• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 9
  • 5
  • 1
  • Tagged with
  • 35
  • 22
  • 14
  • 13
  • 11
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Flame-Turbulence Interaction for Deflagration to Detonation

Chambers, Jessica 01 January 2016 (has links)
Detonation is a high energetic mode of pressure gain combustion that exploits total pressure rise to augment high flow momentum and thermodynamic cycle efficiencies. Detonation is initiated through the Deflagration-to-Detonation Transition (DDT). This process occurs when a deflagrated flame is accelerated through turbulence induction, producing shock-flame interactions that generate violent explosions and a supersonic detonation wave. There is a broad desire to unravel the physical mechanisms of turbulence induced DDT. For the implementation of efficient detonation methods in propulsion and energy applications, it is crucial to understand optimum turbulence conditions for detonation initiation. The study examines the role of turbulence-flame interactions on flame acceleration using a fluidic jet to generate turbulence within the reactant flow field. The investigation aims to classify the turbulent flame dynamics and temporal evolution of the flame stages throughout the turbulent flame regimes. The flame-flow interactions are experimentally studied using a detonation facility and high-speed imaging techniques, including Particle Image Velocimetry (PIV) and Schlieren flow visualization. Flow field measurements enable local turbulence characterization and analysis of flame acceleration mechanisms that result from the jet's high level of turbulent transport. The influence of initial flame turbulence on the turbulent interaction is revealed, resulting in higher turbulence generation and overall flame acceleration. Turbulent intensities are classified, revealing a dynamic fluctuation of flame structure between the thin reaction zone and the broken reaction regime throughout the interaction.
22

The role of Landau-Darrieus instability in flame dynamics and deflagration-to-detonation transition

Valiev, Damir January 2007 (has links)
<p>The role of intrinsic hydrodynamic instability of the premixed flame (known as Landau-Darrieus instability) in various flame phenomena is studied by means of direct numerical simulations of the complete system of hydrodynamic equations. Rigorous study of flame dynamics and effect of Landau-Darrieus instability is essential for all premixed combustion problems where multidimensional effects cannot be disregarded.</p><p>The present thesis consists of three parts. The first part deals with the fundamental problem of curved stationary flames propagation in tubes of different widths. It is shown that only simple "single-hump" slanted stationary flames are possible in wide tubes, and "multi-hump" flames in a laminar flow are possible in wide tubes only as a non-stationary mode of flame propagation. The stability limits of curved stationary flames in wider tubes are obtained, together with the dependence of the velocity of the stationary flame on the tube width. The flame dynamics in wider tubes is shown to be governed by a large-scale stability mechanism resulting in a highly slanted flame front.</p><p>The second part of the thesis is dedicated to studies of acceleration and fractal structure of outward freely propagating flames. It is shown that in direct numerical simulation the development of Landau-Darrieus instability results in the formation of fractal-like flame front structure. The fractal excess for radially expanding flames in cylindrical geometry is evaluated. Two-dimensional simulation of radially expanding flames in cylindrical geometry displays a radial growth with 1.25 power law temporal behavior after some transient time. It is shown that the fractal excess for 2D geometry obtained in the numerical simulation is in good agreement with theoretical predictions. The difference in fractal dimension between 2D cylidrical and three-dimensional spherical radially expanding flames is outlined. Extrapolation of the obtained results for the case of spherical expanding flames gives a radial growth power law that is consistent with temporal behavior obtained in the survey of experimental data.</p><p>The last part of the thesis concerns the role of Landau-Darrieus instability in the transition from deflagration to detonation. It is found that in sufficiently wide channels Landau-Darrieus instability may invoke nucleation of hot spots within the folds of the developing wrinkled flame, triggering an abrupt transition from deflagrative to detonative combustion. It is found that the mechanism of the transition is the temperature increase due to the influx of heat from the folded reaction zone, followed by autoignition. The transition occurs when the pressure elevation at the accelerating reaction front becomes high enough to produce a shock capable of supporting detonation.</p>
23

Combustion confinée d'explosif condensé pour l'accélaration de projectile. Application en pyrotechnie spatiale / Confined combustion of high explosives for projectile acceleration. Applications in the field of space pyrotechnics

Nicoloso, Julien 18 June 2014 (has links)
L’opto-pyrotechnie (amorçage de la détonation par système optique) est l’une des innovations les plus prometteuses en termes de fiabilité, de sécurité et de performances pour les futurs lanceurs spatiaux. Le but de la thèse est d’étudier et de modéliser le premier des deux étages d’un Détonateur Opto-Pyrotechnique, constitué d’un explosif confiné dans une chambre de combustion fermée où se déroulent les premières phases d’une Transition Déflagration-Détonation. L’amorçage par laser de l’explosif puis la combustion en chambre isochore sont traités par le code EFAE, lequel est couplé au logiciel LS-DYNA qui simule la déformation et la rupture du disque de fermeture de la chambre, puis la propulsion du projectile résultant vers le second étage. En parallèle, diverses techniques expérimentales (adsorption de gaz, vélocimétrie hétérodyne, microscopie) ont mis en valeur plusieurs procédés physiques, ce qui a permis de tester le couplage entre EFAE et LS-DYNA, puis de déterminer et de hiérarchiser les paramètres affectant les critères industriels. / Opto-pyrotechnics (ignition of detonation by optical systems) is one of the most promising innovations to improve reliability, safety and performances on future space launchers. This thesis aims at studying and modeling the first stage from a two-stage opto-pyrotechnic detonator that consists of a condensed explosive confined in a closed combustion chamber, in which the beginning of a Deflagration-to-Detonation Transition occurs. The laser ignition of the explosive and its isochoric combustion are modeled by the EFAE code. This code is coupled with LS-DYNA software to deal with the deformation and the rupture of the metallic disk that closes the combustion chamber, and then with the subsequent propulsion of the projectile to the second stage. In parallel, various experimental technics (gas adsorption, photonic Doppler velocimetry, microscopy) have underlined several physical processes that allow first to test the coupling between EFAE and LS-DYNA, then to determine and classify influent parameters that affect the industrial specifications.
24

Caractérisation expérimentale et numérique du chargement généré par une explosion sur un bâtiment / Experimental and numerical characterization of the load generated by an explosion on a building

Blanc, Ludovic 09 December 2016 (has links)
Les travaux présentés dans ce mémoire s'inscrivent dans le cadre de deux projets, l'un européen, BASIS (Blast Actions on Structure In Steel), et l'autre français BATIRSÛR (Bâtiment en acier en zone PPRT de surpression), qui visent à mieux appréhender la vulnérabilité des bâtiments à ossature métallique face à un aléa de surpression. En particulier, ce travail a consisté à étudier les interactions entre une onde de souffle et une structure afin de caractériser le chargement global induit par une explosion. À partir de la génération d’ondes de souffle par détonation ou déflagration d'une charge gazeuse de propane oxygène, des campagnes expérimentales à petite échelle ont été conduites. Elles ont permis de mettre en défaut pour les faibles niveaux de surpressions étudiés (< 200 mbar) certaines approches simplifiées existantes. Des alternatives ont alors été proposées. Les coefficients de réflexion, caractérisant le chargement, ont été mesurés. De nouvelles valeurs sont proposées, notamment pour caractériser la diffraction d'une onde issue d'une déflagration. Les données du chargement résultant d’une déflagration et d’une détonation ont été comparées dans des configurations identiques. La propagation en champ libre de l’onde de souffle issue d’une déflagration a été reproduite au moyen du modèle du piston sphérique. Pour une de détonation, un modèle prédictif de ballon d'air comprimé, reposant sur la donnée de la masse volumique et l’énergie interne spécifique de l’explosif, a été développé et validé en champ lointain par comparaison avec les essais expérimentaux. Son utilisation a permis de mettre en évidence les atouts et les limites des simulations numériques pour reproduire le chargement. / The work presented in this thesis fall within two project, one European, BASIS (Blast Actions on Structure In Steel), and the other French BATIRSÛR (steel building in PPRTs area overpressure), which both aimed at better understanding the vulnerability of metal framed buildings against an overpressure hazard. In particular, our objective was to study the interaction between a shock wave and a structure in order to characterize the overall loading induced by an explosion. From the generation of blast wave by deflagration or detonation of an oxygen propane mixture, small-scale experimental campaigns were conducted. These experimental campaigns highlighted for low levels of overpressure (<200 mbar) some limitations in the existing simplified approaches. Alternatives have then been given. Reflection coefficients, characterizing the loading, were measured. New values were obtained, especially to characterize the diffraction. Data resulting from deflagration and detonation we recompared under identical configurations. The free field propagation of the blast wave generated by a deflagration was reproduced by using the model of the spherical piston. For a detonation, a predictive model of compressed balloon based on the data of the density and the specific internal energy has been developed and validated in far-field range using comparison with experimental tests. Its use has helped highlight the assets and limits of numerical simulation in order to reproduce the loading induced by a detonation.
25

Numerical investigation of gas explosion phenomena in confined and obstructed channels / Etudes des phénomènes d'accélération de flammes, transition à la détonation et d'inhibition de flammes

Dounia, Omar 23 April 2018 (has links)
Les incidents d'explosions intervenant sur les sites industriels sont souvent accompagnés de dégâts matériels et humains importants. Les dégâts varient d’une explosion à une autre, suggérant l’existence de mécanismes capables d’aggraver le scénario d’explosion. Réduire les risques d'explosion nécessite une compréhension fine des différents mécanismes mis en jeu. Avec l’augmentation considérable de la puissance de calcul, la simulation numérique est devenu une approche incontournable pour l’étude et la compréhension de ces scénarios. Cette thèse se focalise sur les explosions de gaz initiées par un noyau de flamme subsonique. Lorsque la flamme se propage dans un environnement offrant un haut niveau de confinement et d’obstruction, ce qui est souvent le cas des sites industriels, une forte accélération de la flamme est généralement observée, accompagnée d’une augmentation de la pression. Dans certains cas, l’accélération de la flamme peut conduire à l’initiation d’une onde de détonation. Ce scénario coïncide avec une augmentation brutale de la surpression et donc une aggravation des dégâts observés. Pour reproduire des conditions de confinement et d’obstruction représentatives des sites industriels, l’université de Munich TUM a équipé une chambre confinée de 5.4m de long d’une série d’obstacles et analysé l’impact de ces obstructions sur la propagation de déflagrations hydrogène/air. Cette étude expérimentale a montré une forte influence de la richesse du mélange sur l’accélération de la flamme. Une transition à la détonation est notamment observée pour une certaine gamme de richesse. Cette configuration est donc idéale pour étudier les mécanismes d’accélération de flamme ainsi que les conditions qui peuvent mener à l’initiation de détonations. Une étude numérique des deux scénarios a été menée mêlant simulations directes (DNS) et simulations aux grandes échelles (LES):-Pour un mélange d’hydrogène/air pauvre, une forte accélération de la flamme est observée expérimentalement sans transition à la détonation. Les grandeurs caractéristiques de l’explosion ont été reproduites avec des simulations aux grandes échelles (LES). Plusieurs mécanismes d’accélération de flamme ont été identifiés et attribués au haut niveau de confinement et de congestion dans la chambre. Le couplage de ces mécanismes explique les grandes vitesses de propagation observées. -Pour un mélange stoechiométrique, une transition à la détonation est observée. Cette thèse s’est focalisée sur les instants précédant l’initiation de la détonation afin de caractériser les conditions nécessaires pouvant mener à cet événement soudain, en se basant sur une approche de simulation directe (DNS). Une attention particulière a été portée à l’influence du schéma cinétique sur ce scénario. Comme constaté dans bon nombre d’incidents industriels, les mesures préventives peuvent échouer. Le cas échéant, des procédures visant à contrôler l’impact des explosions doivent être utilisées pour éviter une catastrophe de grande ampleur. L’utilisation d’inhibiteurs chimiques est une technique qui a déjà fait ses preuves contre les feus. Elle consiste à injecter des poudres capables de réagir chimiquement avec la flamme et de réduire son taux de dégagement de chaleur. L’étude de l’interaction de ces particules solides avec la flamme correspond au deuxième volet de cette thèse. Un modèle simplifié de décomposition de ces particules solides (HetMIS) a été développé dans un contexte LES. Deux aspects ont été explorés : 1) l’interaction unidimensionnel flamme/particule a permis d’établir un critère, basé sur la taille des particules, caractérisant l’efficacité des poudres dans le processus d’inhibition; 2) l’effet de la distribution spatial des particules sur la propagation de la flamme est analysé dans le but d’apporter une explication à certains résultats expérimentaux révélant un effet opposé des inhibiteurs dans certaines conditions. / Mining, process and energy industries suffer from billions of dollars of worldwide losses every year due to Vapour Cloud Explosions (VCE). Moreover, explosion accidents are often tragic and lead to a high number of severe injuries and fatalities. The VCE scenario is complex and controlled by various mechanisms. The interplay among them is still not entirely understood. Understanding all these intricate processes is of vital importance and requires detailed experimental diagnostics. Coupling accurate numerical simulations to well documented experiments can allow an elaborate description of these phenomena. This thesis focuses on explosions occurring on configurations that are either semi-confined or confined. In such configurations, the explosion is generally initiated by a mild ignition and a subsonic flame front emerges from the ignition source. An important feature of self-propagating flames lies in their intrinsically unstable nature. When they propagate in an environment with high levels of confinement and congestion, which is the case in most industrial sites, a Flame Acceleration (FA) process is often observed that can give rise to very fast flames, known for their destructive potential. In some cases, the FA process can create the appropriate conditions for the initiation of detonations, which corresponds to a rapid escalation of the explosion hazard. To reproduce the confinement and congestion conditions that one can find in industrial sites, the university of Munich TUM equipped a confined chamber with a series of obstacles and analysed the influence of repeated obstructions on the propagation of hydrogen/air deflagrations. This experimental study showed a strong influence of the mixture composition on the acceleration process. A Deflagration to Detonation Transition (DDT) has also been observed for a certain range of equivalence ratio. This configuration is therefore ideal to study the mechanisms of flame acceleration as well as the intricate DDT process. A numerical study of both scenarios is performed in this thesis: -First for a lean premixed hydrogen/air mixture, a strong flame acceleration is observed experimentally without DDT. The characteristic features of the explosion are well reproduced numerically using a Large Eddy Simulation (LES) approach. The crucial importance of confinement and repeated flame-obstacle interactions in producing very fast deflagrations is highlighted. -DDT is observed experimentally for a stoichiometric hydrogen/air mixture. This thesis focuses on the instants surrounding the DDT event, using Direct Numerical Simulations (DNS). Particular attention is drawn to the impact of the chemistry modelling on the detonation scenario. The failure of preventive measures is often observed in many explosion accidents. To avoid a rapid escalation of the explosion scenario, mitigative procedures must be triggered when a gas leak or an ignition is detected. Metal salts (like potassium bicarbonate and sodium bicarbonate) have received considerable attention recently because well-controlled experiments showed their high efficiency in inhibiting fires. The last part of the thesis focused on the mechanism of flame inhibition by sodium bicarbonate particles. First, criteria based on the particle sizes are established to characterize the inhibition efficiency of the particles. Second, two dimensional numerical simulations of a planar flame propagating in a stratified layer of very fine sodium bicarbonate particles showed that under certain conditions these powders can act as combustion enhancers. These results echo a number of experimental observations on the possible counter-effects of the inhibitors.
26

L’auto-inflammation dans le mécanisme de transition de régime de combustion de la déflagration vers la détonation / The Autoignition in the Mechanisms of Combustion Regime Transition from the Deflagration to the Detonation

Quintens, Hugo 26 June 2019 (has links)
Pour répondre aux défis environnementaux actuels, des solutions en rupture par rapport aux turbomachines existantes sont actuellement encours de développement. Elles s’appuient sur des cycles thermodynamiques plus efficients.L’objectif de ces travaux de thèse est d’étudier expérimentalement les mécanismes de transition de régime de combustion pour ce type d'applications en utilisant un surrogate de kérosène, le n-décane. Pour cela, une déflagration est initiée dans une enceinte fermée et comprime les gaz frais. La pression et la température de ces derniers augmentent jusqu’à atteindre les conditions propices à l’apparition de l’autoinflammation.3 régimes de combustion successifs sont caractérisés dans la chambre de combustion au moyen de diagnostics optiques rapides. Un premier dégagement de chaleur associé à la flamme froide pré-oxyde les gaz frais, il est suivi du dégagement de chaleur principal (Main Heat Release,MHR). Pour les températures initiales de mélange les plus élevées, une détonation est observée à la fin du processus. Deux chemins de transition différents sont mis en évidence : la transition Déflagration-Auto-inflammation (DAIT) et la transition Déflagration-Auto-inflammation-Détonation (DAIDT). La sensibilité des transitions de régime aux conditions initiales de pression, de température et de richesse a été caractérisée au moyen de plusieurs études paramétriques. Dans ce but, les conditions de température, de pression et de composition du mélange sont calculées aux instants d’apparition des différents fronts réactifs (flamme froide, MHR et détonation). Il a notamment été observé que les dégagements de chaleur successifs de l’auto-inflammation se déroulaient aux mêmes températures (740 K pour la flamme froide et 1050 K pour le MHR)quelles que soient les conditions initiales. L’étude s’est concentrée ensuite sur l’analyse d’un point de fonctionnement particulier. L’étude de ce point de fonctionnement, différents vitesses de front d’auto-inflammation ont été observées, mettant en évidence le mécanisme de SWACER lors de la transition.Un critère de transition de régime depuis l’auto-inflammation proposé de Zander et al., dans le cadre d’études numériques, a été testé dans notre configuration expérimentale. Un critère modifié a été développé en lui adjoignant la notion d’effets de compressibilité dans l’écoulement réactif. L’application de ce critère à l’ensemble des essais permet de prédire l’apparition de la détonation dans les conditions où 0 et 100 % de DAIDT sont observés. Les différents domaines de transition de régime ont également été positionnés sur le diagramme de Bradley (ξ, ϵ). Les modes de combustion prédits par le diagramme sont consistants avec ceux qui sont atteints dans la chambre.L’influence de la distribution initiale de température sur les modes de combustion atteignables dans la chambre a été étudiée. Trois topologies d’auto-inflammation ont été mises en évidence pour trois distributions de température dans la chambre. Ces topologies sont séparées en deux catégories, celles privilégiant une direction particulière lors de l’auto-inflammation séquentielle et celle présentant un comportement tridimensionnel.Les essais ayant un comportement tridimensionnel présentent une très forte propension à la DAIDT mais une propagation lente des fronts d’auto-inflammation. Dans ce cas, un autre mécanisme de transition vers la détonation est mis en évidence : l’auto-inflammation d’une poche homogène de gaz génère des ondes de choc et déclenchent des auto-inflammations successives pendant leur propagation. Le couplage choc/front réactif entraine la formation de la détonation.Différents mécanismes de transition vers la détonation ont été observés et étudiés sur une large plage de conditions de pression, température,richesse et gradient thermique. Les résultats obtenus permettront d’appuyer les études numériques réalisées sur le sujet, manquant jusque-là de données expérimentales en conditions académiques. / To meet the current environmental challenges, breakthrough solutions compared to existing turbomachines are currently under development.They rely on the use of more efficient thermodynamic cycles.The objective of this thesis is to study experimentally the mechanisms of transition of combustion regime using a kerosene surrogate, n-decane.For this purpose, a deflagration is initiated in a closed chamber and compresses the fresh gases. The pressure and the temperature of the endgas increase until reaching the conditions favorable to the appearance of the autoignition in the chamber.3 successive combustion regimes are characterized in the combustion chamber by means of fast optical diagnostics. A first heat release,associated with the cool flame phenomenon, pre-oxidizes the fresh gases, it is followed by the Main Heat Release (MHR). For the highest initial temperatures, a detonation is observed at the end of the process. Two different transition paths are highlighted: the Deflagration-Autoignition Transition (DAIT) and the Deflagration-Autoignition-Detonation Transition (DAIDT).The sensitivity of regime transitions to the initial conditions of pressure, temperature and mixture composition was characterized by means of several parametric studies. For this purpose, the conditions of temperature, pressure and composition of the mixture are calculated at the onset of the different reactive fronts (cool flame, MHR and detonation). In particular, it has been observed that the successive heat releases of theauto-ignition start at the same temperatures (740 K for the cool flame and 1050 K for the MHR) whatever the initial conditions. The study, then, focused on the analysis of a particular operating point. During the study of this operating point different self-ignition front velocities were observed, highlighting the mechanism of SWACER during the transition.A regime transition criterion proposed by Zander et al. based on numerical studies has been tested in our experimental setup. A modified criterion has been developed to take into account compressibility effects in the reactive flow. The application of this criterion to all the dataset makes possible to predict the appearance of the detonation under the conditions where 0 and 100% of DAIDT are observed. The different regime transition domains have also been positioned on the Bradley diagram (ξ, ε). The modes of combustion predicted by the diagram are consistent with those reached in the chamber.The influence of the initial temperature distribution on the combustion modes achievable in the chamber has been studied. Three topologies of autoignition have been demonstrated for three initial temperature distributions in the chamber. These topologies are separated into two categories, those favoring a particular direction during sequential self-ignition and that exhibiting a three-dimensional behavior.Three-dimensional tests show a very high propensity for DAIDT but a slow spread of autoignition fronts. In this case, another mechanism of transition to detonation is evidenced: the self-ignition of an homogeneous gas pocket generates shock waves and triggers successive autoinflammations during their propagation. The shock coupling / reactive front causes the formation of the detonation. Different transition mechanisms to detonation have been observed and studied over a wide range of pressure, temperature, equivalence ratio and thermal gradient conditions. The obtained results will be useful to support the numerical studies carried out on the subject, which lacks experimental data in academic conditions.
27

A Multi-step Reaction Model for Stratified-Charge Combustion in Wave Rotors

Elharis, Tarek M. January 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Testing of a wave-rotor constant-volume combustor (WRCVC) showed the viability of the application of wave rotors as a pressure gain combustor. The aero-thermal design of the WRCVC rig had originally been performed with a time-dependent, one-dimensional model which applies a single-step reaction model for the combustion process of the air-fuel mixture. That numerical model was validated with experimental data with respect of matching the flame propagation speed and the pressure traces inside the passages of the WRCVC. However, the numerical model utilized a single progress variable representing the air-fuel mixture, which assumes that fuel and air are perfectly mixed with a uniform concentration; thus, limiting the validity of the model. In the present work, a two-step reaction model is implemented in the combustion model with four species variables: fuel, oxidant, intermediate and product. This combustion model is developed for a more detailed representation for the combustion process inside the wave rotor. A two-step reaction model presented a more realistic representation for the stratified air-fuel mixture charges in the WRCVC; additionally it shows more realistic modeling for the partial combustion process for rich fuel-air mixtures. The combustion model also accounts for flammability limits to exert flame extinction for non-flammable mixtures. The combustion model applies the eddy-breakup model where the reaction rate is influenced by the turbulence time scale. The experimental data currently available from the initial testing of the WRCVC rig is utilized to calibrate the model to determine the parameters, which are not directly measured and no directly related practice available in the literature. A prediction of the apparent ignition the location inside the passage is estimated by examination of measurements from the on-rotor instrumentations. The incorporation of circumferential leakage (passage-to-passage), and stand-off ignition models in the numerical model, contributed towards a better match between predictions and experimental data. The thesis also includes a comprehensive discussion of the governing equations used in the numerical model. The predictions from the two-step reaction model are validated using experimental data from the WRCVC for deflagrative combustion tests. The predictions matched the experimental data well. The predicted pressure traces are compared with the experimentally measured pressures in the passages. The flame propagation along the passage is also evaluated with ion probes data and the predicted reaction zone.
28

The role of Landau-Darrieus instability in flame dynamics and deflagration-to-detonation transition

Valiev, Damir January 2007 (has links)
The role of intrinsic hydrodynamic instability of the premixed flame (known as Landau-Darrieus instability) in various flame phenomena is studied by means of direct numerical simulations of the complete system of hydrodynamic equations. Rigorous study of flame dynamics and effect of Landau-Darrieus instability is essential for all premixed combustion problems where multidimensional effects cannot be disregarded. The present thesis consists of three parts. The first part deals with the fundamental problem of curved stationary flames propagation in tubes of different widths. It is shown that only simple "single-hump" slanted stationary flames are possible in wide tubes, and "multi-hump" flames in a laminar flow are possible in wide tubes only as a non-stationary mode of flame propagation. The stability limits of curved stationary flames in wider tubes are obtained, together with the dependence of the velocity of the stationary flame on the tube width. The flame dynamics in wider tubes is shown to be governed by a large-scale stability mechanism resulting in a highly slanted flame front. The second part of the thesis is dedicated to studies of acceleration and fractal structure of outward freely propagating flames. It is shown that in direct numerical simulation the development of Landau-Darrieus instability results in the formation of fractal-like flame front structure. The fractal excess for radially expanding flames in cylindrical geometry is evaluated. Two-dimensional simulation of radially expanding flames in cylindrical geometry displays a radial growth with 1.25 power law temporal behavior after some transient time. It is shown that the fractal excess for 2D geometry obtained in the numerical simulation is in good agreement with theoretical predictions. The difference in fractal dimension between 2D cylidrical and three-dimensional spherical radially expanding flames is outlined. Extrapolation of the obtained results for the case of spherical expanding flames gives a radial growth power law that is consistent with temporal behavior obtained in the survey of experimental data. The last part of the thesis concerns the role of Landau-Darrieus instability in the transition from deflagration to detonation. It is found that in sufficiently wide channels Landau-Darrieus instability may invoke nucleation of hot spots within the folds of the developing wrinkled flame, triggering an abrupt transition from deflagrative to detonative combustion. It is found that the mechanism of the transition is the temperature increase due to the influx of heat from the folded reaction zone, followed by autoignition. The transition occurs when the pressure elevation at the accelerating reaction front becomes high enough to produce a shock capable of supporting detonation. / QC 20101119
29

Influence of Spark Energy, Spark Number, and Flow Velocity on Detonation Initiation in a Hydrocarbon-fueled PDE

Schild, Ilissa Brooke 22 November 2005 (has links)
Pulsed Detonation Engines (PDEs) have the potential to revolutionize fight by better utilizing the chemical energy content of reactive fuel/air mixtures over conventional combustion processes. Combustion by a super-sonic detonation wave results in a significant increase in pressure in addition to an increase in temperature. In order to harness this pressure increase and achieve a high power density, it is desirable to operate PDEs at high frequency. The process of detonation initiation impacts operating frequency by dictating the length of the chamber and contributing to the overall cycle time. Therefore a key challenge in the development of a practical PDEs is the requirement to rapidly initiate a detonation in hydrocarbon-air mixtures. This thesis evaluates the influence of spark energy and airflow velocity on this challenging initiation process. The influence of spark energy, number of sparks and airflow velocity on Deflagration-to-Detonation Transition (DDT) was studied during cyclic operation of a small-scale PDE at the General Electric Global Research Center. Experiments were conducted in a 50 mm square transitioning to cylindrical channel PDE with optical access operating with stoichiometric ethylene-air mixture. Total spark energy was varied from 250 mJ to 4 J and was distributed between one and four spark plugs located in the same axial location. Initial flame acceleration was imaged using high-speed shadowgraph and was characterized by the time to reach 20 cm from the spark plug. Measurements of detonation wave velocity and emergence time, the time it takes the detonation wave to exit the tube, was measured using dynamic pressure transducers and ionization probes. It was found that the flame front spread was faster at higher spark energies and with more spark locations. Initial flame acceleration was 16% faster for the 4-spark, 4 J case when compared to the baseline 1-spark, 1 J case. When looking at the effect of airflow on the influence of spark energy, it was found that airflow had a larger effect on emergence time at high energies, versus energies less than 1 J. Finally, for a selected case of 0.25 J spark energy and 4 sparks, the velocity of the fuel-air mixture during fill was found to have a varying influence on detonation initiation and emergence time.
30

Barrière physique de protection face à une déflagration / Protective effect of a physical barrier against an explosion

Pellegrinelli, Bastien 04 December 2014 (has links)
Les travaux présentés dans ce mémoire de thèse s’inscrivent dans le projet ANR BARPPRO réalisé dans le cadre de la réglementation française des PPRT pour les sites industriels classés SEVESO. L’objet est de proposer un outil pour le dimensionnement des barrières physiques de protection face à une déflagration de gaz. Une étude paramétrique à petite échelle est menée pour étudier l’effet protecteur d’une barrière physique. Un dispositif d’accélération de flamme a été conçu pour générer une vitesse de flamme sonique. Cela a permis de réaliser à petite échelle l’étude de l’impact de l’obstruction sur la vitesse de flamme et sur les paramètres de l’onde de pression. Ces résultats ont été confrontés aux modèles de la littérature. L’onde de pression incidente ainsi générée sert de donnée d’entrée et de référence dans l’étude de la barrière. Plusieurs paramètres de l’onde de pression sont étudiés : le temps d’arrivée, la surpression maximale et l’impulsion positive. L’influence de la hauteur du mur et de sa position par rapport à la source d’amorçage est traitée pour deux formes de barrière (droite et cylindrique) et pour deux mélanges hydrogène/air (stoechiométrique et de richesse 0.65). / This thesis is a part ANR BARPPRO project in the framework of the French regulation PPRTs for industrial Seveso sites. The goal of the present work is to provide a tool for the sizing of protective physical barriers against a gas explosion. A parametric study at small scale is conducted to investigate the protective effect of a physical barrier. For that purpose, a cylindrical device was developed to accelerate the flame gradually until reaching sonic flame speeds by increasing the obstruction inside the device. This has also led to the realization of a small-scale study about the impact of the obstruction on the flame speed and on the pressure wave’s characteristics. These results are compared with those obtained with models from the literature. The pressure wave generated by the acceleration device is used as input and reference in the barriers’ parametrical study. Several parameters of the pressure wave are considered: the arrival time, the maximum overpressure and the positive pulse. The influence of the wall height and position relative to the ignition source is processed for two barrier’s shapes (straight and cylindrical) and two hydrogen / air mixtures (stoichiometric and with an equivalence ratio of 0.65).

Page generated in 0.1002 seconds