• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 10
  • 7
  • 6
  • 2
  • 1
  • Tagged with
  • 71
  • 19
  • 18
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Force Feedback Control for a 6-DOF Manipulator : A Comparative Study of Force Feedback Control Strategies for the 6-DOF Saab Seaeye eM1-7 Manipulator

Lagerby, Johan, Levin, Assar January 2024 (has links)
Industrial works in the sea, such as renewable energy or oil industries are dependent on underwater repairs which on great depths needs to be unmanned. Since the ability to sense and control applied forces is imperative to minimize damage on company property, the goal for this master thesis was toinvestigate and develop different force feedback control algorithms compatible with the Saab Seaeye eM1-7 electric manipulator, utilizing a 6-DOF load cell. This thesis addressed the conditions for the force feedback control and the behaviour of the control strategies in MATLAB and Gazebo. Tests with the manipulator concluded that force feedback control is possible with the suggested strategies but that the kinematic control needs further development in order to conduct simulations of assembly tasks which requires collaboration between the force feedback and kinematic control objectives.
42

Rapid FTIR analysis for respirable crystalline silica monitoring in coal mines using readily available sampling equipment

Elie, Garek Christopher 01 July 2024 (has links)
In coal mines, workers can be exposed to respirable coal mine dust (RCMD) in conjunction with respirable crystalline silica (RCS). Overexposure can pose serious health risks, including development of coal workers' pneumoconiosis (CWP) (also known as "black lung"). CWP has the potential to progress to a more consequential form known as progressive massive fibrosis (PMF), for which a dramatic resurgence has been observed among US miners since the early 2000's. Recent rules promulgated by the Mine Safety and Health Administration (MSHA) have lowered the permissible exposure limit (PEL) of RCMD and RCS, but the nuances of dust monitoring are complicated. For RCMD, frequent monitoring is required using the continuous personal dust monitor (CPDM), which enables real time data—but the physical sample collected by the CPDM cannot currently be used for RCS analysis. For RCS monitoring, filter samples are still collected with the traditional coal mine dust personal sampling unit (CMDPSU)—but the standard RCS analysis must be done in a centralized lab and there is considerable lag time between sampling and data availability. To enable rapid RCS analysis of filter samples, NIOSH has developed a direct-on-filter (DOF) Fourier transform infrared (FTIR) spectroscopy method for use with CMDPSU filter samples. It can be performed in the field with a portable instrument. NIOSH has also developed a compatible software called the Field Analysis of Silica Tool (FAST), which simplifies processing of the FTIR spectral data to yield RCS mass results. While not allowed to demonstrate regulatory compliance with the RCS PEL, this method could be quite useful for routine non-regulatory monitoring (e.g., to support research or engineering studies). However, adoption of the method may hinge on a variety of factors such as costs, ease-of-use, and the usability and reliability of generated data. This thesis reports a field study designed to demonstrate how the DOF FTIR method (with FAST) might be used by mines with relatively low-cost, off-the-shelf sampling components for the CMDPSU. The field study also demonstrates how the percentage of RCS in RCMD (in addition to RCS mass) can be estimated by simply pairing a CPDM with the CMDPSU during sampling. Understanding RCS percentage may be important for a variety of research or engineering applications. While the DOF FTIR method can work well for CMDPSU samples, it is recognized that RCS analysis of CPDM samples would be ideal. However, the materials and construction of the filter assembly used by the CPDM is not conducive to DOF analysis. As part of an effort to develop a simple method for CPDM sample recovery, redeposition, and analysis by FTIR, the second study in this thesis focused on establishing the recovery procedure—and corrections to account for sample mass and RCS content attributed to any residue sourced from the CPDM filter assembly itself. Using blank CPDM filters and blank CPDM filters spiked with well characterized respirable dust, results show that the mass and RCS content of the CPDM residue may be quite small. Moreover, using field CPDM samples, results show that dust recovery can be quite high. Taken together, these are promising findings and suggest that a method for RCS analysis of CPDM samples is possible. / Master of Science / In coal mines, workers can be exposed to respirable coal mine dust (RCMD) in conjunction with respirable crystalline silica (RCS). Overexposure can pose serious health risks, including development of coal workers' pneumoconiosis (CWP) (also known as "black lung"). CWP has the potential to progress to a more consequential form known as progressive massive fibrosis (PMF), for which a dramatic resurgence has been observed among US miners since the early 2000's. There have been rules and regulations set by the Mine Safety and Health Administration (MSHA) to lower the permissible exposure limits of RCMD and RCS, however dust monitoring can be complicated. RCMD is monitored in real-time using a continuous personal dust monitor (CPDM) by mine operators, but it cannot be currently used to monitor RCS. RCS is monitored using filter sample from a traditional coal mine dust personal sampling unit (CMDPSU), with there being a delay to obtain results due to lab analysis time. To enable rapid RCS analysis of filter samples, NIOSH has developed a direct-on-filter (DOF) Fourier transform infrared (FTIR) spectroscopy method for use with CMDPSU filter samples. It can be performed in the field with a portable instrument. NIOSH has also developed a compatible software called the Field Analysis of Silica Tool (FAST), which simplifies processing of the data to determine RCS results. The first study of this thesis demonstrates the use of portable FTIR with FAST to determine RCS masses and concentrations using affordable sampling equipment. Additionally, the study shows how the RCS percentages were estimated with paired CPDMs and CMDPSUs. Though the method used in the first study works with samples from CMDPSUs, it would be ideal for the analysis to work with samples from CPDMs since they are the prominent type of sampling equipment at coal mines. However, the materials that make-up the CPDM filters interfere with DOF FTIR analysis methods and as a result, cannot be directly used. The second part of this study provides a CPDM sample recovery, redeposition, and analysis procedure. RCS data was determined from CPDM filters with different dust sources. Using blank CPDM filters, potential interference was also corrected in the dust laden samples. From the findings of the study, it suggests that the use of CPDM samples for RCS analysis is possible as there was good dust recovery and little CPDM filter material interference in the analysis.
43

Dissecting the factors controlling seed development in the model legume Medicago truncatula / Dissection des facteurs contrôlant le développement de la graine chez la légumineuse modèle Medicago truncatula

Atif, Rana Muhammad 17 December 2012 (has links)
Les légumineuses sont une source riche pour l’alimentation humaine comme celle du bétail mais elles sont aussi nécessaires à une agriculture durable. Cependant, les fractions majeures des protéines de réserve dans la graine sont pauvres en acides aminés soufrés et peuvent être accompagné de facteurs antinutritionnels, ce qui affecte leur valeur nutritive. Dans ce cadre, Medicago truncatula est une espèce modèle pour l’étude du développement de la graine des légumineuses, et en particulier concernant la phase d’accumulation des protéines de réserve. Vu la complexité des graines de légumineuses, une connaissance approfondie de leur morphogenèse ainsi que la caractérisation des mécanismes sous-jacents au développement de l’embryon et au remplissage de la graine sont essentielles. Une étude de mutagenèse a permis d’identifier le facteur de transcription DOF1147 (DNA-binding with One Finger) appartenant à la famille Zn-finger, qui s’exprime dans l’albumen pendant la transition entre les phases d’embryogenèse et de remplissage de la graine. Lors de mon travail de thèse, il a été possible de générer plusieurs constructions pour l’analyse de l’expression de DOF1147 ainsi que de la protéine DOF1147. Un protocole efficace pour la transformation génétique stable de M. truncatula a été établi et des études de localisation subcellulaire ont montré que DOF1147 est une protéine nucléaire. Un arbre phylogénétique a révélé différents groupes de facteurs de transcription DOF avec des domaines conservés dans leur séquence protéique. L’analyse du promoteur in silico chez plusieurs gènes-cible potentiels de DOF1147 a identifié les éléments cis-régulateurs de divers facteurs de transcription ainsi que des éléments répondant aux auxines (AuxREs), ce qui suggère un rôle possible de l’auxine pendant le développement de la graine. Une étude in vitro du développement de la graine avec divers régimes hormonaux, a montré l’effet positif de l’auxine sur la cinétique du développement de la graine, que ce soit en terme de gain de masse ou de taille, plus fort avec l’ANA que l’AIB. Grâce à une approche cytomique de ces graines en développement nous avons, en plus, démontré l’effet de l’auxine sur la mise en place de l’endoreduplication. En effet, celle-ci est l’empreinte cytogénétique de la transition entre les phases de division cellulaire et d’accumulation de substances de réserve lors du développement de la graine. Dans son ensemble, ce travail a démontré que l’auxine module la transition entre le cycle mitotique et les endocycles chez les graines en développement de M. truncatula en favorisant la continuité des divisions cellulaires tout en prolongeant simultanément l’endoreduplication. / Legumes are not only indispensible for sustainable agriculture but are also a rich source of protein in food and feed for humans and animals, respectively. However, major proteins stored in legume seeds are poor in sulfur-containing amino acids, and may be accompanied by anti-nutritional factors causing low protein digestibility problems. In this regard, Medicago truncatula serves as a model legume to study legume seed development especially the phase of seed storage protein accumulation. As developing legume seeds are complex structures, a thorough knowledge of the morphogenesis of the seed and the characterization of regulatory mechanisms underlying the embryo development and seed filling of legumes is essential. Mutant studies have identified a DOF1147 (DNA-binding with One Finger) transcription factor belonging to the Zn-Finger family which was expressed in the endosperm at the transition period between embryogenesis and seed filling phase. During my PhD work, a number of transgene constructs were successfully generated for expression analysis of DOF1147 gene as well as the DOF1147 protein. A successful transformation protocol was also established for stable genetic transformation of M. truncatula. Subcellular localization studies have demonstrated that DOF1147 is a nuclear protein. A phylogenetic tree revealed different groups of DOF transcription factors with conserved domains in their protein sequence. In silico promoter analysis of putative target genes of DOF1147 identified cis-regulatory elements of various transcription factors along with auxin responsive elements (AuxREs) suggesting a possible role of auxin during seed development. A study of in vitro seed development under different hormone regimes has demonstrated the positive effect of auxin on kinetics of seed development in terms of gain in seed fresh weight and size, with NAA having a stronger effect than IBA. Using the cytomic approach, we further demonstrated the effect of auxin on the onset of endoreduplication in such seeds, which is the cytogenetic imprint of the transition between the cell division phase and the accumulation of storage products phase during seed development. As a whole, this work highlighted that the auxin treatments modulate the transition between mitotic cycles and endocycles in M. truncatula developing seeds by favouring sustained cell divisions while simultaneously prolonging endoreduplication.
44

Konstrukce 1/4 modelu vozidla pro testy tlumičů / Design of 1/4 car model for damper testing

Jaroš, Petr January 2021 (has links)
This thesis deals by the design of 1/4 car model for testing vehicle dampers, which can be used to simulate the real suspension of a vehicle wheel (up to a maximum car weight of 1,970 kg) and the so-called linear wheel suspension. A linear mathematical 1/4 car model with 2 DOF (Degrees Of Freedom) and data from literature search are used to design and derive the basic parameters of the device. The thesis contains a description of the linear mathematical model and its outputs (acceleration of the sprung mass and forces acting on the sprung mass), description of designed device, descriptions of created simulations (static, modal and harmonic analysis in ANSYS Workbench 2020 R2) and conceptual design of the modifications this device for another possible use for testing of bicycles.
45

Research and Application of 6D Pose Estimation for Mobile 3D Cameras / Forskning och tillämpning av 6D Pose Estimation för mobila 3D-kameror

Ruichao, Qian January 2022 (has links)
This work addresses the deep-learning-based 6 Degree-of-Freedom (DoF) pose estimation utilizing 3D cameras on an iPhone 13 Pro. The task of pose estimation is to estimate the spatial rotation and translation of an object given its 2D or 3D images. During the pose estimation network training process, a common way to expand the training dataset is to generate synthetic images, which requires the 3D mesh of the target object. Although several famous datasets provide the 3D object files, it is still a problem when one wants to generate a customized real-world object. The typical 3D scanners are mainly designed for industrial usage and are usually expensive. We investigated in this project whether the 3D cameras on Apple devices can replace the industrial 3D scanners in the pose estimation pipeline and what might influence the results during scanning. During the data synthesis, we introduced a pose sampling method to equally sample on a sphere. Random transformation and background images from the SUN2012 dataset are applied, and the synthetic image is rendered through Blender. We picked five testing objects with different sizes and surfaces. Each object is scanned both by front TrueDepth camera and rear Light Detection and Ranging (LiDAR) camera with the ‘3d Scanner App’ on iOS. The network we used is based on PVNet, which uses a pixel-wise voting scheme to find 2D keypoints on RGB images and utilizes uncertainty-driven Perspective-n-Point (PnP) to compute the pose. We achieved both quantitative and qualitative results for each instance. i) TrueDepth camera outperforms Light Detection and Ranging (LiDAR) camera in most scenarios, ii) when an object has less reflective surface and high-contrast texture, the advantage of TrueDepth is more obvious. We also picked three baseline objects from Linemod dataset. Although the average accuracy is lower than the original paper, the performance of our baseline instances shows a similar trend to the original paper’s results. In conclusion, we proved that the 3D cameras on iPhone are capable of the pose estimation pipeline. / Detta arbete tar upp den djupinlärningsbaserade 6 Degree-of-Freedom (DoF) poseringsuppskattning med 3D-kameror på en iPhone 13 Pro. Uppgiften med poseuppskattning är att uppskatta den rumsliga rotationen och translationen av ett objekt givet dess 2D- eller 3D-bilder. Ett vanligt sätt att utöka träningsdataup- psättningen under träningsprocessen för positionsuppskattning är att generera syntetiska bilder, vilket kräver 3D-nätet för målobjektet. Även om flera kända datamängder tillhandahåller 3D-objektfilerna, är det fortfarande ett problem när man vill generera ett anpassat verkligt objekt. De typiska 3D-skannrarna är främst designade för industriell användning och är vanligtvis dyra. Vi undersökte i detta projekt om 3D-kamerorna på Apple-enheter kan ersätta de industriella 3D-skannrarna i poseskattningspipelinen och vad som kan påverka resultaten under skanning. Under datasyntesen introducerade vi en posesamplingsmetod för att sampla lika mycket på en sfär. Slumpmässig transformation och bakgrundsbilder från SUN2012-datauppsättningen tillämpas, och den syntetiska bilden renderas genom Blender. Vi valde ut fem testobjekt med olika storlekar och ytor. Varje objekt skannas både av den främre TrueDepth-kameran och den bakre ljusdetektions- och avståndskameran (LiDAR) med "3d-skannerappenpå iOS. Nätverket vi använde är baserat på PVNet, som använder ett pixelvis röstningsschema för att hitta 2D-nyckelpunkter på RGB-bilder och använder osäkerhetsdrivet Perspective-n-Point (PnP) för att beräkna poseringen. Vi uppnådde både kvantitativa och kvalitativa resultat för varje instans. i) TrueDepth-kameran överträffar Light Detection and Ranging-kameran (LiDAR) i de flesta scenarier, ii) när ett objekt har mindre reflekterande yta och högkontraststruktur är fördelen med TrueDepth högre. Vi valde också tre baslinjeobjekt från Linemod dataset. Även om den genomsnittliga noggrannheten är lägre än originalpapperet, visar prestandan för våra baslinjeinstanser en liknande trend som originalpapperets resultat. Sammanfattningsvis bevisade vi att 3D-kamerorna på iPhone är kapabla att göra positionsuppskattning.
46

Nonlinear Adaptive Control and Guidance for Unstart Recovery for a Generic Hypersonic Vehicle

Gunbatar, Yakup 30 December 2014 (has links)
No description available.
47

Humanoid Arm Geometric Model

Mulumbwa, Sebe Stanley January 2016 (has links)
The world is slowly moving into increased human-robot interaction where both humans and robots can co-exist in the same domain. For the robot to be able to operate effectively in a man’s designed environment, it becomes necessary to model the robot with human capabilities as humans are seen as more capable. Replicating human becomes a huge challenge due to numerous degrees-of-freedom (DOFs) that human possess resulting into too many variables and nonlinear equations. Other challenges do occur like singularities.   In this thesis, the singularity challenge of a redundant humanoid arm is explored while maintaining a simple 7 DOF serial chain structure. As opposed to the 30 DOF human arm, a simpler 7 DOF humanoid arm is adopted and studied to eliminate the singularity challenges. The singularity problem mainly comes from the elbow and the spherical joints at the shoulder and wrist. A step-by-step review of available inverse kinematics techniques is made with more focus on the iterative Jacobian-based methods. A step-by-step approach is adopted so as to identify the source of singularities while using the iterative Jacobian-based techniques that are able to handle the nonlinearities of the equations.   The Singular Value Filtering (SVF) technique coupled with Selectively Damped Least Squares (SDLS) is employed. Without any restrictions to the stretch of the arm or end-effector pose, the method demonstrates, in conjunction with Euler angle singularity avoidance method, the elimination of singularity problems. This is achieved with no adjustment to kinematic model of the manipulator.
48

A Wide-bandwidth High-sensitivity Mems Gyroscope

Sahin, Korhan 01 July 2008 (has links) (PDF)
This thesis reports the development of a wide-bandwidth high-sensitivity mode-decoupled MEMS gyroscope showing robustness against ambient pressure variations. The designed gyroscope is based on a novel 2 degrees of freedom (DoF) sense mode oscillator, which allows increasing the operation bandwidth to the amount required by tactical-grade and inertial-grade operations while reaching the mechanical sensitivity of near matched-mode vibratory gyroscopes. Thorough theoretical study and finite element simulations verify the high performance operation of the proposed 2 DoF sense mode oscillator design. The designed gyroscope is fabricated using the in-house developed silicon-on-glass (SOG) micromachining technology at METU Microelectronics (METU-MET) facilities. The fabricated gyroscope measures only 5.1 x 4.6 mm square. The drive mode oscillator of the gyroscope reaches quality factor of 8760 under 25 mTorr vacuum environment, owing to high quality single crystal silicon structural layer. The sense mode bandwidth is measured to reach 2.5 kHz at 40 V proof mass voltage. When the fabricated gyroscope is operated with a relatively wide bandwidth of 1kHz, measurements show a relatively high raw mechanical sensitivity of 131 uV/(deg/s). Fabricated gyroscope is hybrid connected to external closed-loop drive mode amplitude control and open-loop sense mode readout electronics developed at METU-MEMS research group, to form a complete angular rate measurement system (ARMS). The scale factor of the ARMS is measured to be 13.1 mV/(deg/s) with a maximum R square nonlinearity of 0.0006 % and a maximum percent deviation nonlinearity of 0.141 %, while the maximum deviation of the scale factor for large vacuum level variations between 40 mTorr to 500 mTorr is measured to be only 0.38 %. The bias stability and angle random walk of the gyroscope are measured to be 131 deg/h and 1.15 deg/ rooth, respectively. It is concluded that, the mechanical structure can be optimized to show its theoretical limits of sensitivity with improvements in fabrication tolerances. The proposed 2 DoF sense mode oscillator design shows the potential of tactical-grade operation, while demonstrating extreme immunity to ambient pressure variations, by utilizing an optimized mechanical structure and connecting the gyroscope to dedicated low-noise electronics.
49

Development of magnetic field-based multisensor system for multi-DOF actuators

Foong, Shaohui 27 August 2010 (has links)
Growing needs for precise manipulation in medical surgery, manufacturing automation and structural health monitoring have motivated development of high accuracy, bandwidth and cost-effective sensing systems. Among these is a class of multi-axis electromagnetic devices where embedded magnetic fields can be capitalized for compact position estimation eliminating unwanted friction, stiction and inertia arising from dedicated and separate sensing mechanisms. Using fields for position measurements, however, is a challenging 'inverse problem' since they are often modeled in the 'forward' sense and their inverse solutions are often highly non-linear and non-unique. A general method to design a multisensor system that capitalizes on the existing magnetic field in permanent magnet (PM) actuators is presented. This method takes advantage of the structural field symmetry and meticulous placement of sensors to discretize the motion range of a PM-based device into smaller magnetic field segments, thereby reducing the required characterization domain. Within these localized segments, unique field-position correspondence is induced using field measurements from a network of multiple-axis sensors. A direct mapping approach utilizing trained artificial neural networks to attain multi-DOF positional information from distributed field measurements is employed as an alternative to existing computationally intensive model based methods which are unsuitable for real-time control implementation. Validation and evaluation of this technique are performed through field simulations and experimental investigation on an electromagnetic spherical actuator. An inclinometer was used as a performance comparison and experimental results have corroborated the superior tracking ability of the field-based sensing system. While the immediate application is field-based orientation determination of an electromagnetic actuator, it is expected that the design method can be extended to develop other sensing systems that harnesses other scalar, vector and tensor fields.
50

Adaptation of task-aware, communicative variance for motion control in social humanoid robotic applications

Gielniak, Michael Joseph 17 January 2012 (has links)
An algorithm for generating communicative, human-like motion for social humanoid robots was developed. Anticipation, exaggeration, and secondary motion were demonstrated as examples of communication. Spatiotemporal correspondence was presented as a metric for human-like motion, and the metric was used to both synthesize and evaluate motion. An algorithm for generating an infinite number of variants from a single exemplar was established to avoid repetitive motion. The algorithm was made task-aware by including the functionality of satisfying constraints. User studies were performed with the algorithm using human participants. Results showed that communicative, human-like motion can be harnessed to direct partner attention and communicate state information. Furthermore, communicative, human-like motion for social robots produced by the algorithm allows humans partners to feel more engaged in the interaction, recognize motion earlier, label intent sooner, and remember interaction details more accurately.

Page generated in 0.0839 seconds