• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 224
  • 50
  • 35
  • 23
  • 9
  • 9
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 465
  • 69
  • 67
  • 65
  • 61
  • 48
  • 44
  • 43
  • 40
  • 39
  • 38
  • 35
  • 35
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Electromagnetic fields of a dipole submerged in a two-layer conducting medium in the ELF regime

Habashy, Tarek Mohamed. January 1980 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 1980 / Includes bibliographical references. / by Tarek Mohamed Habashy. / M.S. / M.S. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
222

Design of a deployable tape spring half wavelength dipole antenna for the ORCASat nanosatellite

Buzas, Levente Imre 21 January 2022 (has links)
The focus of this thesis is the design, manufacturing and testing of a deployable radio antenna for the ORCASat nanosatellite. First, the context, motivation, requirements, as well as constraints for this project are introduced. Next, a brief overview of theoretical concepts relevant to the contents of this thesis are presented. After the introduction of the relevant background and theory, a literature review is undertaken, and an experiment-based methodology is established. Prior to conceptualizing a new design, detailed consideration is also given to previous attempts at designing a dipole for ORCASat. The root cause of the problems with these attempts is determined experimentally as the presence of ground planes on the circuit board supporting the antenna. After this preliminary investigation, the blocks required for the ORCASat antenna are introduced as the transmission line feeder, the balun, the impedance matching block, and the antenna arm feed. For each of these components, competing design concepts are developed, and the advantages and disadvantages of each of these concepts are presented. After this, the winning design concept is selected and developed into a manufacturable design. This design is identified as a tunable tape spring half wave dipole antenna featuring a specialized feed with electrically and mechanically optimal characteristics, no impedance matching, and a lossy choke balun wound from the coaxial cable feeder, all mounted on a circuit board in a pre-existing Delrin antenna deployer. Next, the manufacturing and assembly of this design is undertaken, followed by the consideration of an informal commissioning procedure. As part of this, a test article consisting of an incomplete prototype of the dipole is tested, and it is shown to have desirable voltage standing wave ratio, input impedance, and return loss characteristics, as well as excellent tunability. Having established that this test article is a good candidate to meet project requirements, it is updated to include as many of the final components of the antenna as possible. Then, formal test procedures for the verification of the tunability, return loss, VSWR, input impedance, antenna pattern, and absolute gain are established, and executed. Based on the results of this formal verification test campaign, it is concluded that the test article meets the requirements presented at the beginning of this thesis, and it is suitable as a radio antenna for the ORCASat mission. After this, the work is concluded by a set of recommendations for future work to prepare the antenna developed in this thesis for flight. / Graduate
223

Isoscalar and Isovector strengths of low-energy dipole excitations in neutron-rich unstable 20O / 中性子過剰な20Oにおけるアイソスカラーおよびアイソベクター双極子励起強度の測定

Nakatsuka, Noritsugu 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20906号 / 理博第4358号 / 新制||理||1625(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)講師 村上 哲也, 教授 永江 知文, 教授 鶴 剛 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
224

Incremental evaluation of coupled cluster dipole polarizabilities

Friedrich, Joachim, McAlexander, Harley R., Kumar, Ashutosh, Crawford, T. Daniel 17 February 2015 (has links)
In this work we present the first implementation of the incremental scheme for coupled cluster linear-response frequency-dependent dipole polarizabilities. The implementation is fully automated and makes use of the domain-specific basis set approach. The accuracy of the approach is determined on the basis of a test suite of 47 molecules and small clusters. The local approximation in the coupled cluster singles and doubles polarizability exhibits a mean error of 0.02% and a standard deviation of 0.32% when using a third-order incremental expansion. With the proposed approach, it is possible to compute polarizabilities with larger basis sets compared to the canonical implementation and thus it is possible to obtain higher total accuracy. The incremental scheme yields the smallest errors for weakly-bound and quasi-linear systems, while two- and three-dimensional (cage-like) structures exhibit somewhat larger errors as compared to the full test set. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
225

Surface Potential Measurements of Micropatterned Self-Assembled Monolayers (SAMs) on n-Si (111) via Kelvin Probe Force Microscopy / ケルビンプローブ力顕微鏡によるSi(111)表面に形成したSAMの表面電位計測

GARCIA, MARIA CARMELA TAN 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23897号 / 工博第4984号 / 新制||工||1778(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 杉村 博之, 教授 山田 啓文, 教授 邑瀬 邦明 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
226

A New Class of Improved Bandwidth Planar Ultrawideband Modular Antenna (puma) Arrays Scalable to mm-Waves

Logan, John 01 January 2013 (has links) (PDF)
A new class of Planar Ultrawideband Modular Antenna (PUMA) arrays, termed PUMAv3, is introduced to offer improved performance and further meet demand needs for multifunctional systems. PUMAv3 extends the frequency scalability of PUMA arrays to mm-waves (approximately 50 GHz) and improves bandwidth by 50\% without the use of a matching network or external baluns. The major enabling technical innovation is the advent of a new common-mode mitigation mechanism that relies upon capacitively-loaded shorting vias to push broadside catastrophic resonances below the operating band without inhibiting low-end bandwidth performance. Ridged waveguide models are employed to explain the operational principles and accurately predict the location of the common-mode frequency within the new array topology. Additionally, the superstrate loading scheme is split into two exclusive layers to enhance broadside and wide angle impedance levels while maintaining the highest frequency at 97% of the grating lobe frequency and reducing the overall array profile by up to 30%. The PUMAv3 also retains the attractive practical advantages inherent to the PUMA array family: aperture modularity, direct 50-ohm feeding, and low-cost planar multilayer PCB fabrication. Infinite array full-wave simulations of a dual-polarized PUMAv3 satisfying manufacture guidelines suggest 10.6-47.6 GHz (4.5:1) operation with strong VSWR levels out to 45 degrees, high port isolation and low cross-polarization.
227

Optical Detection of Ultracold Neutral Calcium Plasmas

Cummings, Elizabeth Ann 23 February 2005 (has links) (PDF)
We demonstrate an optical method to detect calcium ions in an ultracold plasma. We probe the plasma with a 397 nm laser beam tuned to a calcium ion transition. The probe laser beam is focused to a 160 µm waist allowing fine spatial resolution. Ions are detected by measuring fluorescence using a Photo-Multiplier Tube (PMT). The signal, an average of 4000 acquisitions, has a temporal resolution of 120 ns. We present the details of this method, potential improvements, and prospects of imaging the expanding plasma ions. We also present preliminary work on spatially resolved absorption measurements, as well as additional studies.
228

Prediction of Fluid Dielectric Constants

Liu, Jiangping 07 July 2011 (has links) (PDF)
The dielectric constant or relative static permittivity of a material represents the capacitance of the material relative to a vacuum and is important in many industrial applications. Nevertheless, accurate experimental values are often unavailable and current prediction methods lack accuracy and are often unreliable. A new QSPR (quantitative structure-property relation) correlation of dielectric constant for pure organic chemicals is developed and tested. The average absolute percent error is expected to be less than 3% when applied to hydrocarbons and non-polar compounds and less than 18% when applied to polar compounds with dielectric constant values ranging from 1.0 to 50.0. A local composition model is developed for mixture dielectric constants based on the Nonrandom-Two-Liquid (NRTL) model commonly used for correlating activity coefficients in vapor-liquid equilibrium data regression. It is predictive in that no mixture dielectric constant data are used and there are no adjustable parameters. Predictions made on 16 binary and six ternary systems at various compositions and temperatures compare favorably to extant correlations data that require experimental values to fit an adjustable parameter in the mixing rule and are significantly improved over values predicted by Oster's equation that also has no adjustable parameters. In addition, molecular dynamics (MD) simulations provide an alternative to analytic relations. Results suggest that MD simulations require very accurate force field models, particularly with respect to the charge distribution within the molecules, to yield accurate pure chemical values of dielectric constant, but with the development of more accurate pure chemical force fields, it appears that mixture simulations of any number of components are likely possible. Using MD simulations, the impact of different portions of the force field on the calculated dielectric constant were examined. The results obtained suggest that rotational polarization arising from the permanent dipole moments makes the dominant contribution to dielectric constant. Changes in the dipole moment due to angle bending and bond stretching (distortion polarization) have less impact on dielectric constant than rotational polarization due to permanent dipole alignment, with angle bending being more significant than bond stretching.
229

Verifying Molecular Dynamics Using Dielectric Spectroscopy

Smith, Joshua Dee 10 July 2014 (has links) (PDF)
The electrical properties of proteins in solution are important for their structure and function. Computational biophysics studies of proteins need accurate parameters to ensure that numerical simulations match physical reality. Past work in this eld has compared the electrical properties of proteins obtained from dielectric spectroscopy to numerical simulations of proteins in water with adjustment of pKa values to try to capture the inevitable changes in electrical conformation that will occur in a complex structure such as a folded protein. However, fundamental veri cation of the charge parameters of the amino acid building blocks in common molecular dynamics software packages with electrical experiments needs to be performed to have increased con dence in the results from numerical simulations. The aim of this thesis is to start from a fundamental building block, the single amino acid alanine, and to compare numerical simulations of this amino acid in water using parameters from commonly used charge structures in CHARMM, GROMOS, and OPLS, with electrical parameters obtained from dielectric spectroscopy experiments in the GHz range. To this end, multiple molecular dynamics simulations were performed to accurately determine how these different charge structures yield different dielectric increments. Additionally, a commercial RF dielectric measurement probe was modi ed to perform measurements on solutions containing alanine at different concentrations. Using regression, the dielectric increment of alanine is readily determined and compared with the numerical simulations. The results indicate that the CHARMM and OPLS parameters seem to adequately capture the charge con guration of alanine in solution, while the GROMOS parameters produce a dielectric increment but do not seem to adequately capture the charge con guration of alanine in solution. These studies lay the foundation for future studies of additional amino acids in solution as well as a stepping stone for larger simulations of the electrical properties of fully solvated proteins in solution.
230

Low-profile, Modular, Ultra-Wideband Phased Arrays

Holland, Steven S 01 September 2011 (has links)
Ultrawideband (UWB) phased antenna arrays are critical to the success of future multi-functional communication, sensing, and countermeasure systems, which will utilize a few UWB phased arrays in place of multiple antennas on a platform. The success of this new systems approach relies in part on the ability to manufacture and assemble low-cost UWB phased arrays with excellent radiation characteristics.This dissertation presents the theory and design of a new class of UWB arrays that is based on unbalanced fed tightly-coupled horizontal dipoles over a ground plane. Practical implementation of this concept leads to two inexpensive wideband array topologies, the Banyan Tree Antenna (BTA) Array, and the Planar Ultrawideband Modular Antenna (PUMA) Array. The key challenge in designing unbalanced-fed tightly-coupled dipole arrays lies in the control of a common mode resonance that destroys UWB performance. This work introduces a novel feeding strategy that eliminates this resonance and results in wideband, wide-angle radiation. More importantly, the new feeding scheme is simple and intuitive, and can be implemented at low-cost in both vertically and planarly-integrated phased array architectures. Another desirable byproduct of this topology is the electrical and mechanical modularity of the aperture, which enables easy manufacturability and assembly. A theoretical framework is presented for the new phased array topologies, which is then applied to the design of innite BTA and PUMA arrays that achieve 4:1 and 5:1 bandwidths,respectively. A practical application of this technology is demonstrated through the full design, fabrication, and measurement of a 7.25-21GHz 16x16 dual-pol PUMA array prototype for SATCOM applications.

Page generated in 0.0558 seconds