• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 1
  • Tagged with
  • 18
  • 18
  • 10
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mississippi State University EcoCAR Extended Range Electric Vehicle Thermal System Design, Integration, Optimization, and Validation

Barr, Michael Lynn 13 December 2014 (has links)
A continued increase in government regulations for fuel economy and emissions has driven automakers and suppliers to take a large interest in hybridizing vehicles to help them achieve the new requirements. This increased vehicle electrification has resulted in unconventional vehicle cooling requirements. Electrified vehicle batteries and motors operate under different temperature regimes and cooling loads change drastically with driving styles and conditions. A variable-load cooling system was designed, implemented and tested on the Mississippi State University EcoCAR extended-range electric vehicle (E-REV). This system, utilizing variable flow pumps and variable speed fans, was shown to successfully cool the electronic components under the worst-case design conditions, while providing low energy consumption under normal conditions. When compared to a baseline system utilizing no variable duty cycle components, the variable cooling power system reduced energy consumption during testing both on-road at MSU’s facility and on-road at General Motors proving grounds in Michigan.
2

Ammonia Production from a Non-Grid Connected Floating Offshore Wind-Farm: A System-Level Techno-Economic Review

Parmar, Vismay V. 19 March 2019 (has links) (PDF)
According to U.S. Department of Energy, offshore wind energy has the potential to generate 7,200 TWh of energy annually, which is nearly twice the current annual energy consumption in the United States. With technical advances in the offshore wind industry, particularly in the floating platforms, windfarms are pushing further into the ocean. This creates new engineering challenges for transmission of energy from offshore site to onshore. One possible solution is to convert the energy produced into chemical energy of ammonia, which was investigated by Dr. Eric Morgan. In his doctoral dissertation, he assessed the technical requirements and economics of a 300 tons/day capacity ammonia plant powered by offshore wind. However, in his dissertation, one of the assumptions was connection to the grid which provided auxiliary power to keep the ammonia plant operational and produce at rated capacity. It also allowed selling of excess power to the grid in the scenario of excess power production by wind farm during high winds. This thesis explores the technical and economical feasibility of a similar system, except that the ammonia plant will be on a plantship and there is no connection to the grid. This creates a challenge as the ammonia synthesis plant must operate between 65-100% loads. Thus, the concept of multiple mini-ammonia plants is used to address the scenario of wind energy production at less than rated power. This will allow operation of one or more mini-ammonia plant (corresponding to the available energy from offshore wind). In the event of wind speed lower than the cutoff wind speed for the turbine, the ammonia plant will use the produced ammonia as fuel, with the help of a gas turbine running on either Brayton cycle or combined cycle, to keep the plant idling. It will maintain the reaction conditions of the synthesis chamber and will not produce any ammonia. This is an important step as it takes days to reach the reaction conditions to start ammonia production again after shutting down due to unavailability of energy at low winds. Thus, at any windspeed, a mini-ammonia plant would either idle or operate between 65-100% load. This model will be used to simulate the total energy consumption, total energy captured by the wind farm, and the total ammonia produced. This will further help in assessing the final cost of producing, transporting, and consuming ammonia as fuel and thereby provide a better understanding of the feasibility of implementing this technology. According to U.S. Department of Energy, offshore wind energy has the potential to generate 7,200 TWh of energy annually, which is nearly twice the current annual energy consumption in the United States. With technical advances in the offshore wind industry, particularly in the floating platforms, windfarms are pushing further into the ocean. This creates new engineering challenges for transmission of energy from offshore site to onshore. One possible solution is to convert the energy produced into chemical energy of ammonia, which was investigated by Dr. Eric Morgan. In his doctoral dissertation, he assessed the technical requirements and economics of a 300 tons/day capacity ammonia plant powered by offshore wind. However, in his dissertation, one of the assumptions was connection to the grid which provided auxiliary power to keep the ammonia plant operational and produce at rated capacity. It also allowed selling of excess power to the grid in the scenario of excess power production by wind farm during high winds.\\ \par This thesis explores the technical and economical feasibility of a similar system, except that the ammonia plant will be on a plantship and there is no connection to the grid. This creates a challenge as the ammonia synthesis plant must operate between 65-100\% loads. Thus, the concept of multiple mini-ammonia plants is used to address the scenario of wind energy production at less than rated power. This will allow operation of one or more mini-ammonia plant (corresponding to the available energy from offshore wind). In the event of wind speed lower than the cutoff wind speed for the turbine, the ammonia plant will use the produced ammonia as fuel, with the help of a gas turbine running on either Brayton cycle or combined cycle, to keep the plant idling. It will maintain the reaction conditions of the synthesis chamber and will not produce any ammonia. This is an important step as it takes days to reach the reaction conditions to start ammonia production again after shutting down due to unavailability of energy at low winds. Thus, at any windspeed, a mini-ammonia plant would either idle or operate between 65-100\% load. This model will be used to simulate the total energy consumption, total energy captured by the wind farm, and the total ammonia produced. This will further help in assessing the final cost of producing, transporting, and consuming ammonia as fuel and thereby provide a better understanding of the feasibility of implementing this technology.
3

A Bio-Inspired Multi-Agent System Framework for Real-Time Load Management in All-Electric Ship Power Systems

Feng, Xianyong 2012 May 1900 (has links)
All-electric ship power systems have limited generation capacity and finite rotating inertia compared with large power systems. Moreover, all-electric ship power systems include large portions of nonlinear loads and dynamic loads relative to the total power capacity, which may significantly reduce the stability margin. Pulse loads and other high-energy weapon loads in the system draw a large amount of power intermittently, which may cause significant frequency and voltage oscillations in the system. Thus, an effective real-time load management technique is needed to dynamically balance the load and generation to operate the system normally. Multi-agent systems, inspired by biological phenomena, aim to cooperatively achieve system objectives that are difficult to reach by a single agent or centralized controller. Since power systems include various electrical components with different dynamical systems, conventional homogeneous multi-agent system cooperative controllers have difficulties solving the real-time load management problem with heterogeneous agents. In this dissertation, a novel heterogeneous multi-agent system cooperative control methodology is presented based on artificial potential functions and reduced-order agent models to cooperatively achieve real-time load management for all-electric ship power systems. The technique integrates high-order system dynamics and various kinds of operational constraints into the multi-agent system, which improves the accuracy of the cooperative controller. The multi-agent system includes a MVAC multiagent system and a DC zone multi-agent, which are coordinated by an AC-DC communication agent. The developed multi-agent system framework and the notional all-electric ship power system model were simulated in PSCAD software. Case studies and performance analysis of the MVAC multi-agent system and the DC zone multi-agent system were performed. The simulation results indicated that propulsion loads and pulse loads can be successfully coordinated to reduce the impact of pulse loads on the power quality of all-electric ship power systems. Further, the switch status or power set-point of loads in DC zones can be optimally determined to dynamically balance the generation and load while satisfying the operational constraints of the system and considering load priorities. The method has great potential to be extended to other isolated power systems, such as microgrids.
4

Topics in sustainable transportation : opportunities for long-term plug-in electric vehicle use and non-motorized travel / Opportunities for long-term plug-in electric vehicle use and non-motorized travel

Khan, Mobashwir 25 June 2012 (has links)
In the first part of this thesis, GPS data for a year's worth of travel by 255 Seattle households is used to illuminate how plug-in electric vehicles (PEVs) can match household needs. Data from all vehicles in each of these households were analyzed at a disaggregate level primarily to determine whether each household would be able to adopt various types of PEVs without significant issues in meeting travel needs. The results suggest that a battery-electric vehicle (BEV) with 100 miles of all-electric range (AER) should meet the needs of 50% of Seattle's one-vehicle households and the needs of 80% of the multiple-vehicle households, when households charge just once a day and rely on another vehicle or mode just 4 days a year. Moreover, the average one-vehicle Seattle household uses each vehicle 23 miles per day and should be able to electrify close to 80% of its miles, while meeting all its travel needs, using a plug-in hybrid electric vehicle with 40-mile all-electric-range (PHEV40). Households owning two or more vehicles can electrify 50 to 70% of their total household miles using a PHEV40, depending on how they assign the vehicle across drivers each day. Cost comparisons between the average single-vehicle household owning a Chevrolet Cruze versus a Volt PHEV suggest that, when gas prices are $3.50 per gallon and electricity rates are 11.2 ct per kWh, the Volt will save the household $535 per year in energy/fuel costs. Similarly, the Toyota Prius PHEV will provide an annual savings of $538 per year over the Corolla. The results developed in this research provide valuable insights into the role of AER on PEV adoption feasibility and operating cost differences. The second part of this thesis uses detailed travel data from the Seattle metropolitan area to evaluate the effects of built-environment variables on the use of non-motorized (bike + walk) modes of transport. Several model specifications are used to understand and explain non-motorized travel behavior in terms of household, person and built-environment variables. Land-use measures like land-use mix, density, and accessibility indices were also created and incorporated as covariates to appreciate their marginal effects. The models include a count model for household vehicle ownership levels, a binary choice model for the decision to stay within versus departing one's origin zone (i.e., intra- versus inter-zonal trip-making), discrete choice models for destination choices and mode choices, and a zero-inflated negative binomial model for non-motorized trip counts per household. The mode and destination choice models were estimated separately for interzonal and intrazonal trips and for each of three different trip types (home-based work, home-based non-work, and non-home-based), to recognize the distinct behaviors at play when making shorter versus longer trips and different types of trips. This comprehensive set of models highlights how built-environment variables -- like the number and type of intersections present around one's origin and destination, the number of bus stops available within a certain radius, household and jobs densities, parking prices, land use mixing, and walk-based accessibility -- can significantly shape the pattern of one's non-motorized movement. The results underscore the importance of street connectivity (quantified as the number of 3-way and 4-way intersections in a half-mile radius), higher bus stop density, and greater non-motorized access in promoting lower vehicle ownership levels (after controlling for household size, income, neighborhood density and so forth), higher rates of non-motorized trip generation (per day), and higher likelihoods of non-motorized mode choices. Destination choices are also important for mode choices, and local trips lend themselves to more non-motorized options than more distance trips. Intrazonal trip likelihoods rose with higher street connectivity, transit availability, and land use mixing. For example, the results suggest that an increase in the land-use mix index by 10% would increase the probability of choosing to travel within the zone by 12%. As expected destinations with greater population and job numbers (attraction), located closer (to a trip's origin), offering lower parking prices and greater transit availability, were more popular. Interestingly, those with more dead ends (or cul de sacs) attracted fewer trips. Among all built environment variables tested, street structure offered the greatest predictive benefits, alongside jobs and population (densities and counts). For example, a 1-percent increase in the average number of 4-way intersections within a quarter-mile radius of the sampled households is estimated to increase the average household's non-motorized trip generation by 0.36%. A one-standard-deviation increase in the (mean) number of 4-way intersections at the average trip origin is estimated to increase the probabilities of bike and walk modes for interzonal home-based-work trips by 57% and 30%, respectively. In contrast, increasing the number of dead-ends at the origin by one standard deviation is estimated to decrease the probability of biking for both home-based-work and non-work trips by ~30%. These results underscore the importance of network density and connectivity for promoting non-motorized activity. The regional non-motorized travel (NMT) accessibility index ( derived from the logsum of a destination choice model) also offers strong predictive value, with NMT counts rising by by 7% following a 1% increase in this variable -- if the drive alone accessibility index is held constant (along with all other variables, evaluated at their means). Similarly, household vehicle ownership is expected to fall by 0.36% with each percentage point increase in the NMT accessibility index, and walk probabilities rise by 26.9% following a one standard deviation increase in this index at the destination zone. A traveler's socio-economic attributes also have important impacts on NMT choices, with demographics typically serving as much stronger predictors of NMT choices than the built environment. For example, the elasticity of NMT trip generation with respect to a household's vehicle ownership count is estimated to be -0.52. Males and tose with drivers licenses are estimated to have 17% and 39% lower probabilities, respectively, of staying within their origin zone, relative to women and unlicensed adults (ceteris paribus). Non-motorized model choices also exhibit strong sensitivity to age and gender settings. Several of the regional variables developed in this work, and then used in the predictive models, are highly correlated. For example, bus stop and intersection densities are very high in job- and population-dense areas. For example, the correlation co-efficients between the bus stop density and 4-way intersection density is 0.805, between NMT and SOV AIs is 0.830 and between 4-way intersection density and NMT AI is 0.627. As a result, many variables are proxying for and/or competing with each other, as is common in models with many land use covariates, and it is difficult to quantify the exact impact of each of these variables. Nonetheless the models developed here provide valuable insight into the role of several new variables on non-motorized travel choices. Some final case study applications, moving all households to the downtown area (that has high accessibility indices and density), illustrate to what extent these revealed-data-based models will predict shifts toward and away from non-motorized trip-making. It appears that average household vehicle ownership level reduces to 0.57 from 1.89 (a 70% reduction) and average two-day NMT trip generation increases to 5.92 from 0.83 (an increase of more than 6 times). Such ranges are valuable to have in mind, when communities seek to reduce reliance on motorized travel by defining new built-environment contexts. / text
5

On-ship Power Management and Voyage Planning Interaction

Frisk, Mikael January 2015 (has links)
Voyage planning methods have advanced significantly in recent years to take advantage of the increasingly available computing power. With the aid of detailed weather predictions it is now possible to decide a route that is optimized with respect to some criterion. With the introduction of so called All Electric Ships; ships with diesel electric propulsion, varying the power production in order to adjust the propulsion has become easier. Incorporating a power management system with the voyage planning software on a ship allows for different techniques to reduce fuel consumption. In this thesis, three different approaches are developed, compared and combined. The first method handles the task of how to optimally share a load demand across a set of generators. The second is performing power production scheduling with respect to engine efficiencies, and finally in the third the potential in energy storage integration with the power management system is investigated. From the results, it is argued that the largest potential lies in the first approach where large fuel savings can be made without any large risk. The second approach shows potential for fuel reduction but this however is found to be heavily dependent on weather predictions and accuracy of the used models. Regarding energy storage it is found that while it is not economically feasible to increase the fuel efficiency, energy storage can be used to handle load transients and fulfil power redundancy requirements.
6

Subsystem architecture sizing and analysis for aircraft conceptual design

Chakraborty, Imon 07 January 2016 (has links)
In traditional aircraft conceptual design, subsystems are largely accounted for implicitly based on available historical data and trends. Such an approach has limitations when novel subsystem architectures such as More Electric or All Electric aircraft are considered, since historical data regarding such architectures is either limited or non-existent. In such cases, the incorporation of more thorough and explicit consideration of the aircraft subsystems into the conceptual design phase is warranted. The first objective of this dissertation is to integrate subsystem sizing and analysis methods that are suitable for the early design phases with the traditional aircraft sizing methodology. The goal is to facilitate the assessment subsystem architecture performance with respect to vehicle and mission level metrics. The second objective is to investigate how the performance of different subsystem architectures varies with aircraft size. The third and final objective is to assess the sensitivity of architecture performance to epistemic and technological uncertainty. These objectives are pursued through the development of an integrated sizing and analysis environment where the subsystems are sized in parallel with the aircraft itself using subsystem models that are computationally inexpensive and do not require detailed aircraft definition. The effects of subsystem mass, secondary power requirements, and drag increments are propagated to the mission performance analysis following which the vehicle and subsystems are re-sized. A number of experiments are performed to first test the capabilities of the developed environment and subsequently assess the performance of numerous subsystem architectures and the sensitivity of select architectures to epistemic and technological uncertainty.
7

Elektrifierad flygtrafik mellan Stockholm och Visby : Elflygets potential ur ett teknik- och infrastrukturperspektiv / Electrified air traffic between Stockholm and Visby : The potential of electric flight from a technology and infrastructure perspective

Appelblom, Henrik, Hansson, Robin January 2020 (has links)
Dagens samhälle har utvecklats till ett stort globalt system där människan fått en signifikant påverkan på klimatet och miljön. För att nå målet i Parisavtalet är det många sektorer som behöver ställa om sina verksamheter till att bli hållbara. Det gäller i allra högsta grad flygsektorn som har stora utmaningar framför sig när det gäller att minska sitt klimatavtryck. En av möjligheterna för att väsentligt minska flygets klimatpåverkan är att övergå till flygplan som drivs med hjälp av batterier istället för fossila bränslen.I det här projektet undersöks om de tekniska och infrastrukturmässiga förutsättningarna finns för att elflyg ska kunna ersätta den befintliga flygtrafiken mellan Stockholm och Visby och när i tiden en sådan förändring kan ske. Litteraturstudier och intervjuer har använts för att utforska det nuvarande kunskapsläget som är relevant för elflyg inom batteriteknik, elmotorer, aerodynamik samt infrastruktur på de relevanta flygplatserna. Med den utgångspunkten har en matematisk modell använts för att studera om de rådande tekniska förutsättningarna är tillräckliga eller om förbättringar kommer krävas. Det som framkom var att det i teorin är möjligt att tillverka ett elflygplan som kan flyga hela sträckan med befintlig teknik men att utveckling av både batteriteknik och aerodynamik sannolikt kommer krävas när andra aspekter vägs in. Infrastrukturen på flygplatserna är dessutom inte anpassade för elflyg i dagsläget, vilket leder till att det i ett optimistiskt scenario kommer gå att elektrifiera flygtrafiken mellan Stockholm och Visby inom 10 år. / Today's society has evolved into a large global system where people have a significant impact on the climate and the environment. To achieve the goal of the Paris Agreement, many sectors need to change their business to become sustainable. This is very much the case for the aviation sector, which has major challenges ahead when it comes to reducing its climate footprint. One of the opportunities to significantly reduce the climate impact of aviation is to switch to aircraft powered by batteries instead of fossil fuels. This project examines whether the technical and infrastructure conditions are in place for electric aircraft to replace the existing air traffic between Stockholm and Visby and when such a change can occur in time. Literature studies and interviews have been used to explore the current state of knowledge relevant to electric aviation within battery technology, electric motors, aerodynamics and infrastructure at the relevant airports. Based on this, a mathematical model has been used to study whether the current technical conditions are sufficient or if improvements will be required. What emerged was that, in theory, it is possible to produce an electric aircraft that can fly the entire distance with existing technology, but that development of both battery technology and aerodynamics is likely to be required when other aspects are taken into account. The infrastructure at the airports is also not adapted for electric flights yet, which means that in an optimistic scenario it will take up to 10 years before air traffic can be fully electrified between Stockholm and Visby.
8

Analysis of Aircraft Power Systems, Including System Modeling and Energy Optimization, with Predictions of Future Aircraft Development

Alexander, Richard 14 August 2018 (has links)
No description available.
9

Thermal-electrical co-simulation of shipboard integrated power systems on an all-electric ship

Pruske, Matthew Andrew 2009 August 1900 (has links)
The goal of the work reported herein has been to model aspects of the electrical distribution system of an all-electric ship (AES) and to couple electrical load behavior with the thermal management network aboard the ship. The development of a thermally dependent electrical network has built upon an in-house thermal management simulation environment to replace the existing steady state heat loads with dynamic, thermally dependent, electrical heat loads. Quantifying the close relationship between thermal and electrical systems is of fundamental importance in a large, integrated system like the AES. This in-house thermal management environment, called the Dynamic Thermal Modeling and Simulation (DTMS) framework, provided the fundamental capabilities for modeling thermal systems and subsystems relevant to the AES. The motivation behind the initial work on DTMS was to understand the dynamics of thermal management aboard the ship. The first version, developed in 2007, captured the fundamental aspects of system-level thermal management while maintaining modularity and allowing for further development into other energy domains. The reconfigurable nature of the DTMS framework allowed for the expansion into the electrical domain with the creation of an electrical distribution network in support of thermal simulations. The dynamics of the electrical distribution system of the AES were captured using reconfigurable and physics-based circuit elements that allow for thermal feedback to affect the behavior of the system. Following the creation of the electrical network, subsystems and systems were created to simulate electrical distribution. Then, again using the modularity features of DTMS, a thermal resistive heat flow network was created to capture the transient behavior of heat flow from the electrical network to the existing thermal management framework. This network provides the intimate link between the thermal management framework and the electrical distribution system. Finally, the three frameworks (electrical, thermal resistive, and thermal management) were combined to quantify the impact that each system has relative to system-level operation. Simulations provide an indication of the unlimited configurations and potential design space a user of DTMS can explore to explore the design of an AES. / text
10

Vertical Axis Wind Turbines : Electrical System and Experimental Results

Kjellin, Jon January 2012 (has links)
The wind power research at the division of Electricity at Uppsala University is aimed towards increased understanding of vertical axis wind turbines. The considered type of wind turbine is an H-rotor with a directly driven synchronous generator operating at variable speed. The experimental work presented in this thesis comprises investigation of three vertical axis wind turbines of different design and size. The electrical, control and measurement systems for the first 12 kW wind turbine have been designed and implemented. The second was a 10 kW wind turbine adapted to a telecom application. Both the 12 kW and the 10 kW were operated against dump loads. The third turbine was a 200 kW grid-connected wind turbine, where control and measurement systems have been implemented. Experimental results have shown that an all-electric control, substituting mechanical systems such as blade-pitch, is possible for this type of turbine. By controlling the rectified generator voltage, the rotational speed of the turbine is also controlled. An electrical start-up system has been built and verified. The power coefficient has been measured and the stall behaviour of this type of turbine has been examined. An optimum tip speed ratio control has been implemented and tested, with promising results. Use of the turbine to estimate the wind speed has been demonstrated. This has been used to get a faster regulation of the turbine compared to if an anemometer had been used.

Page generated in 0.0617 seconds