibitor, staurosporine, to the cells followed by subsequent elicitation by YE or LPS, resulted in inhibition or abolishment of the elicitor-induced responses during the oxidative burst, extracellular alkalinization, and protein phosphorylation. In contrast, the addition of the protein phosphatase inhibitor, calyculin A, was found to mimic elicitor action in several aspects, including extracellular alkalinization, the oxidative burst and protein phosphorylation, even in the absence of elicitors or any other stimulus. Thus, a fine balance between the actions of certain protein kinases and protein phosphatases is an essential component of signal transduction during YE and LPS elicitation of tobacco cells but the identification and characterization of the staurosporine-sensitive protein kinases and their substrates are necessary to gain a better understanding of the chemosensory perception and signal transduction of the YE and LPS elicitor signals in plant cells. Moreover, the question of whether these perception and transduction mechanisms are connected with a reduced activity of a protein phosphatase, or with the increased activity of a protein kinase, or even a combination of both, remains to be elucidated. / Prof. I.A. Dubery
143

In silico analysis of cis elements and expression analysis of selected LPS-responsive RLK genes from Arabidopsis thaliana

New, Sherrie-Ann 29 July 2013 (has links)
M.Sc. (Biochemistry) / Our comprehension of pathogen perception and defense response mechanisms that play key roles in the resistance of plants against pathogen attack have progressed substantially within the recent years. Recognizing the molecular mechanisms involved in pathogen perception is the basis of understanding the signalling networks that are involved, including the transcriptional regulation of plant defense genes. This has proven to be a great challenge in plant pathology and, as such, has attracted much attention. The receptor-like kinases (RLKs) constitute one of the largest classes of plant defense genes in Arabidopsis thaliana, and contains, inter alia, the well-known leucine-rich repeats-RLKs (LRR-RLK), as well as the S-domain receptor-like kinases (SD-RLKs) that have been shown to be involved in pathogen perception and not only self-incompatibility (SI) as originally discovered. Some members of these RLKs are able to detect pattern-associated molecular patterns (PAMPs), which are conserved pathogen-derived molecules, and trigger a battery of basal defense responses. The transcriptional activation and expression levels of RLKs are dependent on the variation in promoter architecture as a result of the number, location, order and class of cis-elements found in a promoter sequence. It is hypothesized that candidate RLK genes involved in PAMP surveillance are triggered and transcriptionally regulated in response to perception of PAMPs, and that the intensity of response is relative to the promoter architecture. The primary objective was to identify SD-RLKs and LRR-RLKs which demonstrated up-regulation in response to PAMPs. The SD-RLKs (At1g11330, At1g61430 and At1g61610) and LRR-RLKs (At1g51850, At2g19190 and At5g45840) were selected on the basis of microarray data (Nürnberger - TAIR accession set 100808727) and the Genevestigator database, and characterized utilizing bioinformatics tools. Here, molecular techniques were used to show that the selected RLK genes were responsive to PAMP inductions. Furthermore, this study explored which cis-elements and their corresponding transcription factors (TFs) are found in the promoter of plant defense genes and that may be involved in transcriptional regulation thereof...
144

Chemically induced defense responses in tobacco cell

Louw, Anna Elizabeth 05 September 2012 (has links)
M.Sc. / Chemically-induced plant defense responses were investigated in tobacco cell cultures. The inducing conditions were as follows: chitosan (C), an elicitor (E) prepared from Phytophthora nicotianae, isonicotinic acid (INA), isonicotinamide (IND) and isonitrosoacetophenone (INAP) as well as the addition of INA, IND and INAP as conditioning agents (primary elicitors) followed by secondary elicitation with either chitosan or elicitor. The defense responses investigated included determinations of phenylalanine ammonia-lyase (PAL) activity, total soluble phenolic content, specific phenolic profiles, phytoalexin content, (3- 1,3-glucanase activity and electrophoretic analyses of pathogenesis-related proteins (PR). The compounds, 4-(3-methyl-2-butenoXy)isonitrosoacetophenone (0-INAP) and 2-isonitrosoacetophenone (INAP) were successfully synthesized from the starting materials p-hydroxyacetophenone and acetophenone respectively. The organic synthesis of 0-INAP involved the formation of a prenyl ether.of p-hydroxyacetophenone, followed by a nitrosation reaction using butyl nitrite as the source of the nitroso group, on the a-carbon atom adjacent to the carbonyl group. The synthesis of INAP only required a nitrosation reaction on the a-carbon atom adjacent to the carbonyl group. The yields of 0-INAP and INAP were 12 - 15 % and 80 %, respectively. An evaluation of the properties of 0-INAP indicated that the compound, dissolved in methanol, has a molar extinction coefficient of 16 5001.mor.cm - ' at A. 302 nm. The compound possesses antifungal activity against Cladosporium cucumerinum, Penicillium expansum and Aspergillus niger as well as the ability to scavenge superoxide radicals which was indicated by a decrease in the chemiluminescence signal produced in a reaction mbdure of hydrogen peroxide, horseradish peroxidase, the chemiluminescence probe, MCLA, and increasing concentrations of 0-INAP. The addition of INA to tobacco cells at a - final concentration of 12.5 iimol.g -1 cells or 2.5 mM did not lead to significant changes in PAL activity, but conditioning with INA, followed by chitosan as well as elicitor led to a 2.5-fold and a 4.3-fold induction respectively. INA as well as INA + C and INA + E led to significant increases in the total soluble phenolic content, and the HPLC analyses of these phenolics indicated the significant induction of a phenolic-like compound with a peak at Rt = 1.7 min. which possibly indicates isonicotinic acid, for INA + C and INA + E. A whole range of phytoalexins were detectable after the addition of INA to tobacco cells and conditioning with INA followed by chitosan induced the phytoalexin, lubimin, several hundred-fold. PR proteins were also induced by INA and a prominent band of 11- 13 kDa was induced after conditioning with INA, followed by secondary elicitation with the elicitor and especially with chitosan. (3-1,3-glucanase activity was also induced by INA; INA + E and particularly INA + C led to increases of 2.5-fold and 4.5-fold in 13-1,3-glucanase activity respectively. The addition of IND to tobacco cells at a final concentration of 12.5 pmol.g -1 cells or 2.5 mM led to a 2.6-fold induction in PAL activity after only 6 h, but conditioning with IND, followed by secondary elicitation did not lead to any significant changes. IND at the earlier time interval (24 h vs. 48 h) as well as IND + C and IND + E led to increases in the total soluble phenolic content, - and the HPLC analyses of these phenolics indicated the significant induction of a phenolic-like compound with ,a peak at Rt = 1.7 min. which possibly indicates isonicotinic acid, for IND + C and IND + E. A whole range of phytoalexins were detectable after the addition of IND to tobacco cells and conditioning with IND followed by chitosan induced the phytoalexin, solavetinone, several hundred-fold. PR proteins were also induced by IND and prominent bands of 34 kDa and 39 - 40 kDa were induced for IND + ELIC. (3-1,3-glucanase activity .was also induced by IND; however, secondary elicitation with chitosan did not lead to increases in enzyme activity, although a twofold increase was detectable for IND + ELIC, compared to IND 72. The addition of INAP to tobacco cells at a final concentration of 6.3 pmol.e cells or 1.25 mM led to a 1.7-fold induction in PAL activity after only 6 h, a response that was still detectable after 30 h; however, conditioning with INAP, followed by secondary elicitation did not lead to any noteworthy changes. INAP 24 as well as INAP 48 did not lead to significant changesin the total soluble phenolic content, but INAP + C and INAP+ E led to increases of 3.3-fold and 3.5-fold, respectively. HPLC analyses of the induced phenolics showed the significant induCtion of a phenolic compound with a peak at Rt = 14.5 min. which possibly indicate p-coumaric acid, for INAP + C and INAP + E. A whole range.of phytoalexins were detectable after the addition of INAP to tobacco cells, but the addition of a secondary elicitor led to a decrease in phytoalexin accumulation. PR proteins were also induced by INAP and conditioning with INAP, followed by especially the elicitor, led to the induction of a whole range of PR proteins with molecular masses ranging from 11 - 68 kDa. (3-1,3-glucanase activity was significantly induced (60-fold compared to control) by INAP 48; however, secondary elicitation led to a decrease in (3-1,3-glucanase)
145

Metabolite profiling of defence-related secondary metabolites in tobacco cells, in response to ergosterol, a steroid from fungal membranes

Tugizimana, Fidele 05 November 2012 (has links)
M.Sc. / Plants have the ability to continuously respond to various stimuli which alter their physiology, morphology and development. These stimuli may be abiotic or biotic and range from essential to toxic in their effects. One of these stimuli is a steroid from fungal membranes, ergosterol (C28H44O), which does not occur in plants. Ergosterol acts as a pathogen-associated molecular pattern molecule and triggers defence mechanisms in plants, characterised by highly regulated and interrelated events that include the elicitation of the oxidative burst and expression of a number of defencerelated genes. However, the ergosterol-induced global cellular reprogramming of the host has not been fully investigated in all aspects. No metabolomic study has previously been conducted to elucidate, for instance, the effect of ergosterol on plant metabolism. A clear and broader understanding of the molecular mechanisms involved in plant : ergosterol interactions is of paramount importance, for it would open up possibilities of developing novel, more effective and sustainable strategies to control or eradicate fungal diseases in plants. In plants, the metabolome is a compilation of all primary and secondary metabolites. The latter are the final recipients of genetic information, and their levels can influence gene expression and protein stability. Metabolite patterns reveal the actual cellular dynamic environment. Hence, qualitative and quantitative measurements of extra- and intracellular metabolites yield insights into the cellular processes that control the biochemical phenotype of the cell, tissue or whole organism. Metabolomics, the most recent of the ‘omics’ approaches, is the holistic analysis of metabolites present within a biological system under specific physiological conditions. In the present study a metabolomic approach was used to elucidate and analyse changes in the metabolism of tobacco (Nicotiana tabacum) cells following ergosterol treatment. Special attention is given to sesquiterpenoids since the antimicrobial compounds (phytoalexins) isolated from plants within the Solanaceae are mostly bicyclic sesquiterpenoids. Suspension of tobacco cells were treated with different concentrations (0 - 1000 nM) of ergosterol and incubated for different time periods (0 - 24 h). A viability assay, based on the ability of viable cells to reduce 2,3,5- triphenyltetrazolium chloride (TTC), was used to determine whether cell death occurred due to ergosterol treatment. No loss of cell viability was observed over the concentration range and time periods used in this study, indicating that the observed responses were due to the treatment alone and possible secondary responses due to cell death could be excluded. Intracellular metabolites were extracted with two methods: a selective dispersive liquid-liquid micro extraction and a general methanol extraction. Chromatographic techniques (TLC/HPTLC, GC-FID, GC-MS, GC×GC-TOF-MS, UPLC-MS) and 1H NMR spectroscopy were used for quantitative and qualitative analyses. Multivariate data analyses (PCA and OPLS-DA models) were used to extract interpretable information from the multidimensional data generated from the aforementioned techniques.
146

Homeless men : exploring the experience of shame

Fall, Kevin L. 01 December 2014 (has links)
Research literature on homelessness makes frequent reference to shame, but with little inquiry into the role shame may play in the lives of homeless men. This study used Consensual Qualitative Research methodology (Hill, Thompson, & Williams, 1997) to interview 24 men in a small Midwestern city to explore how homeless men experience shame. The results from this study indicate that shame is experienced as a "painful sense of worthlessness and failure" whereby men attribute their homelessness to their own perceived characterological flaws. To avoid the painful experience of shame and stigma, homeless men appear to develop and use defense strategies. While the defense strategies may help alleviate the effects of shame and stigma in the immediate, the strategies appear to negatively affect opportunities that facilitate an exodus from homelessness. This study also found that despite living in a transitional shelter, rare mention was made of plans to exit homelessness. Presented too are the limitations and implications of this research.
147

La participation canadienne à l'OTAN (1945-1980) : une analyse de la pensée stratégique canadienne

Desrochers, Sylvain. January 1984 (has links)
No description available.
148

Defense Trade-offs in the Evolution of the Fruits and Flowers of Genus Cornus

De La Pascua, Danielle R 01 January 2019 (has links)
The optimal defense hypothesis predicts that the allocation of plant defenses across plant organs is proportional to the importance of a given organ to plant fitness. Despite this, much less work has been devoted to the study of reproductive defenses in plants relative to vegetative structures like leaves. This study examines the apparancy hypothesis and the resource availability hypothesis using a phylogenetic comparative approach within the genus Cornus . During the 2016 growing season, plants of 25 species of Cornus were tracked for flower and fruit phenology as well as sampled for floral and fruit tissue in a common garden experiment at the Arnold Arboretum of Harvard University. This tissue was used to quantify floral and fruit defensive chemistry (e.g. tannin activity, total phenolics, total flavonoids, titratable acidity), and fruit palatability traits (e.g. water, sugar, lipid, and protein content), and the color of reproductive structure using reflectance spectroscopy. Native habitat environmental data was obtained using digitized herbarium records and publicly available environmental data layers. Trait-trait and trait-environment relationships were assessed with phylogenetic generalized least squares regression. The evolution of later flowering phenology was correlated with increased floral phenolics and tannins, and the evolution of increased fruiting duration was correlated with increased fruit tannins, both supporting the apparancy hypothesis. Additionally, the evolution of higher fruit sugar content was correlated with higher fruit tannins, and a strong evolutionary trade-off between the production of tannins and the production of flavonoids was observed. With respect to habitat, floral and fruit flavonoids and tannins were consistently lower in species native to warmer environments, while fruit phenolics and was higher in drier environments, which may support the resource availability hypothesis.
149

PARAMETERS AFFECTING MENTAL WORKLOAD AND THE NUMBER OF SIMULATED UCAVS THAT CAN BE EFFECTIVELY SUPERVISED

Calkin, Bryan A. 18 April 2007 (has links)
No description available.
150

Poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch: Euphorbiacea) Resistance Mechanisms against the Silverleaf Whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Biotype B

Medina-Ortega, Karla Jacqueline 27 July 2011 (has links)
No description available.

Page generated in 0.0604 seconds