Spelling suggestions: "subject:"degeneration.""
91 |
Icon of Heroic “Degeneracy”: The Journey of Ernst Ludwig Kirchner’s Self-Portrait as a SoldierMette, Meghan E. 09 June 2016 (has links)
No description available.
|
92 |
Studying chirality in a ~ 100, 130 and 190 mass regionsShirinda, Obed January 2011 (has links)
Philosophiae Doctor - PhD / Chirality is a nuclear symmetry which is suggested to occur in nuclei when the total angular momentum of the system has an aplanar orientation [Fra97, Fra01]. It can occur for nuclei with triaxial shape, which have valence protons and neutrons with predominantly particle and hole nature. It is expected that the angular momenta of an odd particle and an odd hole (both occupying high-j orbitals) are aligned predominantly along the short and the long axes of the nucleus respectively, whereas the collective rotation occurs predominantly around the intermediate axis of a triaxially deformed nucleus in order to minimize the total energy of the system. Such symmetry is expected to be exhibited by a pair of degenerate DI = 1 rotational bands, i.e. all properties of the partner bands should be identical. The results suggested that spin independence of the energy staggering parameter S(I ) within two-quasiparticle chiral bands (previously suggested a fingerprint of chirality) is found only if the Coriolis interaction can be completely neglected. However, if the configuration is nonrestricted, the Coriolis interaction is often strong enough to create considerable energy staggering. It was also found that staggering in the intra- and inter-band B(M1) reduced transition probabilities (proposed as another fingerprint of chirality) may be a result of effects other than strongly broken chirality. Therefore, the use of the B(M1) staggering as a fingerprint of strongly broken chiral symmetry seems rather risky, in particular if the phase of the staggering is not checked. / South Africa
|
93 |
Boundary Estimates for Solutions to Parabolic EquationsSande, Olow January 2016 (has links)
This thesis concerns the boundary behavior of solutions to parabolic equations. It consists of a comprehensive summary and four scientific papers. The equations concerned are different generalizations of the heat equation. Paper I concerns the solutions to non-linear parabolic equations with linear growth. For non-negative solutions that vanish continuously on the lateral boundary of an NTA cylinder the following main results are established: a backward Harnack inequality, the doubling property for the Riesz measure associated with such solutions, and the Hölder continuityof the quotient of two such solutions up to the boundary. Paper 2 concerns the solutions to linear degenerate parabolic equations, where the degeneracy is controlled by a Muckenhoupt weight of class 1+2/n. For non-negative solutions that vanish continuously on the lateral boundary of an NTA cylinder the following main results are established: a backward Harnack inequality, the doubling property for the parabolic measure, and the Hölder continuity of the quotient of two such solutions up to the boundary. Paper 3 concerns a fractional heat equation. The first main result is that a solution to the fractional heat equation in Euclidean space of dimension n can be extended as a solution to a certain linear degenerate parabolic equation in the upper half space of dimension n+1. The second main result is the Hölder continuity of quotients of two non-negative solutions that vanish continuously on the latteral boundary of a Lipschitz domain. Paper 4 concerns the solutions to uniformly parabolic linear equations with complex coefficients. The first main result is that under certain assumptions on the opperator the bounds for the single layer potentials associated to the opperator are bounded. The second main result is that these bounds always hold if the opperator is realvalued and symmetric.
|
94 |
On parabolic stochastic integro-differential equations : existence, regularity and numericsLeahy, James-Michael January 2015 (has links)
In this thesis, we study the existence, uniqueness, and regularity of systems of degenerate linear stochastic integro-differential equations (SIDEs) of parabolic type with adapted coefficients in the whole space. We also investigate explicit and implicit finite difference schemes for SIDEs with non-degenerate diffusion. The class of equations we consider arise in non-linear filtering of semimartingales with jumps. In Chapter 2, we derive moment estimates and a strong limit theorem for space inverses of stochastic flows generated by Lévy driven stochastic differential equations (SDEs) with adapted coefficients in weighted Hölder norms using the Sobolev embedding theorem and the change of variable formula. As an application of some basic properties of flows of Weiner driven SDEs, we prove the existence and uniqueness of classical solutions of linear parabolic second order stochastic partial differential equations (SPDEs) by partitioning the time interval and passing to the limit. The methods we use allow us to improve on previously known results in the continuous case and to derive new ones in the jump case. Chapter 3 is dedicated to the proof of existence and uniqueness of classical solutions of degenerate SIDEs using the method of stochastic characteristics. More precisely, we use Feynman-Kac transformations, conditioning, and the interlacing of space inverses of stochastic flows generated by SDEs with jumps to construct solutions. In Chapter 4, we prove the existence and uniqueness of solutions of degenerate linear stochastic evolution equations driven by jump processes in a Hilbert scale using the variational framework of stochastic evolution equations and the method of vanishing viscosity. As an application, we establish the existence and uniqueness of solutions of degenerate linear stochastic integro-differential equations in the L2-Sobolev scale. Finite difference schemes for non-degenerate SIDEs are considered in Chapter 5. Specifically, we study the rate of convergence of an explicit and an implicit-explicit finite difference scheme for linear SIDEs and show that the rate is of order one in space and order one-half in time.
|
95 |
Trace au bord de solutions d'équations de hamilton-Jacobi elliptiques et trace initiale de solutions d'équations de la chaleur avec absorption sur-linéaire / Boundary trace of solutions to elliptic hamilton-Jacobi equations and initial trace of solutions to heat equations with super linear absorptionNguyen, Phuoc Tai 02 February 2012 (has links)
Cette thèse est constituée de trois parties. Dans la première partie, on s’intéresse au problème de trace au bord d’une solution positive de l’équation (E1) - Δu + g(∇u) = 0 dans un domaine borné Ω. Si g(r) ≥ rq avec q > 1, on prouve que toute solution positive de (E1)admet une trace au bord considérée comme une mesure de Borel régulière. Si g(r) = rq avec1 < q < qc = N+1/N , on montre l’existence d’une solution positive dont la trace au bord est une mesure de Borel régulière. Si g(r) = rq avec qc ≤ q < 2, on établit une condition nécessaire de résolution en terme de capacité de Bessel C2-q/q ,q’ . On étudie aussi des ensembles éliminables au bord pour des solutions modérées et sigma-modérées. La deuxième partie est consacrée à étudier la limite, lorsque k → ∞, de solutions d’équation ∂tu - Δu + f(u) = 0 dans ℝN × (0,∞) avec donnée initiale kδ0. On prouve qu’il existe essentiellement trois types de comportement possible et démontre un résultat général d’existence de trace initiale et quelques résultats d’unicité et de non-unicité de solutions dont la donnée initiale n’est pas bornée. Dans la troisième partie, on considère l’équation ∂tu - Δu + f(u) = 0 dans ℝN × (0,∞) où p > 1. Si p > 2N/N+1, on fournit une condition suffisante portant sur f pour l’existence et l’unicité des solutions fondamentales et on étudie la limite lorsque k → ∞. On donne aussi de nouveaux résultats de non-unicité de solutions avec donnée initiale non bornée. Si p ≥ 2, on prouve que toute solution positive admet une trace initiale dans la classe des mesures de Borel régulières positives. Finalement on applique les résultats ci-dessus au cas f(u) = uα lnβ(u + 1) avec α,β > 0. / This thesis is divided into three parts. In the first part, we study the boundary trace of positive solutions of the equation (E1) - Δu + g(∇u) = 0 in a bounded domain . When g(r) ≥ rq with q > 1, we prove that any positive function of (E1) admits a boundary trace which is an outer regular Borel measure. When g(r) ≥ rq with 1 < q < qc = N+1/N, we prove the existence of a positive solution with a general outer regular Borel measure as boundary trace.When g(r) ≥ rq with qc ≤ q < 2, we establish a necessary condition for solvability in term of the Bessel capacity C2-q/q ,q’ . We also study boundary removable sets for moderate and sigma-moderate solutions. The second part is devoted to investigate the limit, when k → ∞, of the solutions of ∂tu - Δu + f(u) = 0 in ℝN × (0,∞) with initial data kδ0. We prove that there exist essentially three types of possible behaviour and provide a new and more general construction of the initial trace and some uniqueness and non-uniqueness results for solutions with unbounded initial data. In the third part, we consider the equation ∂tu - Δu + f(u) = 0 in ℝN × (0,∞) where p > 1. If p > 2N/N+1we provide a sufficient condition on f for existence and uniqueness of the fundamental solutions and we study their limit when k → ∞. We also give new results dealing with non uniqueness for the initial value problem with unbounded initial data. If p ≥ 2, we prove that any positive solution admits an initial trace in the class of positive Borel measures. Finally we apply the above results to the case f(u) = uα lnβ(u + 1) with α,β > 0.
|
96 |
Modélisation des détonations thermonucléaires en plasmas stellaires dégénérés: applications aux supernovae de types Ia / Modelling thermonuclear detonation waves in electron degenerate stellar plasmas: type Ia supernovaeEl Messoudi, Abdelmalek 04 September 2008 (has links)
Plusieurs évènements astrophysiques comme les novae, les supernovae de type Ia (SNeIa) et les sursauts X sont le résultat d'une combustion thermonucléaire explosive dans un plasma stellaire. Les supernovae comptent parmi les objets astrophysiques les plus fascinants tant sur le plan théorique que sur celui des observations. Au moment de l'explosion, la luminosité d'une supernova peut égaler celle de l'intégralité des autres étoiles de la galaxie. On admet aujourd’hui que les SNeIa résultent de l'explosion thermonucléaire d'une étoile naine blanche, un objet dense et compact composé de carbone et d'oxygène. Divers chemins évolutifs peuvent conduire à l’explosion de la naine blanche si celle-ci est membre d’un système stellaire binaire. Néanmoins, la nature du système binaire, les mécanismes d'amorçage et de propagation de la combustion thermonucléaire ainsi que le rapport carbone/oxygène au sein de l'étoile compacte ne sont pas encore clairement identifiés à ce jour. En ce qui concerne l’écoulement réactif, on invoque ainsi une détonation (Modèle sub-Chandrasekhar), une déflagration ou la transition d'une déflagration vers une détonation (Modèle Chandrasekhar). La détonation semble donc jouer un rôle prépondérant dans l'explication des SNeIa. <p>Les difficultés de modélisation des détonations proviennent essentiellement (i) de la libération d'énergie en plusieurs étapes, de l’apparition d’échelles de temps et de longueurs caractéristiques très différentes (ii) des inhomogénéités de densité, de température et de composition du milieu dans lequel se propage le front réactif et qui donnent naissance aux structures cellulaires et autres instabilités de propagation du front (extinctions et réamorçages locaux). <p>En plus de celles citées ci-dessus, deux autres difficultés majeures inhérentes à l'étude de ce mode de propagation dans les plasmas stellaires sont rencontrées :la complexité de l’équation d’état astrophysique et la cinétique nucléaire pouvant impliquer plusieurs milliers de nucléides couplés par plusieurs milliers de réactions. Ainsi, les premiers travaux impliquant une combustion thermonucléaire explosive ont été réalisés sur bases d'hypothèses simplificatrices comme l'équilibre nucléaire statistique instantané des produits de réactions ou l'utilisation d'un réseau réduit à une dizaine d'espèces nucléaires. Dans tous ces travaux, la détonation est assimilée à une discontinuité totalement réactive (détonation de Chapman-Jouguet ou CJ). La résolution de l'onde de détonation nécessite l'étude détaillée du processus nucléaire se déroulant dans la zone de réaction. Malheureusement, les supports de calculs actuels ne permettent pas encore ce type de simulations pour les détonations astrophysiques. Le modèle ZND qui constitue une description unidimensionnelle stationnaire de l’écoulement (plan ou courbé) constitue une excellente approximation de la réalité. <p>Notre travail réexamine les résultats des calculs des structures des ondes de détonations stellaires dans les conditions de température, de densité et de composition envisagées dans les travaux de ce type (détonation CJ et ZND) réalisés jusqu’à présent mais avec une équation d’état appropriée aux plasmas stellaires et une cinétique nucléaire nettement plus riche ;le plus grand réseau jamais utilisé pour ce genre d’études (333 noyaux couplés par 3262 réactions), prenant en compte les données les plus récentes de la physique nucléaire (vitesses de réaction et fonctions de partition)./Several astrophysics events like novae, supernovae and X burts, result from an explosive thermonuclear burning in stellar plasma. Type Ia Supernovae (SNeIa) count amoung the most fascinating stellar objects, they can be more brighter than an entire galaxy. Astrophysic works show that SNeIa may result from a thermonuclear explosion of a compact and dense star called carbon-oxygen white dwarf. The ignition stage and the propagation mode of the thermonuclear combustion wave are not identified yet. The Deflagration-to-Detonation Transition process (or "delayed detonation") sims to give the best overall agrements with the observations :detonations can play appart in SNeIa events. <p><p>Simulating thermonuclear detonations count same difficults. The most important are the burning length scales that spent over more than ten oders of magnitud, the nuclear kinetics that involve thousands of nuclids linked by thousands of nuclear reactions and the stellar plasma equation of state (EOS). Hydrodynamical simulations of detonation use very simplified ingedients like reduced reactions network and asymptotic EOS of completely electron degenerate stellar plasma.<p><p>Our work is the modelling of these detonations using more representative EOS of the stallar plasma that includs ions, electrons, radiation and electron-pistron pairs. We also use a more <p>detailed kinetic network, comprising 331 nuclids linked by 3262 capture and photodisintegration reactions, than those usualy employed.<p> <p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
97 |
Analyse mathématique de modèles d'intrusion marine dans les aquifères côtiers / Analysis of mathematical models describing salwater in coastal aquifersLi, Ji 20 October 2015 (has links)
Le thème de cette thèse est l'analyse mathématique de modèles décrivant l'intrusion saline dans les aquifères côtiers. On a choisi d'adopter la simplicité de l'approche avec interface nette : il n'y a pas de transfert de masse entre l'eau douce et l'eau salée (resp. entre la zone saturée et la zone sèche). On compense la difficulté mathématique liée à l'analyse des interfaces libres par un processus de moyennisation verticale nous permettant de réduire le problème initialement 3D à un système d'edps définies sur un domaine, Ω, 2D. Un second modèle est obtenu en combinant l'approche 'interface nette' à celle avec interface diffuse ; cette approche est déduite de la théorie introduite par Allen-Cahn, utilisant des fonctions de phase pour décrire les phénomènes de transition entre les milieux d'eau douce et d'eau salée (respectivement les milieux saturé et insaturé). Le problème d'origine 3D est alors réduit à un système fortement couplé d'edps quasi-linéaires de type parabolique dans le cas des aquifères libres décrivant l'évolution des profondeurs des 2 surfaces libres et de type elliptique-parabolique dans le cas des aquifères confinés, les inconnues étant alors la profondeur de l'interface eau salée par rapport à eau douce et la charge hydraulique de l'eau douce. Dans la première partie de la thèse, des résultats d'existence globale en temps sont démontrés montrant que l'approche couplée interface nette-interface diffuse est plus pertinente puisqu'elle permet d'établir un principe du maximum plus physique (plus précisèment une hiérarchie entre les 2 surfaces libres). En revanche, dans le cas de l'aquifère confiné, nous montrons que les deux approches conduisent à des résultats similaires. Dans la seconde partie de la thèse, nous prouvons l'unicité de la solution dans le cas non dégénéré, la preuve reposant sur un résultat de régularité du gradient de la solution dans l'espace Lr (ΩT), r > 2, (ΩT = (0,T) x Ω). Puis nous nous intéressons à un problème d'identification des conductivités hydrauliques dans le cas instationnaire. Ce problème est formulé par un problème d'optimisation dont la fonction coût mesure l'écart quadratique entre les charges hydrauliques expérimentales et celles données par le modèle. / The theme of this thesis is the analysis of mathematical models describing saltwater intrusion in coastal aquifers. The simplicity of sharp interface approach is chosen : there is no mass transfer between fresh water and salt water (respectively between the saturated zone and the area dry). We compensate the mathematical difficulty of the analysis of free interfaces by a vertical averaging process allowing us to reduce the 3D problem to system of pde's defined on a 2D domain Ω. A second model is obtained by combining the approach of 'sharp interface' in that with 'diffuse interface' ; this approach is derived from the theory introduced by Allen-Cahn, using phase functions to describe the phenomena of transition between fresh water and salt water (respectively the saturated and unsaturated areas). The 3D problem is then reduced to a strongly coupled system of quasi-linear parabolic equations in the unconfined case describing the evolution of the DEPTHS of two free surfaces and elliptical-parabolic equations in the case of confined aquifer, the unknowns being the depth of salt water/fresh water interface and the fresh water hydraulic head. In the first part of the thesis, the results of global in time existence are demonstrated showing that the sharp-diffuse interface approach is more relevant since it allows to establish a mor physical maximum principle (more precisely a hierarchy between the two free surfaces). In contrast, in the case of confined aquifer, we show that both approach leads to similar results. In the second part of the thesis, we prove the uniqueness of the solution in the non-degenerate case. The proof is based on a regularity result of the gradient of the solution in the space Lr (ΩT), r > 2, (ΩT = (0,T) x Ω). Then we are interest in a problem of identification of hydraulic conductivities in the unsteady case. This problem is formulated by an optimization problem whose cost function measures the squared difference between experimental hydraulic heads and those given by the model.
|
98 |
NOVEL PHYSICAL PHENOMENA IN CORRELATED SUPERFLUIDS AND SUPERCONDUCTORS IN- AND OUT-OF-EQUILIBRIUMAmmar, Kirmani A. 16 April 2020 (has links)
No description available.
|
99 |
EM Characterization of Magnetic Photonic / Degenerate Band Edge Crystals and Related Antenna RealizationsMumcu, Gokhan 01 October 2008 (has links)
No description available.
|
100 |
[pt] TEORIA DE REGULARIDADE PARA MODELOS COMPLETAMENTE NÃO-LINEARES / [en] TOWARDS A REGULARITY THEORY FOR FULLY NONLINEAR MODELSPEDRA DARICLEA SANTOS ANDRADE 28 December 2020 (has links)
[pt] Neste trabalho examinamos equações completamente não-lineares em dois contextos distintos. A princípio, estudamos jogos de campo médio completamente não-lineares. Aqui, examinamos ganhos de regularidade para as soluções do problema, existência de soluções, resultados de relaxação e aspectos particulares de um example explícito. A segunda metade da tese dedica-se à regularidade ótima das soluções de um modelo completamente não-linear que degenera-se com respeito ao gradiente das soluções. A pergunta fundamental subjacente a ambos os tópicos diz respeito aos efeitos da elipticidade sobre propriedades intrínsecas das soluções de equações não-lineares. Mais precisamente, no caso dos jogos de campo médio, a elipticidade parece magnificada pelos efeitos do acoplamento, enquanto no caso dos problemas degenerados, esta quantidade colapsa em sub-regiões do domínio, dando origem a delicados fenômenos. Nossa análise inclui um
breve contexto da inserção do trabalho. / [en] In this thesis, we examine fully nonlinear problems in two distinct contexts. The first part of our work focuses on fully nonlinear mean-field games. In this context, we examine gains of regularity, the existence of solutions, relaxation results, and particular aspects of a one-dimensional problem. The second half of the thesis concerns a (sharp) regularity theory for fully nonlinear equations degenerating with respect to the gradient of the solutions. The fundamental question underlying both topics regards the effects of ellipticity on the intrinsic properties of solutions to nonlinear equations. To be more precise, in the case of mean-field game systems, ellipticity seems to be magnified through the coupling structure. On the other hand, in the degenerate setting, ellipticity collapses, giving rise to intricate regularity phenomena. Our analysis is preceded by some context on both topics.
|
Page generated in 0.0577 seconds