• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 266
  • 49
  • 48
  • 33
  • 27
  • 15
  • 11
  • 8
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 575
  • 79
  • 71
  • 46
  • 44
  • 40
  • 36
  • 35
  • 34
  • 30
  • 30
  • 29
  • 28
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Study of Fault Detection and Restoration Strategy by Artificial Neural Networks

Wu, Yan-Ying 30 June 2005 (has links)
With the rapid growth of load demand, the distribution system is becoming more and more complicated, and the operational efficiency and service quality deteriorated. Power system protection is important for service reliability and quality assurance. Various faults may occur due to natural and artificial calamity. To reduce the outage duration and promptly restore power services, fault section estimate has to be done effectively with appeared fault alarms. The distribution system containing numerous protective facilities and switch equipment ranges over wide boundary. It becomes very complicated for dispatchers to obtain restoration plan for out-of-service areas. To cope with the problem, an effective tool is helpful for the restoration. This thesis proposes the use of Bi-directional associative memory networks (BAMN) to develop alarm processing. And use of Probabilistic Neural Network (PNN) to develop fault section detection, fault isolation, and restoration system. A distribution system is selected for computer simulation to demonstrate the effectiveness of the proposed system. The thesis proposes to use Bi-directional Associative Memory Network¡]BAMN¡^ to pre-process the signal gained from SCADA Interface, and transmit correct signal to Probabilistic Neural Network (PNN) for restoration plan . Computer simulation shows a simplified model to shorten the processing time in this study.
192

Directional Decomposition in Anisotropic Heterogeneous Media for Acoustic and Electromagnetic Fields

Jonsson, B. Lars G. January 2001 (has links)
<p>Directional wave-field decomposition for heterogeneousanisotropic media with in-stantaneous response is establishedfor both the acoustic and the electromagnetic equations.</p><p>We derive a sufficient condition for ellipticity of thesystem's matrix in the Laplace domain and show that theconstruction of the splitting matrix via a Dunford-Taylorintegral over the resolvent of the non-compact, non-normalsystem's matrix is well de ned. The splitting matrix also hasproperties that make it possible to construct the decompositionwith a generalized eigenvector procedure. The classical way ofobtaining the decomposition is equivalent to solving analgebraic Riccati operator equation. Hence the proceduredescribed above also provides a solution to the algebraicRiccati operator equation.</p><p>The solution to the wave-field decomposition for theisotropic wave equation is expressed in terms of theDirichlet-to-Neumann map for a plane. The equivalence of thisDirichlet-to-Neumann map is the acoustic admittance, i.e. themapping between the pressure and the particle velocity. Theacoustic admittance, as well as the related impedance aresolutions to algebraic Riccati operator equations and are keyelements in the decomposition. In the electromagnetic case thecorresponding impedance and admittance mappings solve therespective algebraic Riccati operator equations and henceprovide solutions to the decomposition problem.</p><p>The present research shows that it is advantageous toutilize the freedom implied by the generalized eigenvectorprocedure to obtain the solution to the decomposition problemin more general terms than the admittance/impedancemappings.</p><p>The time-reversal approach to steer an acoustic wave eld inthe cavity and half space geometries are analyzed from aboundary control perspective. For the cavity it is shown thatwe can steer the field to a desired final configuration, withthe assumption of local energy decay. It is also shown that thetime-reversal algorithm minimizes a least square error forfinite times when the data are obtained by measurements. Forthe half space geometry, the boundary condition is expressedwith help of the wave-field decomposition. In the homogeneousmaterial case, the response of the time-reversal algorithm iscalculated analytically. This procedure uses the one-wayequations together with the decomposition operator.</p>
193

Modeling the Behavior of an Electronically Switchable Directional Antenna for Wireless Sensor Networks

Silase, Geletu Biruk January 2011 (has links)
Reducing power consumption is among the top concerns in Wireless Sensor Networks, as the lifetime of a Wireless Sensor Network depends on its power consumption. Directional antennas help achieve this goal contrary to the commonly used omnidirectional antennas that radiate electromagnetic power equally in all directions, by concentrating the radiated electromagnetic power only in particular directions. This enables increased communication range at no additional energy cost and reduces contention on the wireless medium. The SPIDA (SICS Parasitic Interference Directional Antenna) prototype is one of the few real-world prototypes of electronically switchable directional antennas for Wireless Sensor Networks. However, building several prototypes of SPIDA and conducting real-world experiments using them may be expensive and impractical. Modeling SPIDA based on real-world experiments avoids the expenses incurred by enabling simulation of large networks equipped with SPIDA. Such a model would then allow researchers to develop new algorithms and protocols that take advantage of the provided directional communication on existing Wireless Sensor Network simulators. In this thesis, a model of SPIDA for Wireless Sensor Networks is built based on thoroughly designed real-world experiments. The thesis builds a probabilistic model that accounts for variations in measurements, imperfections in the prototype construction, and fluctuations in experimental settings that affect the values of the measured metrics. The model can be integrated into existing Wireless Sensor Network simulators to foster the research of new algorithms and protocols that take advantage of directional communication. The model returns the values of signal strength and packet reception rate from a node equipped with SPIDA at a certain point in space given the two-dimensional distance coordinates of the point and the configuration of SPIDA as inputs. / Phone:+46765816263 Additional email: burkaja@yahoo.com
194

Series-Fed Aperture-Coupled Microstrip Antennas and Arrays

Zivanovic, Bojana 01 January 2012 (has links)
The focus of this dissertation is on the development and circuit modeling of planar series-fed, linear- and circular-polarized microstrip aperture-coupled antennas and N-element arrays operating in C-band. These arrays were designed to be used as part of airborne or land-based frequency-hopped communication systems. One of the main objectives of this work was to maintain a constant beam angle over the frequency band of operation. In order to achieve constant beam pointing versus frequency, an anti-symmetric series-fed approach using lumped-element circuit models was developed. This series feed architecture also balances the power radiated by each element in the N-element arrays. The proposed series-fed approach was used in the development of four-element series-fed aperture-coupled arrays with 15% 10 dB impedance bandwidth centered at 5 GHz and a gain of 11.5 dB, to construct an omni-directional radiator. Omni-directional radiators with pattern frequency stability are desired in a multitude of applications; from defense in tactical communications, information gathering, and detection of signal of interest to being part of sensors in medical applications. A hexagonal assembly of six series-fed microstrip aperture-coupled four-element arrays was used to achieve the omni-directional radiation with 0.6 dB peak to peak difference across 360˚ broadside pattern and 0.6 dB gain variation at the specific azimuth angle across 15% impedance bandwidth. Given that each of these six arrays can be individually controlled, this configuration allows for individual pattern control and reconfiguration of the omni-directional pattern with increased gain at specific azimuth angles and the ability to form a directional pattern by employing a fewer number of arrays. Incorporating a beam-forming network or power distribution network is also possible. Wide 3 dB circular polarization (CP) bandwidth was achieved without external couplers and via only a single feed with a unique Z-slot aperture-coupled microstrip antenna. A single RHCP Z-slot aperture-coupled antenna has ∼10% CP and 10 dB impedance bandwidth. The series-fed network consisting of lumped elements, open-circuited stubs and transmission lines was subsequently developed to maintain more than 5% CP and 10% 10 dB impedance bandwidth in the series-fed four-element Z-slot aperture-coupled CP array that could also be used for-omni-directional radiation.
195

The hearing abilities of elasmobranch fishes

Casper, Brandon M 01 June 2006 (has links)
The hearing abilities of elasmobranch fishes were examined in response to several types of stimuli using auditory evoked potentials (AEP). Audiograms were acquired for the nurse shark, Ginglymostoma cirratum, the yellow stingray, Urobatis jamaicensis, in a controlled environment using a monopole underwater speaker. A dipole stimulus was used to measure the hearing thresholds of the horn shark, Heterodontus francisi, and the white-spotted bamboo shark, Chiloscyllium plagiosum. The dipole experiments yielded much lower thresholds than any other experiment, suggesting that this type of sound specifically stimulated the macula neglecta by creating a strong velocity flow above the head of the shark. A shaker table was created to measure the directional hearing thresholds of the C. plagiosum and the brown-banded bamboo shark, C. punctatum. This experiment showed that these sharks could sense accelerations equally in all directions suggesting that they have omnidirectional ears. The results also yielded higher thresholds than with the dipole, suggesting that the macula neglecta was not stimulated as the sharks were being accelerated. An audiogram was also acquired for the Atlantic sharpnose shark, Rhizoprionodon terraenovae, using a monopole speaker in the field. This experiment revealed that the hearing thresholds did not appear to be masked by ambient noise levels, and resulting thresholds yielded the lowest levels detected by any elasmobranch using AEPs. Taken together, these experiments show that sharks are most sensitive to low frequency sounds in the near field and use both their otoconial endorgans as well as the macula neglecta to sense particle motion.
196

High-frequency isolated dual-bridge series resonant DC-to-DC converters for capacitor semi-active hybrid energy storage system

Chen, Hao 14 August 2015 (has links)
In this thesis, a capacitor semi-active hybrid energy storage system for electric vehicle is proposed. A DC-to-DC bi-directional converter is required to couple the supercapacitor to the system DC bus. Through literature reviews, it was decided that a dual-bridge resonant converter with HF transformer isolation is best suited for the hybrid energy storage application. First, a dual-bridge series resonant converter with capacitive output filter is proposed. Modified gating scheme is applied to the converter instead of the 50% duty cycle gating scheme. Comparing to the 50% duty cycle gating scheme where only four switches work in ZVS, The modified gating scheme allows all eight switches working in ZVS at design point with high load level, and seven switches working in ZVS under other conditions. Next, a dual-bridge LCL-type series resonant converter with capacitive output filter is proposed. Similarly, the modified gating scheme is applied to the converter. This converter shows further improvement in ZVS ability. Operating principles, design examples, simulation results and experimental results of the two newly proposed converters are also presented. In the last part of the thesis, a capacitor semi-active hybrid energy storage system is built to test if the proposed converters are compatible to the system. The dual-bridge LCL-type series resonant converter is placed in parallel to the supercapacitor. The simulation and experimental results of the hybrid energy storage system match closely to the theoretical waveforms. / Graduate
197

Biomimetic Visual Navigation Architectures for Autonomous Intelligent Systems

Pant, Vivek January 2007 (has links)
Intelligent systems with even the bare minimum of sophistication require extensive computational power and complex processing units. At the same time, small insects like flies are adept at visual navigation, target pursuit, motionless hovering flight, and obstacle avoidance. Thus, biology provides engineers with an unconventional approach to solve complicated engineering design problems. Computational models of the neuronal architecture of the insect brain can provide algorithms for the development of software and hardware to accomplish sophisticated visual navigation tasks. In this research, we investigate biologically-inspired collision avoidance models primarily based on visual motion. We first present a comparative analysis of two leading collision avoidance models hypothesized in the insect brain. The models are simulated and mathematically analyzed for collision and non-collision scenarios. Based on this analysis it is proposed that along with the motion information, an estimate of distance from the obstacle is also required to reliably avoid collisions. We present models with tracking capability as solutions to this problem and show that tracking indirectly computes a measure of distance. We present a camera-based implementation of the collision avoidance models with tracking. The camera-based system was tested for collision and non-collision scenarios to verify our simulation claims that tracking improves collision avoidance. Next, we present a direct approach to estimate the distance from an obstacle by utilizing non-directional speed. We describe two simplified non-directional speed estimation models: the non-directional multiplication (ND-M) sensor, and the non-directional summation (ND-S) sensor. We also analyze the mathematical basis of their speed sensitivity. An analog VLSI chip was designed and fabricated to implement these models in silicon. The chip was fabricated in a 0.18 um process and its characterization results are reported here. As future work, the tracking algorithm and the collision avoidance models may be implemented as a sensor chip and used for autonomous navigation by intelligent systems.
198

Computation of time-lapse differences with 3D directional frames

Bayreuther, Moritz, Cristall, Jamin, Herrmann, Felix J. January 2005 (has links)
We present an alternative method of extracting production related differences from time-lapse seismic data sets. Our method is not based on the actual subtraction of the two data sets, risking the enhancement of noise and introduction of artifacts due to local phase rotation and slightly misaligned events. Rather, it mutes events of the monitor survey with respect to the baseline survey based on the magnitudes of coefficients in a sparse and local atomic decomposition. Our technique is demonstrated to be an effective tool for enhancing the time-lapse signal from surveys which have been cross-equalized
199

Pneumatinių vykdymo sistemų dinaminių charakteristikų tyrimas / Investigation of dynamic characteristic of an electro-pneumatic servo system

Grigaitis, Arūnas 14 June 2005 (has links)
The non-linear model of pneumatic acting system, consisting of proportional directional control valve and symmetric rodless pneumatic cylinder is developed and investigated in this paper. This model enables to evaluate influence of essential nonlinearities concerned with working characteristics of airflow regulating valves and pneumatic cylinders on dynamics of the system. The modeling results of pneumatic acting system under several initial working conditions are presented and discussed in this article. The model reference based adaptive control method of force regulation in electro-pneumatic servo system is proposed and investigated in this paper to. This method allows eliminating of influence of nonlinearities of pneumatic cylinder and directional control valve on behavior of force regulation system. Therefore controllers of higher hierarchy level such as velocity and position controllers can be designed using conventional methods based on quantitative optimum. The modeling results of investigated system are presented in the paper.
200

Real Time Data Acquisition and Prediction Model Comparison using Maxi Directional Drills

Verwey, Kyle January 2013 (has links)
Horizontal Directional Drilling (HDD) is used around the world when traditional open cut methods are not practical or impossible for installing pipelines. Maxi-sized drill rigs are the largest and most powerful directional drills and are more common in the field than ever before with over 5,000 rigs in operation world wide. The complexity of installations and the design associated with them continues to increase. This research has two main objectives. 1. Develop a real time data acquisition system for monitoring pullback forces on the product pipe; and, 2. Compare data gathered using maxi-sized drill rigs with current modelling methods using BoreAid. The first portion of the research, as listed above, required attaching multiple pressure transducers to the drilling display panel in an American Auger DD-1100 drill rig and recording, in real time, the carriage, rotation, and mud pressure as seen by the operator. This research also describes the various challenges and issues associated with developing real time in-the-bore data acquisition processes. Finally, future recommendations for further development of the in-the-bore data acquisition are discussed. The second portion of this research describes how the gathered data was processed into a workable data set. The field data was then compared to theoretical models by using the drill assistant tool BoreAid. The results of this comparison show that these models are appropriate for all size drill rigs, although some limitations are present.

Page generated in 0.0991 seconds