• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 210
  • 129
  • 35
  • 18
  • 14
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 4
  • 3
  • Tagged with
  • 538
  • 196
  • 148
  • 121
  • 93
  • 83
  • 77
  • 66
  • 66
  • 64
  • 58
  • 55
  • 52
  • 48
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Desnitrificação autotrófica usando sulfeto como doador de elétrons para remoção de nitrogênio de efluentes de reatores anaeróbios utilizados no tratamento de esgotos sanitários / Autotrophic denitrification using sulfide as electron donor for nitrogen removal from anaerobically pre-treated domestic sewage

Souza, Theo Syrto Octavio de 15 April 2011 (has links)
A remoção de nitrogênio é um aspecto importante do tratamento de águas residuárias, visto que este nutriente causa diversos inconvenientes, com consequentes danos à saúde humana e ao meio ambiente. A forma mais utilizada para a remoção biológica de nitrogênio de águas residuárias é a nitrificação autotrófica seguida de desnitrificação heterotrófica. Esta última etapa necessita de doadores de elétrons orgânicos, provenientes de fontes endógenas ou exógenas. Isto pode encarecer os sistemas de tratamento que utilizam reatores anaeróbios como primeira unidade de tratamento biológico, já que os efluentes destes não possuem matéria orgânica prontamente degradável, exigindo a adição de fontes exógenas de doadores de elétrons. Neste sentido, a desnitrificação autotrófica usando compostos reduzidos de enxofre como doadores de elétrons mostra-se interessante, já que sulfetos são comumente encontrados em efluentes anaeróbios. O objetivo deste projeto de pesquisa é a avaliação da desnitrificação autotrófica usando sulfeto como doador de elétrons para remoção de nitrogênio de efluentes de reatores anaeróbios tratando esgoto sanitário. Para atingir esse objetivo, foram realizados estudos exploratórios, de viabilidade e aplicabilidade do processo. Na primeira etapa, foram operados reatores em batelada para caracterização cinética, operacional e microbiológica do processo. Na segunda etapa, utilizou-se sistema de reatores contínuos em escala de bancada para remoção de nitrogênio de esgoto sanitário sintético. Por fim, na terceira etapa foi operado sistema piloto com nova configuração para tratamento secundário e terciário de esgoto sanitário real. A ocorrência da desnitrificação autotrófica foi detectada nas duas primeiras etapas, e houve indícios de sua presença na terceira etapa da pesquisa. Na primeira etapa, nitrato e nitrito foram aplicados com sucesso como receptores de elétrons, e o processo manteve-se estável apenas quando a relação \'NO IND.X\'POT.-\'/\'S POT.2-\' apresentou valores menores do que a estequiométrica. Modelos cinéticos de ordem zero foram os que melhor se ajustaram aos dados de consumo dos receptores de elétrons, e os parâmetro máximos obtidos foram 7,05 e 5,02 mg N/h.gSSV, para nitrato e nitrito respectivamente. Análises filogenéticas revelaram a presença de organismos semelhantes a Thiobacillus denitrificans, bactéria desnitrificante quimiolitotrófica usualmente associada ao processo. Na segunda e terceira etapas, foi possível a remoção global de nitrogênio de, em média, 40% apenas com doadores de elétrons endógenos, através da nitrificação de 40 a 60% da vazão total e posterior mistura com a fração não-nitrificada. A perda de sulfeto nos reservatórios intermediários do sistema de reatores da segunda etapa foi considerada um obstáculo ao processo, que foi solucionado com a nova configuração proposta na terceira etapa e aplicada em escala piloto. Embora a gama variada de processos possíveis em seu interior não tenha sido completamente elucidada, o sistema piloto promoveu tratamento secundário e terciário de esgoto sanitário, com remoção de nitrogênio e atendimento aos padrões de emissão deste parâmetro. Os resultados obtidos na pesquisa mostraram que o processo é versátil e pode coexistir com outros processos, apresentando viabilidade e potencial no tratamento de efluentes de reatores anaeróbios utilizados no tratamento de esgotos sanitários. / Nitrogen removal is an important aspect of wastewater treatment, for this nutrient causes several issues, with damages to human health and to the environment. The most used technique for biological nitrogen removal from wastewaters is autotrophic nitrification followed by heterotrophic denitrification. The latter needs organic electron donors from endogenous or exogenous sources, which can increase treatment costs for plants that rely on anaerobic reactors as their first biological unit, since their effluents do not have enough readily biodegradable organic matter, demanding the addition of exogenous sources of electron donors. In this way, autotrophic denitrification using reduced sulfur compounds as electron donors could be an interesting alternative, for sulfides are usually present in anaerobically pre-treated effluents. The aim of this research is to evaluate autotrophic denitrification using sulfide as electron donor for nitrogen removal from anaerobically pre-treated domestic sewage. For this, exploratory, viability and applicability studies of the process were performed. In the first part of the experiments, batch assays were conducted for kinetic, operational and microbiological characterization of the process. In the second part, a bench-scale system composed of three continuous reactors was used to remove nitrogen from synthetic domestic sewage. And, finally, in the third part a pilot-scale system presenting a new configuration was operated for secondary and tertiary treatment of real domestic sewage. Autotrophic denitrification was detected in the first two parts, and there were evidences of its presence in the third part of the research. In the first part, nitrate and nitrite were applied successfully as electron acceptors, and the process remained stable only when the \'NO IND.X\'POT.-\'/\'S POT.2-\' ratio was lower than the predicted by stoichiometry. Zero-order kinetic models were the ones that best adjusted to the electron acceptors consumption data, and the maximum obtained parameters were 7.05 and 5.02 mg N/h.gVSS, for nitrate and nitrite respectively. Phylogenetic analyses indicated the presence of organisms similar to Thiobacillus denitrificans, a chemolithotrophic denitrifying bacterium usually associated to the process. In the second and third parts, an average global nitrogen removal of 40% could be achieved using endogenous electron donors only, by nitrifying 40 to 60% of the total flow and later mixing it with the remaining non-nitrified fraction. Sulfide loss in the intermediary tanks of the reactors system operated in the second part was considered an obstacle to the process, which was solved with the new pilot-scale configuration proposed in the third part of the research. Although the wide range of possible processes in its interior was not fully understood, the pilot-scale system promoted secondary and tertiary treatment of domestic sewage, removing nitrogen and obeying the emission standards for this parameter. The results obtained in this research indicated that the process is versatile and can coexist with other processes, being thus viable and presenting potential in the treatment of anaerobically pre-treated domestic sewage.
442

Nitric Oxide Reductase from<i> Paracoccus denitrificans</i> : A Proton Transfer Pathway from the “Wrong” Side

Flock, Ulrika January 2008 (has links)
<p>Denitrification is an anaerobic process performed by several soil bacteria as an alternative to aerobic respiration. A key-step in denitrification (the N-N-bond is made) is catalyzed by nitric oxide reductase (NOR); 2NO + 2e<sup>-</sup> + 2H<sup>+</sup> → N<sub>2</sub>O + H<sub>2</sub>O. NOR from <i>Paracoccus denitrificans</i> is a member of the heme copper oxidase superfamily (HCuOs), where the mitochondrial cytochrome c oxidase is the classical example. NOR is situated in the cytoplasmic membrane and can, as a side reaction, catalyze the reduction of oxygen to water.</p><p>NORs have properties that make them divergent members of the HCuOs; the reactions they catalyze are not electrogenic and they do not pump protons. They also have five strictly conserved glutamates in their catalytic subunit (NorB) that are not conserved in the ‘classical’ HCuOs. It has been asked whether the protons used in the reaction really come from the periplasm and if so how do the protons proceed through the protein into the catalytic site?</p><p>In order to find out whether the protons are taken from the periplasm or the cytoplasm and in order to pinpoint the proton-route in NorB, we studied electron- and proton transfer during a single- as well as multiple turnovers, using time resolved optical spectroscopy. Wild type NOR and several variants of the five conserved glutamates were investigated in their solubilised form or/and reconstituted into vesicles.</p><p>The results demonstrate that protons needed for the reaction indeed are taken from the periplasm and that all but one of the conserved glutamates are crucial for the oxidative phase of the reaction that is limited by proton uptake to the active site.</p><p>In this thesis it is proposed, using a model of NorB, that two of the glutamates are located at the entrance of the proton pathway which also contains two of the other glutamates close to the active site.</p>
443

Hydraulic characterization and modeling of the Talking Water Garden wetland for evaluation of nitrogen removal

Huang, Tao 08 June 2012 (has links)
The purpose of this research is to hydraulically characterize an engineered wetland in Albany, Oregon. The wetland receives treated wastewater from both Albany Millersburg Water Reclamation Facility (AMWRF) and ATI Wah Chang. AMWRF's water is municipal waste water. ATI Wah Chang's water comes from its nearby metal processing plant. The wetland is designed to remove thermal input as well as nitrogen species from both sources. ATI Wah Chang effluent has significant nitrate concentrations. A reliable model is needed to estimate the denitrification potential of the wetland. In order to construct a model, accurate hydraulic parameters such as residence time and flow rate are needed. In the first few days after ATI started flow, the aquatic conductivity level of the wetland increased significantly. Conductivity was used as a tracer to estimate residence times in the wetland as well as to measure the split ratios from different water sources in the wetland (ATI Wah Chang and AMWRF). A pilot test on conductivity and flow rate was carried out on a single pond. The pilot test was designed to accurately measure the influent and effluent from a single pond. Using this information, rates of infiltration as well as unintended flow paths could be identified. A third tracer test was performed using Rhodamine W.T. This test allowed for the determination of the residence time of each pond, the wetland as a whole, and identified stagnant zones within the ponds. To simulate the nitrogen transportation and transformation process, a numerical model was developed. The model's input parameters include reaction rate constants for nitrification and denitrification, volume of each pond, flow rate, flow path connections, and temperature. The model simulated the tracer test that was performed on the wetland to verify its accuracy. The model is also capable of predicting denitrification potential in both pilot scale and field scale. It is also temperature sensitive because temperatures vary significantly; for instance, in winter when the average temperature in Albany is <5��C, denitrification rates decrease significantly. Through this research, hydraulic characterization as well as current denitrification rates in the wetland were identified. Strategies for increasing the denitrification rate were also identified through this research. / Graduation date: 2012
444

The Effects Of Seed Sludge Type And Anoxic/aerobic Period Sequence On Aerobic Granulation And Cod, N Treatment Performance

Ersan, Yusuf Cagatay 01 January 2013 (has links) (PDF)
The aim of this master thesis study was improvement of the required operational conditions for aerobic granulation in sequencing batch reactors (SBRs). In the first part of the study, membrane bioreactor sludge (MBS) and conventional activated sludge (CAS), were used to investigate the effect of suspended seed sludge type on granulation in SBRs. The MBS granules were found to be advantageous in terms of size, resistance to toxic effects, stability and recovery compared to CAS granules. During non-inhibitory conditions, sCOD removal efficiencies were 70&plusmn / 13% and 67&plusmn / 11% for MBS and CAS, and total nitrogen (TN) removal efficiencies were 38&plusmn / 8% and 26&plusmn / 8%, respectively. In the second part of the study, the effects of period sequence (anoxic-aerobic and aerobic-anoxic) on aerobic granulation from MBS, and sCOD, N removal efficiencies were investigated. Granules developed in anoxic-aerobic period sequence were more stable and larger (1.8-3.5 mm) than granules developed in aerobic-anoxic sequence. Under steady conditions, almost 95% sCOD, 90% Total Ammonia Nitrogen (TAN) and around 39-47 % of TN removal was achieved. Almost 100% denitrification in anoxic period was achieved in anoxic-aerobic period sequence and it was observed around 40% in aerobic-anoxic period sequence. The effects of influent sulfate (from 35.1 mg/L to 70.2 mg/L) on treatment efficiencies of aerobic granules were also investigated. The influent SO42- concentrations of 52.6 mg/L to 70.2 mg/L promoted sulfate reduction. The produced sulfide (0.24 mg/L to 0.62 mg/L) inhibited the ammonia-oxidizing bacteria (AOB) performance by 10 to 50%.
445

Energieffektivisering av luftningssteget på Käppalaverket, Lidingö / Energy optimization of the aeration at Käppala wastewater treatment plant in Stockholm

Thunberg, Andreas January 2007 (has links)
This master thesis in energy optimization was made during the autumn of 2006 at Käppala wastewater treatment plant in Lidingö, Stockholm. A preceding thesis, where all electricity consumption was mapped, showed that the aeration in the biological treatment is the single largest consumer in the plant, and it is therefore of interest to reduce this cost. The oxygen control strategy used at Käppala WWTP is working well from a nutrient removal point of view, but not from an economic one. The last aerobic zones have a very low oxygen consumption during low loading periods which give rise to enhanced dissolved oxygen concentrations with excessive costs and reduced denitrification as a result. But also during periods of normal loading unnecessary high oxygen concentration are sometimes given. By modifying the aeration control strategy three full-scale experiments have been made, with the intention to reduce the air consumption. The experiments were carried out during week 37-50 in the autumn of 2006 and showed that savings could be made. The regular oxygen control at Käppala WWTP controls the oxygen level in the aerobic compartment with two DO-setpoints; one in the first aerobic zone and one in the last. The zones in between are controlled by an airflow fractionation depending on the oxygen level in the first and last zone. In the first strategy to be evaluated, all four zones in the aerated part were individually controlled with its own setpoint. Two different setpoint combinations were tested. By using the fact that the efficiency in the oxygen transfer rate was higher at low airflows, savings of approximately 16 % were achieved. In the second strategy tested, an ammonia-feedback control combined with a DO-feedback controlled the DO-set point in the first aerobic zone. This strategy adjusted the DO- set points to the loading variations, and this gave a decreased airflow of approximately 9 %. Finally the two strategies were combined. All zones were then controlled individually with DO-set points set by an ammonium-feedback and a DO-feedback. The strategy gave savings in the airflow of approximately 18 %. In all three trials the aerated zones were more efficiently used, and the estimated savings are 550 000 SEK/year, and with a preserved nutrient removal efficiency. / Under hösten 2006 har ett examensarbete om energieffektivisering på Käppalaverket på Lidingö utförts. Ett föregående examensarbete där all elenergiförbrukning kartlades visade att blåsmaskinerna i biosteget står för den enskilt största förbrukningen i verket och det är därför av intresse att minska denna kostnad. Syrestyrningsstrategin som används på Käppalaverket fungerar mycket bra ur reningssynpunkt, men är inte optimal ur energisynpunkt. Dels luftas de första aeroba zonerna för mycket vid låg belastning vilket ger upphov till kraftigt förhöjda syrekoncentrationer i de sista aeroba zonerna med höga luftningskostnader och risk för försämrad denitrifikation, men även under normal belastning har det visat sig att onödigt höga syrekoncentrationer ibland ges. Tre fullskaliga optimeringsförsök har utförts, med syfte att minska luftförbrukningen med bibehållen reningsgrad. Försöken pågick från vecka 37 till 50 hösten 2006, och visade att det finns möjlighet att spara energi genom att modifiera syrestyrningsstrategin. Den reguljära syreregleringen i Käppalaverket styr syrehalten i den aeroba bassängen mot två syrebörvärden; ett i den första luftade zonen och ett i den sista. Luftflödet till de mellanliggande zonerna styrs av luftflödesandelar beroende på syrehalten i dessa två zoner. Den första strategin som utvärderades styrde istället samtliga zoner individuellt med egna börvärden, där två olika strukturer på de satta börvärdena användes. Genom att utnyttja en högre effektivitet i syreöverföringshastigheten vid låga luftflöden uppnåddes luftflödesbesparingar på ca 16 % i första försöket. I den andra strategin styrdes syrebörvärdet i den första luftade zonen med hjälp av två återkopplingar, en från utgående ammoniumhalt och en från syrehalten i den sista luftade zonen. Tack vare att strategin anpassade syrebörvärdena efter belastningen av syretärande ämnen erhölls luftflödesbesparingar på ca 9 %. Slutligen kombinerades de två strategierna; samtliga zoner styrdes individuellt med börvärden satta av en ammonium-återkoppling och en syre-återkoppling. Strategin medförde luftflödesbesparingar på ca 18 %. I samtliga försök utnyttjades de luftade zonerna bättre, och besparingspotentialen uträknad från 2005 års elpriser blev som mest 550 000 SEK/år, detta med en bibehållen reningsgrad.
446

Förstudie till våtmark i Rimbo : Design för optimal hydrologi och kväverening

Jaremalm, Maria January 2005 (has links)
The euthropthication of the Baltic Sea is a threat that is beginning to be taken seriously by the governments concerned. In Sweden, regulations concerning the allowed nitrogen (N) concentration in the effluent water from wastewater treatment plants are being tightened up. The Rimbo wastewater treatment plant has been imposed to reduce the annual mean concentration of total N in the effluent water to levels below 15 mg l-1. A more and more common way to reduce the nitrogen level in wastewater is to let the water pass through a wetland. This study investigates the possibility to build this kind of wetland at the outlet of the Rimbo wastewater treatment plant. A prestudy of the topography, soil characteristics and groundwater flow indicates that the land area in question is well suited for the construction of a wetland. A proposal for the design has been made by using a physically based computer model developed in the PRIMROSE project (PRocess based Integrated Management of constructed and Riverine wetlands for Optimal control of wastewater at catchment ScalE), which is financed by the EU. Analysis of the residence time distribution (RTD) is a tool for understanding wetland design characteristics and can be used for wetland engineering such as optimizing design for best possibleefficiency in nitrogen removal. In order to characterize the performance of a wetland, it is useful to translate the RTD to a key figure representing the treatment efficiency. In this work, two types of such key figures have been used. Key figure 1 gives the hydraulic efficiency and Key figure 2 gives an estimation of the nitrogen retention by an integration of hydraulic characteristics and the chemical transformation of nitrogen. The results of this study show that constructing a wetland in Rimbo probably would be an efficient way to reduce the nitrogen level at the effluent of the wastewater plant below the limits of the regulations. In addition, a wetland would form a nice place of recreation for the people in Rimbo and also make a good habitat for birds. / Övergödningen i Östersjön är ett problem som uppmärksammas alltmer. Ett led i att minska kvävebelastningen på Östersjön är ökade krav på rening i de svenska kommunala reningsverken. Rimbo avloppsreningsanläggning har blivit ålagd ett riktvärde för totalkväve på 15 mg l-1 i utgående vatten, vilket motsvarar en reningsgrad som inte uppnås idag. Ett alltmer vanligt sätt att minska föroreningshalterna är att anlägga våtmarker i anslutning till reningsverken för att efterpolera spillvattnet. Det här arbetet är en del av en förstudie till en sådan våtmark i Rimbo. En förundersökning av topografi, jordart och grundvattenflöden indikerar att det område som föreslagits i anslutning till reningsverket i Rimbo lämpar sig väl för ett våtmarksbygge. Förslag till utformning har tagits fram med hjälp av en fysikaliskt baserad modell över vattenströmning, utvecklad inom det EU-finansierade projektet PRIMROSE (PRocess based Integrated Management of constructed and Riverine wetlands for Optimal control of wastewater at catchment ScalE). Analys av vattnets uppehållstidsfördelning ger förståelse för våtmarkens egenskaper och kan därför användas vid t ex optimering av våtmarksdesign med avseende på kväverening. För att på ett enkelt sätt kunna jämföra olika våtmarkers effektivitet är det praktiskt att översätta uppehållstidsfördelningen till ett nyckeltal för reningseffekten. I det här arbetet har två olika sådana nyckeltal beräknats. Det första ger den hydrauliska effektiviteten och det andra bygger på en metod där våtmarkens interna hydraulik integreras med den kemiska omvandlingen av kväve. Nyckeltal 1 ger ett mått på hur stor del av volymen i våtmarken som används för kväverening, medan Nyckeltal 2 ger ett mått på den procentuella kväveavskiljningen. Den här förstudien visar att en våtmark sannolikt skulle vara ett utmärkt sätt att klara riktvärdet för kvävehalten vid reningsverket i Rimbo. Därutöver skulle en våtmark kunna utgöra ett positivt inslag i landskapet och öka den biologiska mångfalden, inte minst vad gäller fågelliv.
447

Coupled Hydrological and Microbiological Processes Controlling Denitrification in Constructed Wetlands

Kjellin, Johan January 2007 (has links)
<p>Treatment wetlands play an important role in reducing nitrogen content in wastewater and agricultural run-off water. The main removal process is denitrification and the removal efficiency depends on the hydrological and microbiological features of the wetland, especially in terms of water residence times and denitrification rates. The aim of this thesis was to increase the understanding of the coupled hydrological and microbiological processes regulating the denitrification capacity. This was done by applying a broad spectrum of analyses methods, including tracer experiment, water flow modeling, denitrification rate measurements, and analyses of the microbial community structures. The tracer experiment and flow modeling revealed that the wetland design, especially the vegetation, largely can affect the water residence time distributions in wetlands. In the investigated wetland, vegetation dominated the water flow, explaining 60-80% of the variance in water residence times, whereas basin shape only explained about 10% of the variance, but also mixing phenomena significantly affected the residence times and could considerably delay solutes. Measured potential denitrification rates in the wetland exhibited significant spatial variations, and the variations were best described by concentration of nitrogen in sediments and water residence time. Analyses of the denitrifying bacteria populations indicated that a few key populations dominated and that the community diversity increased with decreasing nutrient levels and increasing water residence times. Moreover, it was found that denitrification rates in terms of Menten and first order kinetics can be evaluated by fitting a mathematical expression, considering denitrification and other nitrogen transforming processes to measured product formation in nitrate limited experiments.</p>
448

Nitric Oxide Reductase from Paracoccus denitrificans : A Proton Transfer Pathway from the “Wrong” Side

Flock, Ulrika January 2008 (has links)
Denitrification is an anaerobic process performed by several soil bacteria as an alternative to aerobic respiration. A key-step in denitrification (the N-N-bond is made) is catalyzed by nitric oxide reductase (NOR); 2NO + 2e- + 2H+ → N2O + H2O. NOR from Paracoccus denitrificans is a member of the heme copper oxidase superfamily (HCuOs), where the mitochondrial cytochrome c oxidase is the classical example. NOR is situated in the cytoplasmic membrane and can, as a side reaction, catalyze the reduction of oxygen to water. NORs have properties that make them divergent members of the HCuOs; the reactions they catalyze are not electrogenic and they do not pump protons. They also have five strictly conserved glutamates in their catalytic subunit (NorB) that are not conserved in the ‘classical’ HCuOs. It has been asked whether the protons used in the reaction really come from the periplasm and if so how do the protons proceed through the protein into the catalytic site? In order to find out whether the protons are taken from the periplasm or the cytoplasm and in order to pinpoint the proton-route in NorB, we studied electron- and proton transfer during a single- as well as multiple turnovers, using time resolved optical spectroscopy. Wild type NOR and several variants of the five conserved glutamates were investigated in their solubilised form or/and reconstituted into vesicles. The results demonstrate that protons needed for the reaction indeed are taken from the periplasm and that all but one of the conserved glutamates are crucial for the oxidative phase of the reaction that is limited by proton uptake to the active site. In this thesis it is proposed, using a model of NorB, that two of the glutamates are located at the entrance of the proton pathway which also contains two of the other glutamates close to the active site.
449

The Effect of Increasing the Organic Carbon Content of Sewage on Nitrogen, Carbon, and Bacteria Removal and Infiltration in Soil Columns

Lance, J. C., Whisler, F. D. 12 April 1975 (has links)
From the Proceedings of the 1975 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 11-12, 1975, Tempe, Arizona / Denitrification is the only reaction capable of removing the tremendous quantity of nitrogen applied when high-rate land filtration systems are used for renovating sewage water. This study determined that a shortage of organic carbon limits denitrification, and the effects of increased dissolved organic carbon concentrations on soil clogging and movement of fecal coliform bacteria are clearly shown. Finally, the removal of dissolved organic carbon at different carbon concentrations during high rate soil filtration (40-50 cm/day) also limits denitrification.
450

Prozesse und Regulation der N2O- und N2-Freisetzung aus Waldböden / Processes and Regulation of Nitrous Oxide and Dinitrogen Emission from Forest Ecosystems

Koch, Anne-Sophie 30 October 2000 (has links)
No description available.

Page generated in 0.1041 seconds