• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 6
  • 4
  • 3
  • 2
  • Tagged with
  • 45
  • 17
  • 13
  • 13
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Simulation Of Depleted Gas Reservoir For Underground Gas Storage

Ozturk, Bulent 01 December 2004 (has links) (PDF)
For a natural gas importing country, &ldquo / take or pay&rdquo / approach creates problems since the demand for natural gas varies during the year and the excess amount of natural gas should be stored. In this study, an underground gas storage project is evaluated in a depleted gas Field M. After gathering all necessary reservoir, fluid, production and pressure data, the data were adapted to computer language, which was used in a commercial simulator software (IMEX) that is the CMG&rsquo / s (Computer Modelling Group) new generation adoptive simulator, to reach the history matching. The history matching which consists of the 4 year of production of the gas reservoir is the first step of this study. The simulation program was able to accomplish a good history match with the given parameters of the reservoir. Using the history match as a base, five different scenarios were created and forecast the injection and withdrawal performance of the reservoir. These scenarios includes 5 newly drilled horizontal wells which were used in combinations with the existing wells. With a predetermined injection rate of 13 MMcf/D was set for all the wells and among the 5 scenarios, 5 horizontal &ndash / 6 vertical injectors &amp / 5 horizontal - 6 vertical producers is the most successful in handling the gas inventory and the time it takes for a gas injection and production period. After the determination of the well configuration, the optimum injection rate for the entire field was obtained and found to be 130 MMcf/D by running different injection rates for all wells and then for only horizontal wells different injection rates were applied with a constant injection rate of 130 MMcf/d for vertical wells. Then it has been found that it is better to apply the 5th scenario which includes 5 horizontal &ndash / 6 vertical injectors &amp / 5 horizontal - 6 vertical producers having an injection rate of 130 MMcf/d for horizontal and vertical wells. Since within the 5th scenario, changing the injection rate to 1.3 Bcf/d and 13 Bcf/d, did not effect and change the average reservoir pressure significantly, it is best to carry out the project with the optimum injection rate which is 130 MMcf/d. The total gas produced untill 2012 is 394 BCF and the gas injected is 340 BCF where the maximum average reservoir pressure was recovered and set into a new value of 1881 psi by injection and cushion gas pressure as 1371 psi by withdrawal. If 5th scenario is compared with the others, there is an increase in injection and production performance about 90%.
12

Development and evaluation of image registration and segmentation algorithms for long wavelength infrared and visible wavelength images

Hu, Lequn, January 2009 (has links)
Thesis (M.S.)--Mississippi State University. Department of Electrical and Computer Engineering. / Title from title screen. Includes bibliographical references.
13

MESFET Optimization and Innovative Design for High Current Device Applications

January 2011 (has links)
abstract: There will always be a need for high current/voltage transistors. A transistor that has the ability to be both or either of these things is the silicon metal-silicon field effect transistor (MESFET). An additional perk that silicon MESFET transistors have is the ability to be integrated into the standard silicon on insulator (SOI) complementary metal oxide semiconductor (CMOS) process flow. This makes a silicon MESFET transistor a very valuable device for use in any standard CMOS circuit that may usually need a separate integrated circuit (IC) in order to switch power on or from a high current/voltage because it allows this function to be performed with a single chip thereby cutting costs. The ability for the MESFET to cost effectively satisfy the needs of this any many other high current/voltage device application markets is what drives the study of MESFET optimization. Silicon MESFETs that are integrated into standard SOI CMOS processes often receive dopings during fabrication that would not ideally be there in a process made exclusively for MESFETs. Since these remnants of SOI CMOS processing effect the operation of a MESFET device, their effect can be seen in the current-voltage characteristics of a measured MESFET device. Device simulations are done and compared to measured silicon MESFET data in order to deduce the cause and effect of many of these SOI CMOS remnants. MESFET devices can be made in both fully depleted (FD) and partially depleted (PD) SOI CMOS technologies. Device simulations are used to do a comparison of FD and PD MESFETs in order to show the advantages and disadvantages of MESFETs fabricated in different technologies. It is shown that PD MESFET have the highest current per area capability. Since the PD MESFET is shown to have the highest current capability, a layout optimization method to further increase the current per area capability of the PD silicon MESFET is presented, derived, and proven to a first order. / Dissertation/Thesis / M.S. Electrical Engineering 2011
14

GIS Based Study of Probable Causes of Increase in Cancer Incidences in Iraq After Gulf War 1991

Muhammad, Hassan January 2006 (has links)
<p>The use of banned toxic weapons in Iraq during Gulf War 1991 started new debates. The increase in cancer cases was the main focus of these issues. The gap in literature motivated this study to find out the correlation between use of DU weapons and its effects on human health. The different probable causes of increase in cancer cases, in Iraq after Gulf War 1991, have been discussed in this study. Three causes; DU, brick kilns smoke near Basra and Kuwait oil fire smoke have been selected. The major emphasis of this study is on use of Depleted Uranium (DU). Different statistical data sets have been used and displayed in the form of maps and graphs using GIS methodologies. It’s hard to say after this GIS based study that the fired Depleted Uranium is the sole cause of increase in cancer incidences in Iraq, while some trends and risk factors at least can be observed where increase in cancer cases in different Governorates in Iraq is clearly visible after Gulf War 1991. After analyzing satellite images of different dates, the second part of this study concludes that Kuwait oil wells smoke is not responsible for increase in cancer incidences in Iraq. A small debate has been initiated regarding smoke in brick kilns near Basra. No study has been found in this regard which can provide evidences that brick kilns smoke is the cause of increase in cancer incidences in southern Iraq.</p><p>It’s not easy to carry out a full fledge GIS based study to prove DU as cause of increase in cancer cases. The main limitation in this regard is unavailability of required data. Therefore a new GIS based methodology has been devised which can be used to prove relationship between exposure to DU and increase in cancer cases in Iraq. This new methodology is also dependent on specific data sets. Hence this methodology also recommends the collection of specific data sets required for this study.</p><p>At the end, a detailed study, with honesty, has been suggested to fill up the gaps found in literature whether use of Depleted Uranium in weapons is harmful for human health or not.</p>
15

Simulating Oil Recovery During Co2 Sequestration Into A Mature Oil Reservoir

Pamukcu, Yusuf Ziya 01 August 2006 (has links) (PDF)
The continuous rising of anthropogenic emission into the atmosphere as a consequence of industrial growth is becoming uncontrollable, which causes heating up the atmosphere and changes in global climate. Therefore, CO2 emission becomes a big problem and key issue in environmental concerns. There are several options discussed for reducing the amount of CO2 emitted into the atmosphere. CO2 sequestration is one of these options, which involves the capture of CO2 from hydrocarbon emission sources, e.g. power plants, the injection and storage of CO2 into deep geological formations, e.g. depleted oil reservoirs. The complexity in the structure of geological formations and the processes involved in this method necessitates the use of numerical simulations in revealing the potential problems, determining feasibility, storage capacity, and life span credibility. Field K having 32o API gravity oil in a carbonate formation from southeast Turkey was studied. Field K was put on production in 1982 and produced until 2006, which was very close to its economic lifetime. Thus, it was considered as a candidate for enhanced oil recovery and CO2 sequestration. Reservoir rock and fluid data was first interpreted with available well logging, core and drill stem test data. Monte Carlo simulation was used to evaluate the probable reserve that was 7 million STB, original oil in place (OOIP). The data were then merged into CMG/STARS simulator. History matching study was done with production data to verify the results of the simulator with field data. After obtaining a good match, the different scenarios were realized by using the simulator. From the results of simulation runs, it was realized that CO2 injection can be applied to increase oil recovery, but sequestering of high amount of CO2 was found out to be inappropriate for field K. Therefore, it was decided to focus on oil recovery while CO2 was sequestered within the reservoir. Oil recovery was about 23% of OOIP in 2006 for field K, it reached to 43 % of OOIP by injecting CO2 after defining production and injection scenarios, properly.
16

F-actin rearrangements and analysis of physical environment of invasive hyphal growth.

Rolston, Laura Elizabeth January 2009 (has links)
Invasive growth through a substrate requires a massive amount of penetrative force, and this is generated in the space of a few microns in a growing tip. This process is known to be critical in the root hair, pollen tube, rhizoids, and the topic of this thesis, hyphal growth. However defining the mechanisms underlying the tip growth remains a contentious issue. Shortcomings in control of direction and regulation of growth began to undermine early turgor-based theories, and the cytoskeletal protein actin, ubiquitous in nature and with crucial roles in structure and motility became a target for investigation. A major breakthrough came with the discovery that a characteristic actin depleted zone (ADZ) occurs at the growing tip of hyphae during invasive but not non-invasive hyphal growth. The ADZ is likely to have an important role in generating the greater protrusive force required for invasive growth. However, since its discovery, little has been determined about the characteristics of the ADZ. Uncertainty in the description of the physical environment the hyphae face adds a layer of complexity to interpretation of results. This thesis aims to address this issue, studying the impact of increasing agarose substrate concentration on the presence and dimensions of the ADZ in the oomycete A. bisexualis. Furthermore, agarose is examined by compression and imaging to compare the physical characteristics of the agar samples over the range of concentrations, and determine whether increasing agarose concentration influences agarose gel structure. Results suggest a difference in the number of ADZ observed in non-invasive compared with invasive samples, however no significant differences in the number or dimensions of ADZ were found amongst the 1-4% w/v agarose concentrations. The 0% sample showed 20.7 percent of hyphae exhibited depleted zones, while 1, 2, 3 and 4% samples showed 56.9%, 48.8%, 40.9% and 54.2% respectively. ADZ dimensions did not correlate with agarose concentration. The average ADZ area:hyphal diameter ratio was 0.634, 0.526, 0.430, 1.09, and 0.65 for 0-4% agarose concentrations respectively. Additionally, investigation of gel compression forces revealed gel strength increases with agarose concentration. The force required to compress the agarose increased from 1.85 Psi in 1% agarose to 4.85, 7.09 and 12.22 Psi in 2, 3 and 4% agarose concentrations respectively. SEM imaging, however, suggests heterogeneity of the fibrous interconnected network of agarose gels at a microscopic scale with variable porous structure at all agarose concentrations. This scale is relevant to hyphal tip growth. In combination, these results suggest F-actin depletion may be a response mechanism to provide greater force for invasive growth. Additionally, this response is not dependent on the concentration of the agarose media, possibly due to the variability encountered within the media. These results contribute another important step forward in unraveling the elusive mechanism of tip growth.
17

F-actin rearrangements and analysis of physical environment of invasive hyphal growth.

Rolston, Laura Elizabeth January 2009 (has links)
Invasive growth through a substrate requires a massive amount of penetrative force, and this is generated in the space of a few microns in a growing tip. This process is known to be critical in the root hair, pollen tube, rhizoids, and the topic of this thesis, hyphal growth. However defining the mechanisms underlying the tip growth remains a contentious issue. Shortcomings in control of direction and regulation of growth began to undermine early turgor-based theories, and the cytoskeletal protein actin, ubiquitous in nature and with crucial roles in structure and motility became a target for investigation. A major breakthrough came with the discovery that a characteristic actin depleted zone (ADZ) occurs at the growing tip of hyphae during invasive but not non-invasive hyphal growth. The ADZ is likely to have an important role in generating the greater protrusive force required for invasive growth. However, since its discovery, little has been determined about the characteristics of the ADZ. Uncertainty in the description of the physical environment the hyphae face adds a layer of complexity to interpretation of results. This thesis aims to address this issue, studying the impact of increasing agarose substrate concentration on the presence and dimensions of the ADZ in the oomycete A. bisexualis. Furthermore, agarose is examined by compression and imaging to compare the physical characteristics of the agar samples over the range of concentrations, and determine whether increasing agarose concentration influences agarose gel structure. Results suggest a difference in the number of ADZ observed in non-invasive compared with invasive samples, however no significant differences in the number or dimensions of ADZ were found amongst the 1-4% w/v agarose concentrations. The 0% sample showed 20.7 percent of hyphae exhibited depleted zones, while 1, 2, 3 and 4% samples showed 56.9%, 48.8%, 40.9% and 54.2% respectively. ADZ dimensions did not correlate with agarose concentration. The average ADZ area:hyphal diameter ratio was 0.634, 0.526, 0.430, 1.09, and 0.65 for 0-4% agarose concentrations respectively. Additionally, investigation of gel compression forces revealed gel strength increases with agarose concentration. The force required to compress the agarose increased from 1.85 Psi in 1% agarose to 4.85, 7.09 and 12.22 Psi in 2, 3 and 4% agarose concentrations respectively. SEM imaging, however, suggests heterogeneity of the fibrous interconnected network of agarose gels at a microscopic scale with variable porous structure at all agarose concentrations. This scale is relevant to hyphal tip growth. In combination, these results suggest F-actin depletion may be a response mechanism to provide greater force for invasive growth. Additionally, this response is not dependent on the concentration of the agarose media, possibly due to the variability encountered within the media. These results contribute another important step forward in unraveling the elusive mechanism of tip growth.
18

Modélisation physique de la réalisation des jonctions FDSOI pour le noeud 20nm et au-delà / Physical modeling of junction processing in FDSOI devices for 20 nm node and below

Sklénard, Benoît 10 April 2014 (has links)
La réduction des dimensions des dispositifs CMOS (Complementary Metal Oxide Semiconductor) implique de nombreux défis dans la formation de jonctions. La recroissance par épitaxie en phase solide (SPER) à des températures inférieures à 600 °C est une technique attrayante dans la mesure où elle permet de réaliser des jonctions abruptes avec une forte concentration de dopants actifs et qui sont nécessaires pour les nœuds avancés tels que le 20 nm et au-delà. Dans ce manuscrit, on présente un modèle atomistique basé sur la méthode Monte-Carlo cinétique sur réseau (LKMC) afin de simuler la cinétique de SPER dans le silicium. Le modèle s'appuie sur la description phénoménologique des mécanismes microscopiques de recristallisation proposé par Drosd et Washburn dans [J. Appl. Phys. 53, 397 (1982)] en distinguant des événements {100}, {110} et {111} selon le plan local de recroissance et a été implémenté dans le simulateur MMonCa [Appl. Phys. Lett. 98, 233109 (2011)]. Il s'agit de la même base que le modèle de Martín-Bragado et Moroz [Appl. Phys. Lett. 95, 123123 (2009)] qui a été implémenté dans le simulateur commercial Synopsys SProcess KMC. Néanmoins, dans notre travail, la formation de macles lors des évènements {111} a été introduite ce qui a nécessité des changements importants dans l'implémentation. Le modèle a été calibré sur des résultats expérimentaux et permet de prédire l'anisotropie et la dépendance en température. En particulier, il a été utilisé afin d'expliquer la formation de zones défectueuses dans les dispositifs FDSOI à l'issue de la SPER à une température réduite. Le modèle LKMC a, en outre, été étendu dans le but d'inclure l'influence d'une contrainte non-hydrostatique et la recroissance accélérée du fait de la présence de dopants actifs. Les effets d'une contrainte non-hydrostatique ont été introduits en utilisant le concept de tenseur d'activation proposé par Aziz, Sabin et Lu dans [Phys. Rev. B 44, 9812 (1991)] et seulement quatre paramètres indépendants sont nécessaires. La présence de dopants ionisés cause une accélération de la vitesse de recroissance qui est attribué à un effet lié à la position du niveau de Fermi à l'interface amorphe/cristal. Un solveur 3D auto-cohérent de l'équation de Poisson avec le modèle de Thomas-Fermi a été implémenté et couplé avec le modèle LKMC afin de prendre en compte la courbure des bandes à l'interface amorphe/cristal. La correction phénoménologique de décalage du niveau de Fermi généralisé (GFLS) proposée par Williams et Elliman dans [Phys. Rev. Lett. 51, 1069 (1983)] a été utilisée pour modifier les fréquences de recristallisation des évènements microscopiques. Des simulations de la vitesse de recroissance en fonction de la température pour différentes concentrations de dopants ont montré un bon accord avec les données expérimentales. En résumé, dans ce manuscrit, un modèle unifié de SPER basé sur une approche LKMC est présentée. Il prend en compte l'influence de différents paramètres sur la cinétique de recroissance et ayant un intérêt technologique tels que la température, l'orientation cristalline, la contrainte et la présence de dopants. Le modèle est, en soi, tridimensionnel et permet donc d'explorer les phénomènes de recroissance impliquant plusieurs fronts de recristallisation et qui ont lieu lors du procédé de fabrication de dispositifs électroniques réels. / Complementary metal oxide semiconductor (CMOS) device scaling involves many technologicalchallenges in terms of junction formation. Solid phase epitaxial regrowth (SPER) at temperaturesbelow 600 ˝C is an attractive technique since it enables to form highly–activated andabrupt junctions that are required for advanced technology nodes such as 20 nm and beyond.In this manuscript, we present a comprehensive atomistic model relying on the lattice KineticMonte Carlo (LKMC) method to simulate SPER kinetics in silicon. The model is based onthe phenomenological description of the microscopic recrystallization mechanisms proposedby Drosd and Washburn in [J. Appl. Phys. 53, 397 (1982)] by distinguishing among {100},{110} and {111} events depending on the local regrowth plane and has been implemented inthe MMonCa simulator [Appl. Phys. Lett. 98, 233109 (2011)]. This is the same basis than theatomistic model of Martín–Bragado and Moroz proposed in [Appl. Phys. Lett. 95, 123123(2009)] and available in the Synopsys SProcess KMC commercial tool. Nevertheless, in ourwork the formation of twin configurations during {111} events has been incorporated givingrise to significant changes in the implementation. The model has been calibrated on single–directional SPER experiments and allows predicting the regrowth anisotropy and temperaturedependence. In particular, it has been used to explain the formation of defective regions inFDSOI devices annealed with a low processing temperature. In this work, the LKMC modelhas also been extended in order to include the influence of non–hystrostatic stress and dopant–enhanced regrowth that are technologically relevant. Non–hydrostatic stress effects have beenincorporated using the concept of activation strain tensor introduced by Aziz, Sabin and Luin [Phys. Rev. B 44, 9812 (1991)] and only four independent parameters are required. Thepresence of ionized dopants has been shown to cause an enhancement of the regrowth velocitywhich has been attributed to a Fermi level effect. A three–dimensional Thomas–Fermi–Poisson solver has been implemented and coupled with the LKMC model allowing to takeinto account the band bending at amorphous/crystalline interface. The phenomenological generalizedFermi level shifting (GFLS) correction proposed by Williams and Elliman in [Phys.Rev. Lett. 51, 1069 (1983)] has been used to modify the microscopic recrystallization rates.Simulations of the regrowth velocity as a function of temperature for different dopant concentrationshave shown a reasonable agreement with experimental data. In summary, in thismanuscript a unified SPER model relying on the LKMC approach is presented. It takes intoaccount various technologically relevant parameters influencing the regrowth kinetics such astemperature, crystalline orientation, stress and dopants. The model is per se three-dimensionaland can therefore be used to explore multi–directional regrowth phenomena that take place inreal electronic devices.
19

The Performance of Planar Solid Oxide Fuel Cells using Hydrogen-depleted Coal Syngas

Burnette, David D. January 2007 (has links)
No description available.
20

Importance des protéines cellulaires incorporées dans les virions matures d’HSV-1

Yakova, Yordanka 06 1900 (has links)
Pour compléter leur cycle de vie, les virus interagissent avec de nombreux facteurs de la cellule-hôte. Le virus Herpès simplex de type 1 (HSV-1) ne fait pas exception. Une récente étude protéomique du virus effectuée par notre laboratoire a permis d’identifier 49protéines cellulaires potentiellement incorporées dans les virions matures d’HSV-1 [1]. Étant donné que certaines de ces protéines peuvent jouer des rôles importants au cours du cycle de vie du virus, elles constituent des cibles de choix pour identifier et caractériser de nouvelles interactions hôte-pathogène dans le contexte d’HSV-1. D’ailleurs le laboratoire a été effectué un criblage aux petits ARN d’interférence qui a démontré qu'au moins 15 des protéines incorporées sont impliqués dans le cycle de réplication de HSV-1 en culture cellulaire (Annexe 1). Des nombreuses études rapportent l'incorporation des protéines de l'hôte dans les virions matures mais très peu abordent l'importance de la fraction des protéines cellulaires incorporée dans les virions pour le cycle virale. Pour vérifier ça, nous avons déplété ces protéines des virions matures extracellulaires en utilisant des petits ARN d’interférence. Par la suite, nous avons utilisé ces virus déplétés pour réinfecter des cellules déplétées ou normales. Cette méthode nous a permis d'identifier pour la première fois 8 protéines (DDX3X, HSPA8, KRT10, MIF, Rab5A, Rab6A, Rab10 et 14-3-3ζ) dont l'absence dans les virions réduit la production virale d'au moins 50%. Pour mieux comprendre à quelle étape du cycle viral ces protéines sont nécessaires, nous avons aussi quantifié les virus intracellulaires, produits des cellules déplétées individuellement des quinze protéines cellulaires. Ainsi, nous avons trouvé que dans nos conditions 7 de ces 8 protéines cellulaires (DDX3X, HSPA8, KRT10, MIF, Rab5A, Rab6A et Rab10) semblent impliquées dans la production des virus intracellulaires, ce qui nous a stimulés à débuter une série de tests plus approfondis de l’entrée d’HSV-1. Les résultats préliminaires, démontrent l’implication dans l’entrée d’HSV-1 d’au moins 3 à 4 de ces protéines (HSPA8, KRT10, Rab5A et Rab10). / To complete their life cycle viruses interact with many factors of the host cell. Herpes simplex virus type 1 (HSV-1) is no exception. A recent proteomic study of the virus carried by our laboratory has identified up to 49 cellular proteins potentially incorporated into the mature virions of HSV-1[1]. Since some of these proteins may play important roles during the viral life cycle, they are interesting targets for identification and characterization of new host-pathogen interactions in the context of HSV-1. To target the proteins that are relevant to the viral life cycle of Herpes, the laboratory performed a screening with small interfering RNAs (siRNAs), which showed that at least 15 incorporated proteins are involved in the replication cycle of HSV- 1 in cell culture (Appendix 1). Numerous studies report the incorporation of host proteins in mature virions but few addresses the importance for the viral infectivity of the fractions of cellular proteins incorporated into the virions. To verify this, we depleted these proteins from the mature extracellular virions using siRNAs. Subsequently, we used these viruses to re-infect depleted or normal cells. This method allowed us to identify for the first time eight proteins (DDX3X, HSPA8, KRT10, MIF, Rab5A, Rab6A, Rab10 and 14-3-3ζ) whose absence in virions reduced viral production by at least 50%. As part of understanding at what stage of the life cycle these proteins are necessary for HSV-1, we tested the infectivity of intracellular depleted viruses. Thus, we found at least seven cellular proteins (DDX3X, HSPA8, KRT10, MIF, Rab5A, Rab6A and Rab10) to have a pronounced effect on the replication of herpes virus, which has stimulated us to begin a series of more in-depth tests of the entry of HSV-1. Preliminary results demonstrate the involvement in the entry of HSV-1 of at least three to four proteins (HSPA8, KRT10, Rab5A and Rab10).

Page generated in 0.0408 seconds