61 |
Design and control of a three degree-of-freedom planar parallel robotJoshi, Atul Ravindra January 2003 (has links)
No description available.
|
62 |
MARK II - A Biologically-Inspired Walking RobotMamrak, Justin 29 December 2008 (has links)
No description available.
|
63 |
Optimal Combination of Reduction Methods in Structural Mechanics and Selection of a Suitable Intermediate Dimension / Optimale Kombination von strukturmechanischen Modellreduktionsverfahren und Wahl einer geeigneten ZwischendimensionPaulke, Jan 19 August 2014 (has links) (PDF)
A two-step model order reduction method is investigated in order to overcome problems of certain one-step methods. Not only optimal combinations of one-step reductions are considered but also the selection of a suitable intermediate dimension (ID) is described. Several automated selection methods are presented and their application tested on a gear box model. The implementation is realized using a Matlab-based Software MORPACK. Several recommendations are given towards the selection of a suitable ID, and problems in Model Order Reduction (MOR) combinations are pointed out. A pseudo two-step is suggested to reduce the full system without any modal information. A new node selection approach is proposed to enhance the SEREP approximation of the system’s response for small reduced representations. / Mehrschrittverfahren der Modellreduktion werden untersucht, um spezielle Probleme konventioneller Einschrittverfahren zu lösen. Eine optimale Kombination von strukturmechanischen Reduktionsverfahren und die Auswahl einer geeigneten Zwischendimension wird untersucht. Dafür werden automatische Verfahren in Matlab implementiert, in die Software MORPACK integriert und anhand des Finite Elemente Modells eines Getriebegehäuses ausgewertet. Zur Auswahl der Zwischendimension werden Empfehlungen genannt und auf Probleme bei der Kombinationen bestimmter Reduktionsverfahren hingewiesen. Ein Pseudo- Zweischrittverfahren wird vorgestellt, welches eine Reduktion ohne Kenntnis der modalen Größen bei ähnlicher Genauigkeit im Vergleich zu modalen Unterraumverfahren durchführt. Für kleine Reduktionsdimensionen wird ein Knotenauswahlverfahren vorgeschlagen, um die Approximation des Frequenzganges durch die System Equivalent Reduction Expansion Process (SEREP)-Reduktion zu verbessern.
|
64 |
Optimal Combination of Reduction Methods in Structural Mechanics and Selection of a Suitable Intermediate Dimension: Optimal Combination of Reduction Methods in Structural Mechanics and Selection of a Suitable Intermediate DimensionPaulke, Jan 08 May 2014 (has links)
A two-step model order reduction method is investigated in order to overcome problems of certain one-step methods. Not only optimal combinations of one-step reductions are considered but also the selection of a suitable intermediate dimension (ID) is described. Several automated selection methods are presented and their application tested on a gear box model. The implementation is realized using a Matlab-based Software MORPACK. Several recommendations are given towards the selection of a suitable ID, and problems in Model Order Reduction (MOR) combinations are pointed out. A pseudo two-step is suggested to reduce the full system without any modal information. A new node selection approach is proposed to enhance the SEREP approximation of the system’s response for small reduced representations.:Contents
Kurzfassung..........................................................................................iv
Abstract.................................................................................................iv
Nomenclature........................................................................................ix
1 Introduction........................................................................................1
1.1 Motivation........................................................................................1
1.2 Objectives........................................................................................1
1.3 Outline of the Thesis........................................................................2
2 Theoretical Background.......................................................................3
2.1 Finite Element Method......................................................................3
2.1.1 Modal Analysis...............................................................................4
2.1.2 Frequency Response Function.......................................................4
2.2 Model Order Reduction.....................................................................5
2.3 Physical Subspace Reduction Methods.............................................7
2.3.1 Guyan Reduction...........................................................................7
2.3.2 Improved Reduced System Method...............................................8
2.4 Modal Subspace Reduction Methods...............................................10
2.4.1 Modal Reduction...........................................................................11
2.4.2 Exact Modal Reduction..................................................................11
2.4.3 System Equivalent Reduction Expansion Process.........................13
2.5 Krylov Subspace Reduction Methods...............................................14
2.6 Hybrid Subspace Reduction Methods..............................................15
2.6.1 Component Mode Synthesis........................................................16
2.6.2 Hybrid Exact Modal Reduction......................................................19
2.7 Model Correlation Methods.............................................................21
2.7.1 Normalized Relative Frequency Difference...................................21
2.7.2 Modified Modal Assurance Criterion.............................................22
2.7.3 Pseudo-Orthogonality Check.......................................................22
2.7.4 Comparison of Frequency Response Function.............................23
3 Selection of Active Degrees of Freedom............................................25
3.1 Non-Iterative Methods...................................................................26
3.1.1 Modal Kinetic Energy and Variants..............................................26
3.1.2 Driving Point Residue and Variants..............................................27
3.1.3 Eigenvector Component Product..................................................28
3.2 Iterative Reduction Methods...........................................................29
3.2.1 Effective Independence Distribution.............................................29
3.2.2 Mass-Weighted Effective Independence.......................................32
3.2.3 Variance Based Selection Method.................................................33
3.2.4 Singular Value Decomposition Based Selection Method................34
3.2.5 Stiffness-to-Mass Ratio Selection Method.....................................34
3.3 Iterative Expansion Methods...........................................................35
3.3.1 Modal-Geometrical Selection Criterion...........................................36
3.3.2 Triaxial Effective Independence Expansion...................................36
3.4 Measure of Goodness for Selected Active Set..................................39
3.4.1 Determinant and Rank of the Fisher Information Matrix................39
3.4.2 Condition Number of the Partitioned Modal Matrix........................40
3.4.3 Measured Energy per Mode..........................................................40
3.4.4 Root Mean Square Error of Pseudo-Orthogonality Check.............41
3.4.5 Eigenvalue Comparison................................................................41
4 Two-Step Reduction in MORPACK.......................................................42
4.1 Structure of MORPACK.....................................................................42
4.2 Selection of an Intermediate Dimension.........................................43
4.2.1 Intermediate Dimension Requirements........................................44
4.2.2 Implemented Selection Methods..................................................45
4.2.3 Recommended Selection of an Intermediate Dimension...............48
4.3 Combination of Reduction Methods.................................................49
4.3.1 Overview of All Candidates..........................................................50
4.3.2 Combinations with Modal Information.........................................54
4.3.3 Combinations without Modal Information....................................54
5 Applications........................................................................................57
5.1 Gear Box Model...............................................................................57
5.2 Selection of Additional Active Nodes................................................58
5.3 Optimal Intermediate Dimension......................................................64
5.4 Two-Step Model Order Reduction Results........................................66
5.5 Comparison to One-Step Model Order Reduction Methods..............70
5.6 Comparison to One-Step Hybrid Model Order Reduction Methods...72
5.7 Proposal of a New Approach for Additional Node Selection..............73
6 Summary and Conclusions...................................................................77
7 Zusammenfassung und Ausblick..........................................................79
Bibliography............................................................................................81
List of Tables..........................................................................................86
List of Figures.........................................................................................88
A Appendix.............................................................................................89
A.1 Results of Two-Step Model Order Reduction.....................................89
A.2 Data CD............................................................................................96 / Mehrschrittverfahren der Modellreduktion werden untersucht, um spezielle Probleme konventioneller Einschrittverfahren zu lösen. Eine optimale Kombination von strukturmechanischen Reduktionsverfahren und die Auswahl einer geeigneten Zwischendimension wird untersucht. Dafür werden automatische Verfahren in Matlab implementiert, in die Software MORPACK integriert und anhand des Finite Elemente Modells eines Getriebegehäuses ausgewertet. Zur Auswahl der Zwischendimension werden Empfehlungen genannt und auf Probleme bei der Kombinationen bestimmter Reduktionsverfahren hingewiesen. Ein Pseudo- Zweischrittverfahren wird vorgestellt, welches eine Reduktion ohne Kenntnis der modalen Größen bei ähnlicher Genauigkeit im Vergleich zu modalen Unterraumverfahren durchführt. Für kleine Reduktionsdimensionen wird ein Knotenauswahlverfahren vorgeschlagen, um die Approximation des Frequenzganges durch die System Equivalent Reduction Expansion Process (SEREP)-Reduktion zu verbessern.:Contents
Kurzfassung..........................................................................................iv
Abstract.................................................................................................iv
Nomenclature........................................................................................ix
1 Introduction........................................................................................1
1.1 Motivation........................................................................................1
1.2 Objectives........................................................................................1
1.3 Outline of the Thesis........................................................................2
2 Theoretical Background.......................................................................3
2.1 Finite Element Method......................................................................3
2.1.1 Modal Analysis...............................................................................4
2.1.2 Frequency Response Function.......................................................4
2.2 Model Order Reduction.....................................................................5
2.3 Physical Subspace Reduction Methods.............................................7
2.3.1 Guyan Reduction...........................................................................7
2.3.2 Improved Reduced System Method...............................................8
2.4 Modal Subspace Reduction Methods...............................................10
2.4.1 Modal Reduction...........................................................................11
2.4.2 Exact Modal Reduction..................................................................11
2.4.3 System Equivalent Reduction Expansion Process.........................13
2.5 Krylov Subspace Reduction Methods...............................................14
2.6 Hybrid Subspace Reduction Methods..............................................15
2.6.1 Component Mode Synthesis........................................................16
2.6.2 Hybrid Exact Modal Reduction......................................................19
2.7 Model Correlation Methods.............................................................21
2.7.1 Normalized Relative Frequency Difference...................................21
2.7.2 Modified Modal Assurance Criterion.............................................22
2.7.3 Pseudo-Orthogonality Check.......................................................22
2.7.4 Comparison of Frequency Response Function.............................23
3 Selection of Active Degrees of Freedom............................................25
3.1 Non-Iterative Methods...................................................................26
3.1.1 Modal Kinetic Energy and Variants..............................................26
3.1.2 Driving Point Residue and Variants..............................................27
3.1.3 Eigenvector Component Product..................................................28
3.2 Iterative Reduction Methods...........................................................29
3.2.1 Effective Independence Distribution.............................................29
3.2.2 Mass-Weighted Effective Independence.......................................32
3.2.3 Variance Based Selection Method.................................................33
3.2.4 Singular Value Decomposition Based Selection Method................34
3.2.5 Stiffness-to-Mass Ratio Selection Method.....................................34
3.3 Iterative Expansion Methods...........................................................35
3.3.1 Modal-Geometrical Selection Criterion...........................................36
3.3.2 Triaxial Effective Independence Expansion...................................36
3.4 Measure of Goodness for Selected Active Set..................................39
3.4.1 Determinant and Rank of the Fisher Information Matrix................39
3.4.2 Condition Number of the Partitioned Modal Matrix........................40
3.4.3 Measured Energy per Mode..........................................................40
3.4.4 Root Mean Square Error of Pseudo-Orthogonality Check.............41
3.4.5 Eigenvalue Comparison................................................................41
4 Two-Step Reduction in MORPACK.......................................................42
4.1 Structure of MORPACK.....................................................................42
4.2 Selection of an Intermediate Dimension.........................................43
4.2.1 Intermediate Dimension Requirements........................................44
4.2.2 Implemented Selection Methods..................................................45
4.2.3 Recommended Selection of an Intermediate Dimension...............48
4.3 Combination of Reduction Methods.................................................49
4.3.1 Overview of All Candidates..........................................................50
4.3.2 Combinations with Modal Information.........................................54
4.3.3 Combinations without Modal Information....................................54
5 Applications........................................................................................57
5.1 Gear Box Model...............................................................................57
5.2 Selection of Additional Active Nodes................................................58
5.3 Optimal Intermediate Dimension......................................................64
5.4 Two-Step Model Order Reduction Results........................................66
5.5 Comparison to One-Step Model Order Reduction Methods..............70
5.6 Comparison to One-Step Hybrid Model Order Reduction Methods...72
5.7 Proposal of a New Approach for Additional Node Selection..............73
6 Summary and Conclusions...................................................................77
7 Zusammenfassung und Ausblick..........................................................79
Bibliography............................................................................................81
List of Tables..........................................................................................86
List of Figures.........................................................................................88
A Appendix.............................................................................................89
A.1 Results of Two-Step Model Order Reduction.....................................89
A.2 Data CD............................................................................................96
|
65 |
Design of Automatic System in Ice-cream ShopGuo, Yijie, Shen, Yaowen January 2018 (has links)
The focus of this work was to design, develop and implement an automatic scoop system for an ice-cream shop. The main contribution covers programming of PLC and Arduino, LabVIEW, mechanical structure design of scoop, assembly line, timing belt and robotics arm and stress analysis of the structures in the system. This work solved the problem that the scooping ice-cream shop employees need to be supported by technology in their hard work and to improve the efficiency of the ice-cream disposal. The scoop is designed as a new type solving the stress issue. The control system was programmed to use robotics arm to scoop ice-cream, which enhanced the work efficiency. stress and modal analysis was done for ensure the safety of the system. Testing and validation of the system was carried out and results show it worked properly.
|
66 |
Systematic Synthesis And Analysis Of Multi-DOF Toggle Mechanisms For Electrical SwitchesDeb, Manan 01 1900 (has links) (PDF)
Electrical switches are ubiquitous. Performance requirement for a switch is stringent. The operating mechanism mostly decides the performance of an electromechanical switch. However, design of such mechanisms, which involve discontinuous motions, is not much addressed in literature. The present work proposes a systematic procedure to design and analyze toggle based switching mechanisms.
The work defined the toggle phenomenon rigorously, and, based on the behaviour of the toggles, provided a classification scheme for the switch mechanisms. The existing switches fall in two major categories viz., single-toggle and double-toggle switches. The double toggle mechanism is more suitable for high power breaking as it can isolate the system’s behaviour from the operator’s behaviour. The kinematic and geometric attributes of the operating mechanism which affect the toggle sequence and timings have been identified. A systematic simulation based study has been performed to identify the influence of different kinematic and dynamic parameters on the functionality of a double toggle switching mechanism. The influence of the variable moment of inertia and mechanism singularities arising out of introduction of the four bar sub chain on the performance of the system have been studied in detail. It is observed that the performance of the double toggle systems is less susceptible, though not immune to the user behaviour; in extreme scenarios the switching performance could become erratic. The use of an additional spring in an existing system enhanced the system performance; but, connecting the main spring with the coupler link altered the system performance more dramatically. Thus it established that the influence of the kinematic configuration on the performance of a switching mechanism is more pronounced than the dynamic characteristics of a comparable system.
For the ab initio design of double toggle switching mechanisms, necessary structural criteria for a mechanism to exhibit double toggle phenomenon have been identified and verified with various 2 d.o.f. systems. It is also established that any double toggle mechanism cannot be used directly as a switching mechanism; the link dimensions, link arrangements and the stopper locations have to be chosen properly. Towards that end, three necessary kinematic criteria for a switching mechanism are identified. A few mechanisms which satisfy all structural and kinematic criteria are identified; the switching and toggle behaviour of these mechanisms are examined through simulations using Pro/Mechanism. Finally, considering all the conditions a
is constructed with consideration of mass and geometric shape of the links. Thus, it established that the proposed methodology can systematically generate novel, structurally distinct electrical switches.
|
67 |
Development of a Novel Method for Automotive On-board Transmitter EMC Immunity Testing / Utveckling av en Immunitetsmetod för Elektromagnetisk Kompatibilitetstestning vid Simulering av Strålningskälla i FordonHolm, Ludvig January 2023 (has links)
As the automotive industry advances through technology integration, components are designed to operate at increasingly higher frequencies. Consequently, there will be an increasing demand for automotive electromagnetic compatibility (EMC) testing. Testing and certification institutes, such as RISE Research Institutes of Sweden AB, thus face an urgent need to develop innovative solutions that can effectively address this growing demand. This master thesis work concerns one EMC test method in particular - the On-board Transmitter (OBT). This is a test which mainly serves to test the immunity of vehicles to electromagnetic disturbances originating from hand-held devices. The conventional test is performed in an anechoic chamber and the methodology requires a substantial amount of time. The intent with this work is thus to evaluate the potential of a novel OBT method where the concept of a reverberating chamber is applied inside the vehicle compartment. Initially, the conventional method was examined from two mock-ups of idealized cases, and it was observed that the electromagnetic field in the near-field region of the transmitter is highly erratic. It was also concluded that the test setup is particularly sensitive to the polarization of the transmitter. With these findings in mind, the accuracy of the conventional method was deemed questionable. Evaluation of the proposed Reverberating On-board Transmitter (ROBT) method proved that the electromagnetic environment inside the vehicle did not resemble a perfect reverberation chamber. Which was expected as the absorbing material such as seating and upholstery likely prevents a field distribution similar to that in a reverberation chamber. Still, the intent of the project was to find a test method superior to the conventional method and it can be stated that the ROBT method is an adequate option due to its capacity to expose the electronics to isotropic radiation. This was found from two measures which this thesis introduces: expected isotropicity eiso, a relative measure of the electric field components and DDoF, a quantification of the spatial distribution inside a reverberation chamber. / EMC VERifiering av Autonoma fordon i modväxlad kammare (EMCVERA)
|
68 |
Path Planning and Collision Avoidance for a 6-DOF Manipulator : A Comparative Study of Path Planning and Collision Avoidance Algorithms for the Saab Seaeye eM1-7 Electric ManipulatorOhlander, Hampus, Johnson, David January 2024 (has links)
This project investigated the implementation and evaluation of various collision-free path planning algorithms for the Saab Seaeye eM1-7 6-DOF Electric Manipulator (eManip). The primary goal was to enhance the autonomous performance of the eManip by integrating efficient path planning methodologies, ultimately ensuring the avoidance of collisions and manipulator singularities during underwater operations. Key algorithms examined included the Rapidly-exploring Random Trees (RRT) algorithm and its enhanced variants. Through simulation tests in MATLAB and Gazebo, metrics such as planning time, path length, and the number of explored nodes were evaluated. The results highlighted the robustness of Goal-biased and Bidirectional RRT* (Gb-Bd-RRT*), which consistently performed well across various environments. The research also highlighted the correlation between algorithm effectiveness and specific task attributes, emphasizing their adaptability to complex environments. This research contributes valuable insights into the effectiveness of path planning algorithms, informing the selection and integration of viable strategies for 6-DOF robotic manipulators.
|
69 |
Υπολογιστική ανάλυση εξωτερικής βλητικής. Διερεύνηση αεροδυναμικής συμπεριφοράς αξονοσυμμετρικών βλημάτων σε ελεύθερη ατμοσφαιρική πτήσηΓκριτζάπης, Δημήτρης 01 December 2009 (has links)
Η σύγχρονη επιστήμη της εξωτερικής βλητικής έχει εξελιχθεί ως εξειδικευμένος κλάδος της δυναμικής των στερεών σωμάτων, που κινούνται υπό την επίδραση της βαρύτητας και των αεροδυναμικών δυνάμεων και ροπών.
Στην παρούσα διατριβή μελετάται η προσομοίωση του δυναμικού μοντέλου ατμοσφαιρικής τροχιάς των 6 βαθμών ελευθερίας (6-DOF), εφαρμόζεται για ακριβή πρόβλεψη τροχιών από διάφορες γωνίες βολής σε μικρά και σε μεγάλα βεληνεκή και γίνεται σύγκριση με το γραμμικό μοντέλο τροχιάς, για περιστρεφόμενα ή μη περιστρεφόμενα βλήματα και σφαίρες λαμβάνοντας υπόψη τον αριθμό Mach και τις μεταβολές της συνολικής γωνίας εκτροπής σε σχέση με τους μεταβλητούς και σταθερούς αεροδυναμικούς συντελεστές.
Επίσης, μελετώνται τα δύο είδη ευστάθειας του βλήματος: η στατική ή γυροσκοπική ευστάθεια που αφορά τη στατική θέση ισορροπίας του βλήματος και η δυναμική ευστάθεια που αφορά την κινητική του κατάσταση.
Η λύση της διαφορικής εξίσωσης για ολοκληρωμένη ή απλοποιημένη κίνηση περιστρεφόμενων αξονοσυμμετρικών βλημάτων, μπορεί να μας περιγράψει την ακρογωνιαία φύση της επικυκλικής κίνησης των βλημάτων.
Τέλος, αναπτύσσεται νέα σχέση υπολογισμού της επίδρασης του φαινόμενου της αεροδυναμικής αναπήδησης της ταχύτητας για περιστρεφόμενα βλήματα τα οποία πυροδοτούνται οριζόντια από μεταβλητές γωνίες, μέσα από ιπτάμενο όχημα (ελικόπτερο, πολεμικό αεροπλάνο). / On the battlefield, it is well known that the target effects using artillery systems diminish exponentially with the number of rounds fired at a particular target. To maximize target effects, rounds must be designed to hit a target with a minimum number of rounds that impact the target in rapid succession. The modern science of the exterior ballistics has evolved as a specialized branch of the dynamics of rigid bodies, moving under the influence of gravitational and aerodynamic forces and moments.
The six degrees of freedom (6-DOF) simulation flight dynamics model is applied for the accurate prediction of short and long-range trajectories of high and low fin spin-stabilized projectiles and small bullets. Variable coefficients of aerodynamic forces, moments and Magnus effects are taken into account depending on Mach number and total angle of attack variations.
The above analysis is compared to the modified linear modified simulation model for rapid trajectory predictions and high accuracy impact point computations for constant and variable aerodynamic coefficients is also applied for the accurate prediction of short and long range trajectories.
The computational results of the proposed synthesized analysis give satisfactory agreement with other technical data and recognized exterior atmospheric projectile flight investigations. The variable modified atmospheric flight model can be further coupled to a suitable trajectory tracking control system for current and future control actions applied to projectiles for minimizing the estimated error to target impact area.
Epicyclic motion and gyroscopic stability analysis are also examined for spinning and non-spinning projectiles. A new engineering correlation is proposed for the flat-fire disturbance due to aerodynamic jump performance firing at different angles which relative to the helicopter’s flight path motion. The computational results of the generalized aerodynamic jump formula are verified compared to McCoy’s recognized simulation modelling.
|
70 |
New modelling and simulation methods to support clean marine propulsionGrant, Michael 24 August 2021 (has links)
The marine industry has increased its adoption of pure-electric, diesel-electric, and other non-traditional propulsion architectures to reduce ship emissions and fuel consumption. While these technologies can improve performance, the design of a propulsion system becomes challenging, given that no single technology is superior across all vessel types. Furthermore, even identical ships with different operating patterns may be better suited to different propulsion technologies. Addressing this problem, previous research has shown that if key elements of a vessel's operational pro file are known, simulation and optimization techniques can be employed to evaluate multiple propulsion architectures and result in a better propulsion system design and energy management strategy for a given vessel. While these studies have demonstrated the performance improvements that can be achieved from optimizing clean marine propulsion systems, they rely on vessel operational profiles obtained through physical measurement from existing ships. From a practical point of view, the optimization of a vessel's propulsion system needs to occur prior to a vessel's construction and thus precludes physical measurement. To this end, this thesis introduces a marine simulation platform for producing vessel operational profiles which enable propulsion system optimization during the ship design process. Core subsystem modules are constructed for simulating ship motions in 3 degrees of freedom and result in operational profile time-series, including propulsion power. Data is acquired from a benchmark vessel to validate the simulation. Results show the proposed approach strikes a balance between speed, accuracy, and complexity compared with other available tools. / Graduate
|
Page generated in 0.1226 seconds