11 |
Liquid water transport in fuel cell gas diffusion layersBazylak, Aimy Ming Jii 26 April 2008 (has links)
Liquid water management has a major impact on the performance and durability of the polymer electrolyte membrane fuel cell (PEMFC). The gas diffusion layer (GDL) of a PEMFC provides pathways for mass, heat, and electronic transport to and from the catalyst layers and bipolar plates. When the GDL becomes flooded with liquid water, the PEMFC undergoes mass transport losses that can lead to decreased performance and durability. The work presented in this thesis includes contributions that provide insight into liquid water transport behaviour in and on the surface of the GDL, as well as insight into how future GDLs could be designed to enhance water management.
The effects of compression on liquid water transport in the GDL and on the microstructure of the GDL are presented. It was found that compressed regions of the GDL provided preferential locations for water breakthrough, while scanning electron microscopy (SEM) imaging revealed irreversible damage to the GDL due to compression at typical fuel cell assembly pressures.
The dynamic behaviour of droplet emergence and detachment in a simulated gas flow channel are also presented. It was found that on an initially dry and hydrophobic GDL, small droplets emerged and detached quickly from the GDL surface. However, over time, this water transport regime transitioned into that of slug formation and channel flooding. It was observed that after being exposed to a saturated environment, the GDL surface became increasingly prone to droplet pinning, which ultimately hindered droplet detachment and encouraged slug formation.
A pore network model featuring invasion percolation with trapping was employed to evaluate the breakthrough pattern predictions of designed porous media. These designed pore networks consisted of randomized porous media with applied diagonal and radial gradients. Experimental microfluidic pore networks provided validation for the designed networks. Diagonal biasing provided a means of directing water transport in the pore network, while radially biased networks provided the additional feature of reducing the overall network saturation. Since directed water transport and reduced saturation are both beneficial for the PEMFC GDL, it was proposed that biasing of this nature could be applied to improved GDL designs. Lastly, recommendations for future extensions of this research are proposed at the end of this thesis.
|
12 |
Measurement and Characterization of Heat and Mass Diffusion in PEMFC Porous MediaUnsworth, Grant January 2012 (has links)
A single polymer electrolyte membrane fuel cell (PEMFC) is comprised of several sub-millimetre thick layers of varying porosity sandwiched together. The thickness of each layer, which typically ranges from 10 to 200μm, is kept small in order to minimize the transport resistance of heat, mass, electrons, and protons, that limit reaction rate. However, the thickness of these materials presents a significant challenge to engineers characterizing the transport properties through them, which is of considerable importance to the development and optimization of fuel cells. The objective of this research is to address the challenges associated with measuring the heat conduction and gas diffusion transport properties of thin porous media used in PEMFCs. An improvement in the accuracy of the guarded heat flow technique for measuring thermal conductivity and the modified Loschmidt Cell technique for measuring gas diffusivity are presented for porous media with a sub-millimetre thickness. The improvement in accuracy is achieved by analyzing parameters in each apparatus that are sensitive to measurement error and have the largest contribution to measurement uncertainty, and then developing ways to minimize the error. The experimental apparatuses are used to investigate the transport properties of the gas diffusion layer (GDL) and the microporous layer (MPL), while the methods would also be useful in the study of the catalyst layer (CL).
Gas diffusion through porous media is critical for the high current density operation of a PEMFC, where the electrochemical reaction becomes rate-limited by the diffusive flux of reactants reaching reaction sites. However, geometric models that predict diffusivity of the GDL have been identified as inaccurate in current literature. Experimental results give a better estimate of diffusivity, but published works to date have been limited by high measurement uncertainty. In this thesis, the effective diffusivity of various GDLs are measured using a modified Loschmidt cell and the relative differences between GDLs are explained using scanning electron microscopy and the method of standard porosimetry. The experimental results from this study and others in current literature are used to develop a generalized correlation for predicting diffusivity as a function of porosity in the through-plane direction of a GDL.
The thermal conductivity and contact resistance of porous media are important for accurate thermal analysis of a fuel cell, especially at high current densities where the heat flux becomes large. In this thesis, the effective through-plane thermal conductivity and contact resistance of the GDL and MPL are measured. GDL samples with and without a MPL and coated with 30%-wt. PTFE are measured using the guarded steady-state heat flow technique described in the ASTM standard E 1225-04. Thermal contact resistance of the MPL with the iron clamping surface was found to be negligible, owing to the high surface contact area. Thermal conductivity and thickness of the MPL remained constant for compression pressures up to 15bar at 0.30W/m°K and 55μm, respectively. The thermal conductivity of the GDL substrate containing 30%−wt. PTFE varied from 0.30 to 0.56W/m°K as compression was increased from 4 to 15bar. As a result, the GDL contain- ing MPL had a lower effective thermal conductivity at high compression than the GDL without MPL. At low compression, differences were negligible. The constant thickness of the MPL suggests that the porosity, as well as heat and mass transport properties, remain independent of the inhomogeneous compression by the bipolar plate. Despite the low effective thermal conductivity of the MPL, thermal performance of the GDL can be improved by exploiting the excellent surface contact resistance of the MPL while minimizing its thickness.
|
13 |
Integrated Bipolar Plate – Gas Diffusion Layer Design for Polymer Electrolyte Membrane Fuel CellsNeff, David N. January 2009 (has links)
No description available.
|
14 |
Low Catalyst Loaded Ethanol Gas Fuel Cell SensorAmirfazli, Amir 03 October 2017 (has links)
No description available.
|
15 |
Experimental Measurement of Effective Diffusion Coefficient in Gas Diffusion Layer/Microporous Layer in PEM Fuel CellsChan, Carl 25 August 2011 (has links)
Accuracy in the effective diffusion coefficient of the gas diffusion layer (GDL)/microporous layer (MPL) is important to accurately predict the mass transport limitations for high current density operation of polymer electrolyte membrane (PEM) fuel cells. All the previous studies regarding mass transport limitations were limited to pure GDLs, and experimental analysis of the impact of the MPL on the overall diffusion in the porous GDL is still lacking. The MPL is known to provide beneficial water management properties at high current operating conditions of PEM fuel cells but its small pore sizes become a resistance in the diffusion path for mass transport to the catalyst layer. A modified Loschmidt cell with an oxygen-nitrogen mixture is used in this work to determine the effect of MPL on the effective diffusion coefficients. It is found that Knudsen effects play a dominant role in the diffusion through the MPL where pore diameters are less than 1 μm. Experimental results show that the effective diffusion coefficient of the MPL is only about 21% that of its GDL substrate and Knudsen diffusion accounts for 80% of the effective diffusion coefficient of the GDL with MPL measured in this study. No existing correlations can correlate the effective diffusion coefficient with significant Knudsen contribution.
|
16 |
Experimental Measurement of Effective Diffusion Coefficient in Gas Diffusion Layer/Microporous Layer in PEM Fuel CellsChan, Carl 25 August 2011 (has links)
Accuracy in the effective diffusion coefficient of the gas diffusion layer (GDL)/microporous layer (MPL) is important to accurately predict the mass transport limitations for high current density operation of polymer electrolyte membrane (PEM) fuel cells. All the previous studies regarding mass transport limitations were limited to pure GDLs, and experimental analysis of the impact of the MPL on the overall diffusion in the porous GDL is still lacking. The MPL is known to provide beneficial water management properties at high current operating conditions of PEM fuel cells but its small pore sizes become a resistance in the diffusion path for mass transport to the catalyst layer. A modified Loschmidt cell with an oxygen-nitrogen mixture is used in this work to determine the effect of MPL on the effective diffusion coefficients. It is found that Knudsen effects play a dominant role in the diffusion through the MPL where pore diameters are less than 1 μm. Experimental results show that the effective diffusion coefficient of the MPL is only about 21% that of its GDL substrate and Knudsen diffusion accounts for 80% of the effective diffusion coefficient of the GDL with MPL measured in this study. No existing correlations can correlate the effective diffusion coefficient with significant Knudsen contribution.
|
17 |
Développement de couches de diffusion de piles PEMFC pour un fonctionnement à faible humidité relative / Development of PEMFCs Gas Diffusion Layers operating at low relative humidityJonquille, Jenny 21 April 2011 (has links)
Afin de favoriser la commercialisation à grande échelle des piles à combustible PEMFC, de nombreuses études sont menées dans le but de réduire les coûts et d'augmenter la durée de vie tout en améliorant les performances et de comprendre les phénomènes physiques mis en jeu. Cette étude se concentre sur le développement de couches de diffusion pour un fonctionnement à faible humidité relative, en particulier sur l'influence de la structure du support de diffusion sur les performances. Grâce à un procédé de fabrication différent de ceux utilisés pour les produits actuellement commercialisés, la structure des supports est plus aisément modifiée. Ainsi, selon les paramètres de fabrication choisis, les propriétés physico-chimiques associées donnent accès à des niveaux de performances différents. Le modèle d'analyse mis en place permet d'expliquer ces différences observées. Par conséquent, il permet de relier les paramètres de fabrication aux propriétés physiques et aux performances en pile. / To help PEMFC development and large scale commercialization, several studies deal with reducing costs and increasing durability while trying to improve performances and to understand physical phenomena involved. This study focuses on developing gas diffusion media which operates at low relative humidity, more particularly it deals with the influence of the structure of gas diffusion media on performances. Thanks to a process different from those used for currently commercialized gas diffusion layers, the structure of the media is more easily modified. According to the manufacturing parameters chosen, different physical and chemical properties will be obtained and thus different performances. A model is used to help analyze these differences and consequently allow the link between manufacturing parameters and physical properties and performances.
|
18 |
Pore network modelling of condensation in gas diffusion layers of proton exchange membrane fuel cell / Modélisation à l'aide d'une approche réseau de pores de la condensation dans les couches de diffusion des piles à combustible de type PEMStraubhaar, Benjamin 30 November 2015 (has links)
Une pile à membrane échangeuse de protons (PEMFC) est un dispositif convertissant l’hydrogène en électricité grâce à une réaction électrochimique appelé électrolyse inverse. Comme chaque pile à combustible ou batterie, les PEMFC sont composées d’une série de couches. Nous nous intéressons à la couche de diffusion (GDL) du côté de la cathode. La GDL est constituée de fibres de carbone traitées pour être hydrophobes. Elle peut être vue comme un milieu poreux mince avec une taille moyenne de pores de quelques dizaines de microns. Une question clé dans ce système est la gestion de l'eau produite par la réaction. Dans ce contexte, le principal objectif de la thèse est le développement d'un outil numérique visant à simuler la formation de l'eau liquide dans la GDL. Une approche réseau de pores est utilisée. Nous nous concentrons sur un scénario où l’eau liquide se forme par condensation dans la GDL. Les comparaisons entre simulations et expériences effectuées grâce à un dispositif microfluidique bidimensionnel, sont d'abord présentées pour différentes conditions de mouillabilité, de distributions de température et d'humidité relative à l’entrée, afin de valider le modèle. Une étude de sensibilité est alors effectuée afin de mieux caractériser les paramètres contrôlant l'invasion de l'eau. Enfin, les simulations sont comparées à des distributions d’eau obtenues in-situ par micro-tomographie à rayons X, ainsi que des distributions expérimentales de la littérature obtenues par imagerie neutronique. / A Proton Exchange Membrane Fuel Cell (PEMFC) is a device converting hydrogen into electricity thanks to an electrochemical reaction called reverse electrolysis. Like every fuel cell or battery, PEMFCs are made of a series of layers. We are interested in the gas diffusion layer (GDL) on the cathode side. The GDL is made of carbon fibers treated hydrophobic. It can be seen as a thin porous medium with a mean pore size of few tens of microns. A key question in this system is the management of the water produced by the reaction. In this context, the main objective of the thesis is the development of a numerical tool aiming at simulating the liquid water formation within the GDL. A pore network approach is used. We concentrate on a scenario where liquid water forms in the GDL by condensation. Comparisons between simulations and experiments performed with a two-dimensional microfluidic device are first presented for different wettability conditions, temperature distributions and inlet relative humidity in order to validate the model. A sensitivity study is then performed to better characterize the parameters controlling the water invasion. Finally, simulations are compared with in situ experimental water distributions obtained by X-ray micro-tomography as well as with experimental distributions from the literature obtained by neutron imaging.
|
19 |
Design and Development of Membrane Electrode Assembly for Proton Exchange Membrane Fuel CellJanuary 2016 (has links)
abstract: This work aimed to characterize and optimize the variables that influence the Gas Diffusion Layer (GDL) preparation using design of experiment (DOE) approach. In the process of GDL preparation, the quantity of carbon support and Teflon were found to have significant influence on the Proton Exchange Membrane Fuel Cell (PEMFC). Characterization methods like surface roughness, wetting characteristics, microstructure surface morphology, pore size distribution, thermal conductivity of GDLs were examined using laser interferometer, Goniometer, SEM, porosimetry and thermal conductivity analyzer respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions of temperature and relative humidity (RH) using air as oxidant. Electrodes were prepared with different PUREBLACK® and poly-tetrafluoroethylene (PTFE) content in the diffusion layer and maintaining catalytic layer with a Pt-loading (0.4 mg cm-2). In the study, a 73.16 wt.% level of PB and 34 wt.% level of PTFE was the optimal compositions for GDL at 70 °C for 70% RH under air atmosphere.
For most electrochemical processes the oxygen reduction is very vita reaction. Pt loading in the electrocatalyst contributes towards the total cost of electrochemical devices. Reducing the Pt loading in electrocatalysts with high efficiency is important for the development of fuel cell technologies. To this end, this thesis work reports the approach to lower down the Pt loading in electrocatalyst based on N-doped carbon nanotubes derived from Zeolitic Imidazolate Frameworks (ZIF-67) for oxygen reduction. This electrocatalyst perform with higher electrocatalytic activity and stability for oxygen reduction in fuel cell testing. The electrochemical properties are mainly due to the synergistic effect from N-doped carbon nanotubes derived from ZIF and Pt loading. The strategy with low Pt loading forecasts in emerging highly active and less expensive electrocatalysts in electrochemical energy devices.
This thesis focuses on: (i) methods to obtain greater power density by optimizing content of wet-proofing agent (PTFE) and fine-grained, hydrophobic, microporous layer (MPL); (ii) modeling full factorial analysis of PEMFC for evaluation with experimental results and predicting further improvements in performance; (iii) methods to obtain high levels of performance with low Pt loading electrodes based on N-doped carbon nanotubes derived from ZIF-67 and Pt. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2016
|
20 |
Textile-based sensors for in-situ monitoring in electrochemical cells and biomedical applicationsHasanpour, Sadegh 07 December 2020 (has links)
This work explores the blending of e-textile technology with the porous electrode of
polymer electrolyte membrane fuel cells (PEMFCs) and with smart wound patches
to allow monitoring and in-situ diagnostics. This work includes contributions to understanding water transport and conductivity in the carbon cloth gas diffusion layer
(GDL), and further developing thread-based relative humidity (RH) and temperature
sensors, which can be sewn on a cloth GDL in PEMFCs. We also explore the
application of the developed RH and temperature sensors in wearable biomonitoring.
First, an experimental prototype is developed for evaluating water transport, thermal
conductivity and electrical conductivity of carbon cloth GDLs under different hydrophobic
coatings and compressions. Second, we demonstrate the addition of external
threads to the carbon cloth GDL to (1) facilitate water transport and (2) measure
local RH and temperature with a minimal impact on the physical, microstructural
and transport properties of the GDL. We illustrate the roll-to-roll process for fabricating
RH and temperature sensors by dip-coating commodity threads into a carbon
nanotubes (CNTs) suspension. The thread-based sensors response to RH and temperature in the working environment of PEMFCs is investigated. As a proof-of-concept, the local temperature of carbon cloth GDL is monitored in an ex-situ experiment.
Finally, we optimized the coating parameters (e.g. CNTs concentration, surfactant
concentration and a number of dipping) for the thread-based sensors. The
response of the thread-based sensors in room conditions is evaluated and shows a
linear resistance decrease to temperature and a quadratic resistance increase to RH.
We also evaluated the biocompatibility of the sensors by performing cell cytotoxicity
and studying wound healing in an animal model. The novel thread-based sensors
are not only applicable for textile electrochemical devices but also, show a promising
future in wearable biomonitoring applications. / Graduate
|
Page generated in 0.0772 seconds