• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 2
  • 1
  • Tagged with
  • 25
  • 25
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mercaptobenzothiazole-on-Gold Biosensor Systems for Organophosphate and Carbamate Pesticide Compounds.

Somerse, Vernon Sydwill. January 2007 (has links)
<p>This study firstly reports the development, characterisation, and application of thick-film acetylcholinesterase (AChE) biosensors based on a gold electrode modified with a mercaptobenzothiazole (MBT) self-assembled monolayer and either poly(omethoxyaniline) (POMA) or poly(2,5-dimethoxyaniline) (PDMA) in the presence of polystyrene(4-sulphonic acid) (PSSA). The Au/MBT/POMA-PSSA/AChE and Au/MBT/PDMA-PSSA/AChE biosensors were then applied to successfully detect standard organophosphorous and carbamate pesticides in a 0.1 M phosphate buffer, 0.1 M KCl (pH 7.2) solution. Secondly, it reports the construction of the Au/MBT/PANI/AChE/PVAc thick-film biosensor for the determination of certain organophosphate and carbamate pesticide solutions in selected aqueous organic solvent solutions.</p>
12

Identification Studies of Bacillus Spores Using Fluorescence Spectroscopy

Kunnil, Joseph January 2005 (has links)
Fluorescence spectroscopy was examined as a potential technique for identifying aerosol particles like bacterial spores. This technique was used for laboratory measurements on some common biological agent simulants. We have measured the intrinsic steady-state fluorescence emission spectra as a function of the excitation wavelength for several bacterial spores (washed and unwashed) in dry and aqueous suspensions at room temperature using excitation wavelengths from 200 to 600 nm. These measurements were compared to those of common, naturally occurring biological components like fungal spores and pollen and non spore samples like ovalbumin. The spectra of samples were combined into fluorescence profiles or fluorescence fingerprints. Different substrates were used for collection and detection of spores. Each bacterium produces a unique in vitro fluorescence profile when measured in dried and aqueous suspension and exhibits a strong maximum in its fluorescence emission spectrum near 330-340 nm. The fluorescence profiles were reproducible. The complexity of microorganisms made the interpretation of their spectral signature a difficult task. Principal components analysis (PCA) and cluster analysis were done as a data reduction technique for detection and identification from different backgrounds. PCA illustrates that linear combination of detected fluorescence intensities, which are present in different ratios in each of samples studied, can be used to discriminate biological agent simulants from other biological samples. The hydration effects, washing effects and the role of tryptophan on spore fluorescence were also investigated. The emission spectra of the dried spores showed a maximum near 330 nm, suggesting a hydrophobic environment for its tryptophan residues. The aqueous solution of tryptophan showed fluorescence shifted to 360 nm and in ethanol solution the maximum was shifted to 340 nm, suggesting a rather more polar average location of the tryptophan. To find the limit of detection we measured the quantum efficiency (QE) of a few samples. We concluded that spectroscopy techniques coupled with effective interpretation models are applicable to biological simulants agents. Index Heading: Bacteria; Spores; Identification; Fluorescence; Fluorescence Quantum Efficiency; Principal Components Analysis; Cluster Analysis.
13

Mercaptobenzothiazole-on-Gold Biosensor Systems for Organophosphate and Carbamate Pesticide Compounds

Somerse, Vernon Sydwill January 2007 (has links)
Philosophiae Doctor - PhD / This study firstly reports the development, characterisation, and application of thick-film acetylcholinesterase (AChE) biosensors based on a gold electrode modified with a mercaptobenzothiazole (MBT) self-assembled monolayer and either poly(omethoxyaniline) (POMA) or poly(2,5-dimethoxyaniline) (PDMA) in the presence of polystyrene(4-sulphonic acid) (PSSA). The Au/MBT/POMA-PSSA/AChE and Au/MBT/PDMA-PSSA/AChE biosensors were then applied to successfully detect standard organophosphorous and carbamate pesticides in a 0.1 M phosphate buffer, 0.1 M KCl (pH 7.2) solution. Secondly, it reports the construction of the Au/MBT/PANI/AChE/PVAc thick-film biosensor for the determination of certain organophosphate and carbamate pesticide solutions in selected aqueous organic solvent solutions. / South Africa
14

Gibbs Sampling and Expectation Maximization Methods for Estimation of Censored Values from Correlated Multivariate Distributions

HUNTER, TINA D. 25 August 2008 (has links)
No description available.
15

The Feasibility of Whole-body In Vivo X-ray Fluorescence of Lead in Bone in Mice

Cheung, Tsz Wing January 2018 (has links)
Previous studies have shown an association between Pb exposure and intelligence quotient (IQ). Up until now, there is a lack of technology and methodology to assess the effects of long-term Pb exposure (such as de-myelination) in brain in-vivo. So we are developing a mouse model that will allow us to assess in vivo Pb in bone and brain structure and myelination using magnetic resonance imaging (MRI). In this project, we will discuss the feasibility of an in vivo x-ray fluorescence (XRF) system for the Pb measurement in the skeleton of whole mice. A review of literature is conducted in chapter 1. Health impacts of lead, measurement of lead, pre-existing bone Pb phantoms and mouse model selection are explained thoroughly. In chapter 2, calibration and minimum detection limits (MDLs) for the XRF measurements are documented. Calibration was performed using Plaster of Paris phantoms mimicking human bone doped with Pb concentrations ranging from 0 to 100 ppm. Detection limits for the pre-existing bone Pb phantoms were found to be 1.52 μg Pb/g plaster for 1-hour measurement. For 2 strains of Pb free mice (CD-1 and C57BL/6J), which had skull and hind facing detectors respectively, MDLs of 5.66 – 7.78 μg Pb/g and 6.69 – 8.50 μg Pb/g were determined for 3-hour measurement. This detectability of MDLs by the XRF system encourages us to proceed to measure mouse-mimicking phantoms. In order to evaluate the feasibility of a 109Cd XRF system for the Pb measurement in the skeleton of whole mice, mouse-mimicking phantoms were made and measured. The effect of variations in Pb distribution across the mouse and the applicability of the normalization in mice are discussed in chapter 3. To sum up, our system can measure Pb in whole mice in vivo at the levels of Pb in bone that are anticipated in brain de-myelination studies. Our results indicate that if multiple orientations (rotated) are measured in mice, the mean bone Pb level in whole mice will be determined accurately. / Thesis / Master of Science (MSc)
16

Spatial sampling and prediction

Schelin, Lina January 2012 (has links)
This thesis discusses two aspects of spatial statistics: sampling and prediction. In spatial statistics, we observe some phenomena in space. Space is typically of two or three dimensions, but can be of higher dimension. Questions in mind could be; What is the total amount of gold in a gold-mine? How much precipitation could we expect in a specific unobserved location? What is the total tree volume in a forest area? In spatial sampling the aim is to estimate global quantities, such as population totals, based on samples of locations (papers III and IV). In spatial prediction the aim is to estimate local quantities, such as the value at a single unobserved location, with a measure of uncertainty (papers I, II and V). In papers III and IV, we propose sampling designs for selecting representative probability samples in presence of auxiliary variables. If the phenomena under study have clear trends in the auxiliary space, estimation of population quantities can be improved by using representative samples. Such samples also enable estimation of population quantities in subspaces and are especially needed for multi-purpose surveys, when several target variables are of interest. In papers I and II, the objective is to construct valid prediction intervals for the value at a new location, given observed data. Prediction intervals typically rely on the kriging predictor having a Gaussian distribution. In paper I, we show that the distribution of the kriging predictor can be far from Gaussian, even asymptotically. This motivated us to propose a semiparametric method that does not require distributional assumptions. Prediction intervals are constructed from the plug-in ordinary kriging predictor. In paper V, we consider prediction in the presence of left-censoring, where observations falling below a minimum detection limit are not fully recorded. We review existing methods and propose a semi-naive method. The semi-naive method is compared to one model-based method and two naive methods, all based on variants of the kriging predictor.
17

Nanocomposite-graphene based platform for heavy metal detection

Willemse, Chandre Monique January 2010 (has links)
This study reports the synthesis of graphene by oxidizing graphite to graphite oxide using H2SO4 and KMnO4 and reducing graphene oxide to graphene by using NaBH4. Graphene was then characterized using FT-IR, TEM, AFM, XRD, Raman spectroscopy and solid state NMR. Nafion-Graphene in combination with a mercury film electrode, bismuth film electrode and antimony film electrode was used as a sensing platform for trace metal analysis in 0.1 M acetate buffer (pH 4.6) at 120 s deposition time, using square-wave anodic stripping voltammetry (SWASV). Detection limits were calculated using 3σblank/slope. For practical applications recovery studies was done by spiking test samples with known concentrations of metal ions and comparing the results to inductively coupled plasma mass spectrometry (ICPMS). This was then followed by real sample analyses.
18

Nanocomposite-graphene based platform for heavy metal detection

Willemse, Chandre Monique January 2010 (has links)
This study reports the synthesis of graphene by oxidizing graphite to graphite oxide using H2SO4 and KMnO4 and reducing graphene oxide to graphene by using NaBH4. Graphene was then characterized using FT-IR, TEM, AFM, XRD, Raman spectroscopy and solid state NMR. Nafion-Graphene in combination with a mercury film electrode, bismuth film electrode and antimony film electrode was used as a sensing platform for trace metal analysis in 0.1 M acetate buffer (pH 4.6) at 120 s deposition time, using square-wave anodic stripping voltammetry (SWASV). Detection limits were calculated using 3σblank/slope. For practical applications recovery studies was done by spiking test samples with known concentrations of metal ions and comparing the results to inductively coupled plasma mass spectrometry (ICPMS). This was then followed by real sample analyses.
19

Nanocomposite-graphene based platform for heavy metal detection

Willemse, Chandre Monique January 2010 (has links)
Magister Scientiae - MSc (Dept. of Chemistry) / This study reports the synthesis of graphene by oxidizing graphite to graphite oxide using H2SO4 and KMnO4 and reducing graphene oxide to graphene by using NaBH4. Graphene was then characterized using FT-IR, TEM, AFM, XRD, Raman spectroscopy and solid state NMR. Nafion-Graphene in combination with a mercury film electrode, bismuth film electrode and antimony film electrode was used as a sensing platform for trace metal analysis in 0.1 M acetate buffer (pH 4.6) at 120 s deposition time, using square-wave anodic stripping voltammetry (SWASV). Detection limits were calculated using 3σblank/slope. For practical applications recovery studies was done by spiking test samples with known concentrations of metal ions and comparing the results to inductively coupled plasma mass spectrometry (ICPMS). This was then followed by real sample analyses. / South Africa
20

Résonateurs à ondes élastiques de volume à modes harmoniques élevés (HBARs) pour mesures gravimétriques : application à la détection de gaz / High overtone bulk acoustic wave resonator (HBAR) for gravimetric measurements : applications to gas detection

Rabus, David 18 December 2013 (has links)
Le besoin d’appareils compacts et autonomes dédiés à la détection d’espèces chimiques pour des analyses de terrain est d’actualité dans un contexte international en rapide mutation (agroalimentaire, développement durable, sécurité, etc.). La thèse présentée au sein de ce manuscrit, financée par la Délégation Générale de l’Armement, développe de nouvelles solutions de capteurs résonants à ondes élastiques de volume à modes harmoniques élevés (HBARs) pour la détection de gaz et plus particulièrement de composés explosifs. Ces résonateurs de très haute compacité se composent d’un transducteur reporté ou déposé sur une cavité résonante multimode, produisant un spectre de raies modulant sa propre réponse fréquentielle. De nature dipolaire, ces résonateurs permettent toutefois la mise au point de quadripôles par couplage latéral de modes mis à profit dans nos travaux. L’étude théorique du comportement de résonateurs à base de niobate de lithium aminci et reporté sur quartz ou fondés sur un empilement de nitrure d’aluminium et de silicium a permis de déterminer les propriétés gravimétriques spécifiques de chaque combinaison de matériaux et des modes associés. Des méthodes de calibrage en phase liquide et gazeuse sont proposées pour valider l’analyse théorique et permettre le choix de la structure la mieux adaptée à une configuration expérimentale donnée. Les résultats obtenus, comparés à ceux d’une microbalance à ondes guidées sur quartz, mettent en évidence les forces (compacité, cinétique chimique réduite, nature multi-physique des mesures) et faiblesses (sensibilité gravimétrique imposant des structures d’épaisseur inférieure à 100 μm) de notre solution face à cette référence. Nous avons également développé une électronique de traitement en boucle ouverte des informations issues de nos dispositifs, permettant des modes de détection rapide ou de haute précision (quelques milli-degrés de variation de phase). L’électronique dédiée a pour vocation de fournir la flexibilité nécessaire au suivi de nombreux modes à diverses fréquences fixes et de s’affranchir des temps longs de balayage en fréquence des analyseurs de réseaux généralistes. Une version à8 voies permet enfin la manipulation de plusieurs capteurs ou l’étude en parallèle des modes de 2 HBARs, donnant ainsi lieu à un système multi-physique efficace associé à des capteurs capables de sonder plusieurs grandeurs dans un volume de très petite dimension (quelques mm3). La limite de détection est déterminée par le bruit de phase de l’oscillateur local. Le système ainsi réalisé est exploité pour la détection de gaz mais aussi pour le pilotage de grandeurs physiques telles que la température ou la viscosité (milieux aqueux) dans différents contextes expérimentaux. / The demand for compact and autonomous systems devoted to field detection of gaseous compounds is still persisting in arapidly changing international context (food-processing, sustainable development, security, and so on). The thesis reportedin this manuscript, supported by the Délégation Générale de l’Armement, develops new resonant sensor solutions basedon high overtone bulk acoustic waves (so-called HBARs) for chemical compound detection and more specifically explosivesubstances. These high compactness resonators are built using a transducer bound or deposited onto a resonant cavity,yielding a comb spectrum modulating its own frequency response. They are used generally as dipoles, but a quadrupolestructure allowing for transverse mode coupling has been particularly used for our developments. A theoretical study ofthe behaviour of these devices based on lithium niobate-on-quartz or qluminum nitride-on-silicon material stack has beenachieved to determine the gravimetric properties of these configurations accounting for their mode specificities. Variouscalibration techniques have been implemented to confirm the theoretical analysis and to define the most appropriate structurefor a given application. The produced results have been compared to those of a quartz guided-wave micro-balance toemphasize the strength (compactness, reduced chemical kinetics, multiphysics measurements) and weakness (gravimetricsensitivity requiring device thickness less than 100 μm) of our devices. An embedded signal processing electronics alsohas been developed to treat the information provided by our sensors, offering fast or accurate (millidegree range) detectionprotocols. The dedicated electronics aims at providing the flexibility needed to track multiple modes at variaous fixed frquencieswhile getting rid of the long sweep time of general purpose network analyzers. A eight-channel version of thissystem has been set to process several sensor in parallel or to monitor several modes of two HBAR sensors for effectivemuti-physics measurements in a reduced analysis domain (a few cubic mm). Phase noise is the limiting factor determiningthe detection limit. The system has been deployed for gas detection as well as for monitoring other physical parameters suchas temperature or viscosity under various experimental condition including fluid media.

Page generated in 0.1092 seconds