• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 7
  • 3
  • 1
  • 1
  • Tagged with
  • 46
  • 11
  • 11
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Cell-protein-material Interactions on Bioceramics and Model Surfaces / Interaktioner mellan celler, proteiner och keramiska material

Rosengren, Åsa January 2004 (has links)
<p>The objective of this thesis was to investigate and characterize the interaction between blood proteins and different surfaces with emphasis on protein adsorption to bioceramics and model surfaces. Special effort was made to monitor the spontaneous and selective adsorption of proteins from human plasma and to examine the orientation, conformation and functional behavior of single proteins after adsorption. </p><p>Five different ceramic biomaterials: alumina (Al<sub>2</sub>O<sub>3</sub>), zirconia (ZrO<sub>2</sub>), hydroxyapatite (Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>) and two glass-ceramics, AP40 (SiO<sub>2</sub>-CaO-Na<sub>2</sub>O-P<sub>2</sub>O<sub>5</sub>-MgO-K<sub>2</sub>O-CaF<sub>2</sub>) and RKKP (AP40 with Ta<sub>2</sub>O<sub>3</sub>-La<sub>2</sub>O<sub>3</sub>), were exposed to human plasma and their protein binding capacities and affinities for specific proteins were studied by chromatography, protein assays, two-dimensional gel electrophoresis and Western blotting. The studies showed that all materials adsorbed approximately the same high amount of plasma proteins and that they therefore should be fully covered by proteins in an <i>in vivo</i> setting. The adsorbed proteins were different for most materials which could explain their previously observed different levels of tissue integration <i>in vivo</i>. </p><p>Four of the proteins that behaved differently, ceruloplasmin, prothrombin, α<sub>2</sub>-HS-glycoprotein and α<sub>1</sub>-antichymotrypsin, were selected for characterization with atomic force microscopy and ellipsometry. The studies, which were performed on ultraflat silicon wafers (silica), showed that the proteins oriented themselves with their long axis parallel to the surface or as in case of ceruloplasmin with one of its larger sides towards the surface. All of them had globular shapes but other conformational details were not resolved. Furthermore, prothrombin (none of the others) formed multilayers at high proteins concentrations. </p><p>The functional behaviour of the adsorbed proteins, referring to their cell binding and cell spreading capacity on silica and a positive cell adhesion reference surface (Thermanox®), was affected by the underlying substrate. Ceruloplasmin, α<sub>2</sub>-HS-glycoprotein and α<sub>1</sub>-antichymotrypsin stimulated cell attachment to silica, but suppressed attachment to Thermanox®. Prothrombin stimulated cell attachment to both surfaces. The attachment was in most cases mediated both by cell membrane-receptors (integrins) and by non-specific interactions between the cell and the material. </p><p>This thesis showed that the compositional mixture, orientation, conformation and functional behavior of the adsorbed proteins are determined by the properties of the underlying surface and if these parameters are controlled very different cellular responses can be induced.</p>
42

Cell-protein-material Interactions on Bioceramics and Model Surfaces / Interaktioner mellan celler, proteiner och keramiska material

Rosengren, Åsa January 2004 (has links)
The objective of this thesis was to investigate and characterize the interaction between blood proteins and different surfaces with emphasis on protein adsorption to bioceramics and model surfaces. Special effort was made to monitor the spontaneous and selective adsorption of proteins from human plasma and to examine the orientation, conformation and functional behavior of single proteins after adsorption. Five different ceramic biomaterials: alumina (Al2O3), zirconia (ZrO2), hydroxyapatite (Ca10(PO4)6(OH)2) and two glass-ceramics, AP40 (SiO2-CaO-Na2O-P2O5-MgO-K2O-CaF2) and RKKP (AP40 with Ta2O3-La2O3), were exposed to human plasma and their protein binding capacities and affinities for specific proteins were studied by chromatography, protein assays, two-dimensional gel electrophoresis and Western blotting. The studies showed that all materials adsorbed approximately the same high amount of plasma proteins and that they therefore should be fully covered by proteins in an in vivo setting. The adsorbed proteins were different for most materials which could explain their previously observed different levels of tissue integration in vivo. Four of the proteins that behaved differently, ceruloplasmin, prothrombin, α2-HS-glycoprotein and α1-antichymotrypsin, were selected for characterization with atomic force microscopy and ellipsometry. The studies, which were performed on ultraflat silicon wafers (silica), showed that the proteins oriented themselves with their long axis parallel to the surface or as in case of ceruloplasmin with one of its larger sides towards the surface. All of them had globular shapes but other conformational details were not resolved. Furthermore, prothrombin (none of the others) formed multilayers at high proteins concentrations. The functional behaviour of the adsorbed proteins, referring to their cell binding and cell spreading capacity on silica and a positive cell adhesion reference surface (Thermanox®), was affected by the underlying substrate. Ceruloplasmin, α2-HS-glycoprotein and α1-antichymotrypsin stimulated cell attachment to silica, but suppressed attachment to Thermanox®. Prothrombin stimulated cell attachment to both surfaces. The attachment was in most cases mediated both by cell membrane-receptors (integrins) and by non-specific interactions between the cell and the material. This thesis showed that the compositional mixture, orientation, conformation and functional behavior of the adsorbed proteins are determined by the properties of the underlying surface and if these parameters are controlled very different cellular responses can be induced.
43

Système VEGF/VEGFR : conception et évaluation de molécules ciblées et régulation potentielle par les métaux / VEGF/VEGFR system : design and evaluation of targeted compounds and possible regulation by transition metals

Reille-Seroussi, Marie 24 September 2014 (has links)
Dans les thérapies anticancéreuses, les traitements anti-angiogéniques agissant sur l’axe VEGF/VEGFR ont une place importante en clinique. Dans ce contexte, nous avons conçu et évalué l’activité de nouveaux inhibiteurs de l’interaction VEGF/VEGFR. Une première approche a été la conception de molécules antagonistes du VEGFR1. Différents analogues hétérocycliques dérivant d’un composé de type (3-carboxy-2-ureido) thiophène ont été synthétisés. Des réactivités chimiques intéressantes ont été mises en évidence, mais l’activité biochimique de ces molécules ne s’est pas révélée concluante. Une seconde approche reposant sur la conception de peptides ciblant le VEGF a alors été initiée. A partir d’un peptide cyclique connu de 19 résidus ayant une affinité submicromolaire pour le VEGF, de nouveaux peptides et peptidomimétiques ont été développés.L’objectif a été de concevoir des composés de structures chimiques potentiellement plus simples et plus stables en milieu biologique, tout en optimisant l’affinité pour le VEGF. L’interaction de ces peptides avec le VEGF a été étudiée in vitro par ELISA et ITC, ainsi que par cristallographie pour le composé le plus affin. En parallèle, nous avons étudié l’effet du cuivre et d’autres métaux divalents sur l’interaction VEGF/VEGFR1. Au travers d’expériences réalisées au laboratoire ainsi qu’en collaboration, nous avons montré que certains métaux étaient capables non seulement d’inhiber l’interaction VEGF/VEGFR1 mais également d’induire une dimérisation non classique du domaine 2du récepteur. Sachant que les métaux, et en particulier le cuivre, sont connus pour jouer un rôle important dans l’angiogenèse, cette découverte apporte de nouveaux éléments de réponse sur leur mécanisme d’action. Ce travail de thèse s’inscrit donc non seulement dans une démarche de développement de nouveaux composés anti-angiogéniques mais également de compréhension du mécanisme de régulation de l’angiogenèse. / Inhibiting angiogenesis is an effective strategy of targeting therapy against cancer. In thiscontext, we develop an antiangiogenic strategy consisting in the design and evaluation of compoundsblocking the VEGF/VEGFR interaction. The first approach was the conception of antagonists of theVEGFR1. Starting from a (3-carboxy-2-ureido) thiophene hit, a variety of heterocyclic analogs wasdeveloped. Interesting chemical observations were made during the synthesis, but no optimization ofthe biochemical activity was achieved. The second approach was the design of peptides that bind tothe receptor-recognition surface of the VEGF. Starting from a cyclic peptide known to bind to theVEGF with a sub-micromolar affinity, new peptides and peptidomimetics were developed. Thestrategy was to design simplified and potentially more stable compounds, and to improve at thesame time the VEGF affinity. The interaction of VEGF with these ligands was studied in vitro by ELISAand ITC experiments, as well as X-ray diffraction for the best compound. Moreover, the investigationof the effects of copper and other divalent metals on the VEGF/VEGFR1 interaction was undertaken.Experiments realized in the laboratory and in collaboration showed that metals were able to displacethe VEGF/VEGFR1 interaction and to induce the dimerisation of the domain 2 of the receptor. Metalsare well known to play an important role in angiogenic phenomena, but their specific targets are stilla matter of debate. In this context, this discovery brings new response elements regarding theirmechanisms of action. Therefore, the objectives of this PhD thesis were the development of newantiangiogenic compounds, as well as the understanding of some aspects of the regulation of angiogenesis.
44

BIOGENESIS AND FUNCTIONAL APPLICATIONS OF PIWI INTERACTING RNAs (piRNAs)

Balaratnam, Sumirtha 25 July 2018 (has links)
No description available.
45

Comparison of expression pattern and localization of iron transport proteins in rat liver, brain and spleen during acute phase response:invivo and invitro studies / Vergleich der Expressionsmuster und Lokalisierung von Eisentransportproteine Ratte in Leber, Gehirn und Milz während der Akutphase-Antwort: In-vivo-und In-vitro-Studien

Naz, Naila 12 January 2012 (has links)
No description available.
46

Development of nonsymmetrical 1,4-disubstituted anthraquinones that are potently active against cisplatin-resistant ovarian cancer cells

Teesdale-Spittle, P.H., Pors, Klaus, Brown, R., Patterson, Laurence H., Plumb, J.A. January 2005 (has links)
No / A novel series of 1,4-disubstituted aminoanthraquinones were prepared by ipso-displacement of 1,4-difluoro-5,8-dihydroxyanthraquinones by hydroxylated piperidinyl- or pyrrolidinylalkyl-amino side chains. One aminoanthraquinone (13) was further derivatized to a chloropropyl-amino analogue by treatment with triphenylphosphine-carbon tetrachloride. The compounds were evaluated in the A2780 ovarian cancer cell line and its cisplatin-resistant variants (A2780/ cp70 and A2780/MCP1). The novel anthraquinones were shown to possess up to 5-fold increased potency against the cisplatin-resistant cells compared to the wild-type cells. Growth curve analysis of the hydroxyethylaminoanthraquinone 8 in the osteosarcoma cell line U-2 OS showed that the cell cycle is not frozen, rather there is a late cell cycle arrest consistent with the action of a DNA-damaging topoisomerase II inhibitor. Accumulative apoptotic events, using time lapse photography, indicate that 8 is capable of fully engaging cell cycle arrest pathways in G2 in the absence of early apoptotic commitment. 8 and its chloropropyl analogue 13 retained significant activity against human A2780/cp70 xenografted tumors in mice.

Page generated in 0.0478 seconds