• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-Precious Cathode Electrocatalytic Materials for Zinc-Air Battery

Kim, Baejung 13 December 2013 (has links)
In the past decade, rechargeable batteries attracted the attention from the researchers in search for renewable and sustainable energy sources. Up to date, lithium-ion battery is the most commercialized and has been supplying power to electronic devices and hybrid and electric vehicles. Lithium-ion battery, however, does not satisfy the expectations of ever-increasing energy and power density, which of their limits owes to its intercalation chemistry and the safety.1-2 Therefore, metal-air battery drew much attention as an alternative for its high energy density and a simple cell configuration.1 There are several different types of metal-air batteries that convey different viable reaction mechanisms depending on the anode metals; such as Li, Al, Ca, Cd, and Zn. Redox reactions take place in a metal-air cell regardless of the anode metal; oxidation reaction at the anode and reduction reaction at the air electrode. Between the two reaction, the oxygen reduction reaction (ORR) at the air electrode is the relatively the limiting factor within the overall cell reactions. The sluggish ORR kinetics greatly affects the performance of the battery system in terms of power output, efficiency, and durability. Therefore, researchers have put tremendous efforts in developing highly efficient metal air batteries and fuel cells, especially for high capacity applications such as electric vehicles. Currently, the catalyst with platinum nanoparticles supported on carbon material (Pt-C) is considered to exhibit the best ORR activities. Despite of the admirable electrocatalytic performance, Pt-C suffers from its lack of practicality in commercialization due to their prohibitively high cost and scarcity as of being a precious metal. Thus, there is increasing demand for replacing Pt with more abundant metals due economic feasibility and sustainability of this noble metal.3-5 Two different attitudes are taken for solution. The first approach is by optimizing the platinum loading in the formulation, or the alternatively the platinum can be replaced with non-precious materials. The purpose of this work is to discover and synthesize alternative catalysts for metal-air battery applications through optimized method without addition of precious metals. Different non-precious metals are investigated as the replacement of the precious metal including transition metal alloys, transition metal or mixed metal oxides, and chalcogenides. These types of metals, alone, still exhibits unsatisfying, yet worse, kinetics in comparison to the precious metals. Nitrogen-doped carbon material is a recently well studied carbon based material that exhibits great potential towards the cathodic reaction.6 Nitrogen-doped carbon materials are found to exhibit higher catalytic activity compared to the mentioned types of metals for its improved conductivity. Benefits of the carbon based materials are in its abundance and minimal environmental footprints. However, the degradation of these materials has demonstrated loss of catalytic activity through destruction of active sites containing the transition metal centre, ultimately causing infeasible stability. To compensate for these drawbacks and other limits of the nitrogen-doped carbon based catalysts, nitrogen-doped carbon nanotubes (NCNT) are also investigated in the series of study. The first investigation focuses on a development of a simple method to thermally synthesize a non-precious metal based nitrogen-doped graphene (NG) electrocatalyst using exfoliated graphene (Ex-G) and urea with varying amounts of iron (Fe) precursor. The morphology and structural features of the synthesized electrocatalyst (Fe-NG) were characterized by SEM and TEM, revealing the existence of graphitic nanoshells that potentially contribute to the ORR activity by providing a higher degree of edge plane exposure. The surface elemental composition of the catalyst was analyzed through XPS, which showed high content of a total N species (~8 at.%) indicative of the effective N-doping, present mostly in the form of pyridinic nitrogen groups. The oxygen reduction reaction (ORR) performance of the catalyst was evaluated by rotating disk electrode voltammetry in alkaline electrolyte and in a zinc-air battery cell. Fe-NG demonstrated high onset and half-wave potentials of -0.023 V (vs. SCE) and -0.110 V (vs. SCE), respectively. This excellent ORR activity is translated into practical zinc-air battery performance capabilities approaching that of commercial platinum based catalyst. Another approach was made in the carbon materials to further improve the cost of the electrode. Popular carbon allotropes, CNT and graphene, are combined as a composite (GC) and heteroatoms, nitrogen and sulfur, are introduced in order to improve the charge distribution of the graphitic network. Dopants were doped through two step processes; nitrogen dopant was introduced into the graphitic framework followed by the sulfur dopant. The coexistence of the two heteroatoms as dopants demonstrated outstanding ORR performance to those of reported as metal free catalysts. Furthermore, effects of temperature were investigated through comparing ORR performances of the catalysts synthesized in two different temperatures (500 ??? and 900 ???) during the N-doping process (consistent temperature was used for S-doping). Through XPS analysis of the surface chemistry of catalysts produced with high temperature during the N-doping step showed absence of N-species after the subsequent S-doping process (GC-NHS). Thus, the synergetic effects of the two heteroatoms were not revealed during the half-cell testing. Meanwhile, the two heteroatoms were verified in the catalyst synthesized though using low temperature during the N-doping process followed by the S-doping step (GC-NLS). Consequently, ORR activity of the resulting material demonstrated promising onset and half-wave potentials of -0.117 V (vs. SCE) and -0.193 V (vs. SCE). In combination of these investigations, this document introduces thorough study of novel materials and their performance in its application as ORR catalyst in metal air batteries. Moreover, this report provides detailed fundamental insights of carbon allotropes, and their properties as potential elecrocatalysts and essential concepts in electrochemistry that lies behind zinc-air batteries. The outstanding performances of carbon based electrocatalyst are reviewed and used as the guides for further direction in the development of metal-air batteries as a promising sustainable energy resource in the future.
2

Nonlinear screening of external charge by doped graphene

Ghaznavi, Mahmoudreza 06 April 2010 (has links)
In the rst part of this thesis we discuss some details of properties of graphene and we explain the tight-binding approach to nd the energy spectrum in graphene. In the second part of the thesis, we solve a nonlinear integral equation for the electrostatic potential in doped graphene due to an external charge, arising from a Thomas-Fermi (TF) model for screening by graphene's electron bands. In particular, we study the e ects of a nite equilibrium charge carrier density in graphene, non-zero temperature, non-zero gap between graphene and a dielectric substrate, as well as the nonlinearity in the band density of states. E ects of the exchange and correlation interactions are also brie y discussed for undoped graphene at zero temperature. Results from the nonlinear model are compared with results from both the linearized TF model and the dielectric screening model within the random phase approximation (RPA). In addition, the image potential of the external charge is evaluated from the solution of the nonlinear integral equation and compared to the results of linear models. We have found generally good agreement between the results of the nonlinear TF model and the RPA model in doped graphene, apart from Friedel oscillations in the latter model. However, relatively strong nonlinear e ects in the TF model are found to persist even at high doping densities and large distances of the external charge.
3

Nonlinear screening of external charge by doped graphene

Ghaznavi, Mahmoudreza 06 April 2010 (has links)
In the rst part of this thesis we discuss some details of properties of graphene and we explain the tight-binding approach to nd the energy spectrum in graphene. In the second part of the thesis, we solve a nonlinear integral equation for the electrostatic potential in doped graphene due to an external charge, arising from a Thomas-Fermi (TF) model for screening by graphene's electron bands. In particular, we study the e ects of a nite equilibrium charge carrier density in graphene, non-zero temperature, non-zero gap between graphene and a dielectric substrate, as well as the nonlinearity in the band density of states. E ects of the exchange and correlation interactions are also brie y discussed for undoped graphene at zero temperature. Results from the nonlinear model are compared with results from both the linearized TF model and the dielectric screening model within the random phase approximation (RPA). In addition, the image potential of the external charge is evaluated from the solution of the nonlinear integral equation and compared to the results of linear models. We have found generally good agreement between the results of the nonlinear TF model and the RPA model in doped graphene, apart from Friedel oscillations in the latter model. However, relatively strong nonlinear e ects in the TF model are found to persist even at high doping densities and large distances of the external charge.
4

Probing the Active Site of CNx Catalysts for the Oxygen Reduction Reaction in Acidic Media: A First-Principles Study

Zhang, Qiang 28 September 2018 (has links)
No description available.
5

Laser Vaporization Methods for the Synthesis of Metal and Semiconductor Nanoparticles; Graphene, Doped Graphene and Nanoparticles Supported on Graphene

Afshani, Parichehr 31 October 2013 (has links)
The major objective of the research described in this dissertation is the development of new laser vaporization methods for the synthesis of metal and semiconductor nanoparticles, graphene, B- and N-doped graphene, and metal and semiconductor nanoparticles supported on graphene. These methods include the Laser Vaporization Controlled Condensation (LVCC) approach, which has been used in this work for the synthesis of: (1) gold nanoparticles supported on ceria and zirconia nanoparticles for the low temperature oxidation of carbon monoxide, and (2) graphene, boron- and nitrogen-doped graphene, hydrogen-terminated graphene (HTG), metal nanoparticles supported on graphene, and graphene quantum dots. The gold nanoparticles supported on ceria prepared by the LVCC method exhibit high activity for CO oxidation with a 100% conversion of CO to CO2 at about 60 °C. The first application of the LVCC method for the synthesis of these graphene and graphene-based nanomaterials is reported in this dissertation. Complete characterizations of the graphene-based nanomaterials using a variety of techniques including spectroscopic, X-ray diffraction, mass spectrometric and microscopic methods such as Raman, FTIR, UV-Vis, PL, XRD, XPS, TOF-MS, and TEM. The application of B- and N-doped graphene as catalysts for the oxygen reduction reaction in fuel cell applications is reported. The application of Pd nanoparticles supported on graphene for the Suzuki carbon-carbon cross-coupling reaction is reported. A new method is described for the synthesis of graphene quantum dots based on the combination of the LVCC method with oxidation/reduction sequences in solution. The N-doped graphene quantum dots emit strong blue luminescence, which can be tuned to produce different emission colors that could be used in biomedical imagining and other optoelectronic applications. The second method used in the research described in this dissertation is based on the Laser Vaporization Solvent Capturing (LVSC) approach, which has been introduced and developed, for the first time, for the synthesis of solvent-capped semiconductor and metal oxide nanoparticles. The method has been demonstrated for the synthesis of V, Mo, and W oxide nanoparticles capped by different solvent molecules such as acetonitrile and methanol. The LVSC method has also been applied for the synthesis of Si nanocrystals capped by acetonitrile clusters. The acetonitrile-capped Si nanocrystals exhibit strong emissions, which depend on the excitation wavelength and indicate the presence of Si quantum dots with different sizes. The Si and the metal oxide nanoparticles prepared by the LVSC method have been incorporated into graphene in order to synthesize graphene nanosheets with tunable properties depending on graphene-nanoparticle interactions.
6

DFT Study of the Covalent Functionalization of Double Nitrogen Doped Graphene

Alhabradi, Thuraya Faleh 21 May 2018 (has links)
Covalent functionalization significantly enhances the utility of carbon nanomaterials for many applications. In this study, we investigated the functionalization of double nitrogen doped graphene by the addition of different alkyl and phenyl functional groups at N atoms in syn and anti-configurations. Density functional theory calculations at the B3LYP/def-SV(P) level were employed to understand the syn versus anti preference on functionalization. The bond lengths, bond angles, relative energies, deformation energies and HOMO-LUMO energy gaps, of the syn and anti-configurations of the functionalized 2N-doped graphenes, have been compared. Functionalization with two groups leads to considerable deformation of 2N-doped graphene, which is confirmed by the change in C–N bond lengths by attachment of the functional groups. The attachment of larger functional groups deforms 2N-doped graphene to a greater extent than smaller functional groups. The HOMO-LUMO energy gap values are the least for the alkyl functionalized products, indicating that these structures are kinetically less stable than the phenyl functionalized products.
7

Theoretical investigation of electronic properties of atomic clusters in their free forms and adsorbed on functionalized graphene support / Investigations théoriques de propriétés électroniques de clusters atomiques sous leurs formes libre et adsorbée sur un substrat de graphène dopé

Li, Rui 11 October 2016 (has links)
Les (sub)nanoclusters sont des agrégats d’atomes ou de molécules composés de quelques unités à quelques centaines d’unités. En raison de leur petite taille, ils peuvent avoir des propriétés électroniques, optiques, magnétiques et catalytiques très différentes par rapport au solide correspondant . D'un point de vue expérimental, il est encore très difficile de synthétiser des agrégats de taille calibrée. D'un point de vue théorique, le développement des puissances de calcul, des méthodes de calcul de structure électronique et des algorithmes de recherches globales de structures stables, permettent un calcul toujours plus précis de leurs propriétés physico-chimiques. L’étude théorique permet alors de déterminer de façon fiable les structures stables de ces systèmes qui président aux calculs de leurs propriétés . L’exemple qui illustre ce travail s’inspire du processus observé au sein des piles à combustible dans lequel le Platine (Pt) est couramment utilisé pour produire de l’énergie par oxydation du dihydrogène en favorisant notamment sa dissociation . L’objet de ce travail consiste à comparer la capacité des clusters de Platine de différentes tailles à adsorber la molécule de dihydrogène sous leur forme libre et adsorbée sur substrat. Le graphène , matériaux bidimensionnel cristallin formé de carbone est choisi dans ce travail en tant que substrat en raison de sa grande résistance mécanique et chimique. La première partie de ce travail est consacrée à la recherche d’éléments dopants qui vont permettent à la fois d’améliorer la capacité d’adsorption des clusters de Platine sur la surface et éviter leur migration. L’objectif est ici de proposer un substrat sur lequel peuvent être empêchés les phénomènes d’agglomération, de dissolution et de détachement du cluster qui ainsi limiteraient son efficacité catalytique . Des dopages de la surface, tel qu’ils sont réalisables expérimentalement , par l’Azote, le Bore et le Nitrure de Bore, par substitution atomique et avec ou sans considération préalable de lacunes, ont été étudiés. La seconde partie correspond à l’implémentation dans le code GSAM (Global Search Algorithm of Minima - algorithme de recherche globale de minima) développé au laboratoire , , des éléments qui permettent la recherche de structures de plus basse énergie de clusters moléculaires adsorbés sur substrat, tels que les systèmes [H2-Ptn-Graphène dopé] de cet exemple. La troisième partie concerne l’illustration de la fiabilité de la méthode de recherche globale employée et de la qualité de quelques méthodes de calcul de l’énergie moléculaire (DFT et GUPTA) vis-à-vis de résultats mentionnés dans la littérature sur les clusters de Platine. La dernière partie comporte l’investigation structurale des systèmes [H2-Ptn] et [H2-Ptn-Graphène dopé] pour différentes tailles de clusters allant de n=6 à n=20. La variation de l’énergie d’adsorption de H2 sur les clusters libres et supportés ainsi que celle du cluster moléculaire sur le substrat en fonction de la taille est reportée. / A sub-nanometer sized metal cluster consists of only several to tens of atoms. Due to its small size and quantum effects, it can have very specific electronic, optical, magnetic and catalytic properties as compared with their bulk behaviors . From an experimental point of view, it is still a big challenge to realize size-controlled synthesis for (sub) nanoclusters. From a theoretical point of view, benefiting from the development of faster high-performance computational sources, more efficient electronic structure modelling software and more reliable global search methods for the determination of the most stable structures, the chemical and physical properties of clusters can be determinate more accurately. As it is experimentally a big challenge to realize size-controlled synthesis for (sub) nanoclusters, theoretical studies can provide detailed information on their geometric structure, electronic structure, as well as adsorption and reaction properties . The example chosen to be treated in this study is inspired by the fuel cell, in which the Platinum (Pt) is a typical and most commonly used precious metal catalyst for the production of energy by the oxidation of dihydrogene . Graphene is a recently discovered 2D carbon net structure, has several special properties, such as: low weight, high strength, high surface area, high electrical conductivity, etc. With these properties and their novel combinations, graphene might prove a promising candidate to be used as catalyst supports. The first part of this study is devoted to the search of the doping elements which permit both enhance the adsorption capacity of Pt clusters on the surface and prevent their migration. The aim here is propose one substrate which can avoid the problems of cluster agglomeration, dissolution and detachment, which reduce the performance of the catalysts . The ways of doping of the surface, which have already been experimentally realized , such as Nitrogen, Boron, and N-B patches substitution of Carbon atoms with or without introducing the vacancy on the pristine graphene, are studied. The second part corresponds to the implementation of some new features into the code GSAM (Global Search Algorithm of Minima) developed in our laboratory , , , which permit the search of the most stable structures of the molecular clusters adsorbed on substrate, such as the complex systems of [H2-Ptn-doped Graphene]. The third part is to evaluate the reliabilities of the global search method used, as well as the DFT and the empirical (GUPTA) potential energy surface. Thus, the main discussion appears as a comparison with the results of the literature concerning the Pt clusters. The fourth part consists of the structural investigation of [H2-Ptn] and [H2-Ptn-doped Graphene] systems for different sizes of Pt clusters with n=6 to n=20. The variation of the adsorption energy of H2 on the free and supported Ptn clusters, and the adsorption energy of (H2+Ptn) system on the surface with respect to the size of the cluster is discussed.
8

Sulfur Based Electrode Materials For Secondary Batteries

Hao, Yong 25 May 2016 (has links)
Developing next generation secondary batteries has attracted much attention in recent years due to the increasing demand of high energy and high power density energy storage for portable electronics, electric vehicles and renewable sources of energy. This dissertation investigates sulfur based advanced electrode materials in Lithium/Sodium batteries. The electrochemical performances of the electrode materials have been enhanced due to their unique nano structures as well as the formation of novel composites. First, a nitrogen-doped graphene nanosheets/sulfur (NGNSs/S) composite was synthesized via a facile chemical reaction deposition. In this composite, NGNSs were employed as a conductive host to entrap S/polysulfides in the cathode part. The NGNSs/S composite delivered an initial discharge capacity of 856.7 mAh g-1 and a reversible capacity of 319.3 mAh g-1 at 0.1C with good recoverable rate capability. Second, NGNS/S nanocomposites, synthesized using chemical reaction-deposition method and low temperature heat treatment, were further studied as active cathode materials for room temperature Na-S batteries. Both high loading composite with 86% gamma-S8 and low loading composite with 25% gamma-S8 have been electrochemically evaluated and compared with both NGNS and S control electrodes. It was found that low loading NGNS/S composite exhibited better electrochemical performance with specific capacity of 110 and 48 mAh g-1 at 0.1C at the 1st and 300th cycle, respectively. The Coulombic efficiency of 100% was obtained at the 300th cycle. Third, high purity rock-salt (RS), zinc-blende (ZB) and wurtzite (WZ) MnS nanocrystals with different morphologies were successfully synthesized via a facile solvothermal method. RS-, ZB- and WZ-MnS electrodes showed the capacities of 232.5 mAh g-1, 287.9 mAh g-1 and 79.8 mAh g-1 at the 600th cycle, respectively. ZB-MnS displayed the best performance in terms of specific capacity and cyclability. Interestingly, MnS electrodes exhibited an unusual phenomenon of capacity increase upon cycling which was ascribed to the decreased cell resistance and enhanced interfacial charge storage. In summary, this dissertation provides investigation of sulfur based electrode materials with sulfur/N-doped graphene composites and MnS nanocrystals. Their electrochemical performances have been evaluated and discussed. The understanding of their reaction mechanisms and electrochemical enhancement could make progress on development of secondary batteries.
9

Structural, Electronic And Vibrational Properties Of n-layer Graphene With And Without Doping : A Theoretical Study

Saha, Srijan Kumar 04 1900 (has links) (PDF)
Graphene – a two-dimensional honeycomb lattice of sp2-bonded carbon atoms – has been attracting a great deal of research interest since its first experimental realization in 2004, due to its various novel properties and its potential for applications in futuristic nanodevices. Being the fundamental building block for carbon allotropes of other dimensionality, it can be stacked to form 3d graphite or rolled into 1d nanotube. Graphene is the thinnest known material in the universe, and one of the strongest materials ever measured in terms of its in-plane Young modulus and elastic stiffness. The charge carriers in graphene exhibit giant mobility as high as 20 m2/Vs, have almost zero effective mass, and can travel for micrometers without scattering even at ambient conditions. Graphene can sustain current densities six orders of magnitude higher than that of copper, shows record thermal conductivity and stiffness, is impermeable to gases, and renders easy accessibility to optical probes. Electron transport in graphene is described by a Dirac-type equation, which allows the investigation of “relativistic” quantum phenomena in a benchtop experiment. This results in the observation of a number of very peculiar electronic properties from an anomalous quantum Hall effect to Kien paradox and the absence of localization. All these enticing features make this material an excellent candidate for application in various electronic, photonic and optoelectronic devices. For instance, its ballistic ambipolar transport and high carrier mobility are the most useful traits for making ultrafast and low-power electronic devices. Its high surface area shouldmake it handy in manufacturing tough composite materials. The extreme thinness of graphene could also lead to more efficient field emitters that release electrons in the presence of strong electric fields. Its robustness and light weight are useful for micromechnical resonators. The tunability of its properties could make it possible to build so-called spin-valve transistors, as well as ultra-sensitive chemical detectors. Many of such applications of graphene require tuning of its properties, which can be achieved by varying the number of layers or/and by doping. There are several ways to dope graphene: (i)electrochemically gated doping, (ii)molecular charge-transfer doping, and (iii) substitutional doping by atoms like Boron or Nitrogen.Moreover, for graphene, a zero band gap semiconductor in its pristine form, to become a versatile electronic device material it is mandatory to find means to open up a band gap and tune the size of the band gap. Several strategies have been adopted to engineer such a band gap in graphene in a controlled way. Some of these are based on the ability to control the geometry of graphene layers, some use graphene-substrate interactions, while others are based on chemical reactions of atoms or molecules with the graphene layer. Motivated by these considerations, in this thesis we present a systematic and thorough study of the structural, electronic and vibrational properties of graphene and their dependence on the number of layers, and on doping achieved electrochemically, molecularly and substitutionally, using first principles density functional theory (DFT). In Chapter 1, we give an introduction to the hitherto beguiling world of graphene. Here, we briefly discuss the structure, novel properties and potential applications of graphene, and the motivation for this thesis. In Chapter 2, an overview of the DFT formalism adopted here is given. We clearly state the theorems of the formalism and the approximations used when performing calculations. We succinctly explain how the various quantities like total energies, forces, stresses etcetera are calculated within this formalism. We also discuss how phonon frequencies, eigenvectors, electron-phonon couplings are obtained by using density functional perturbation theory (DFPT), which calculates the full dynamical matrices through the linear response of electrons to static perturbations induced by ionic displacements. Calculations are done first using a fully ab-initio approach within the standard Born-Oppenheimer approximation, and then time-dependent perturbation theory is used to explore the effects of dynamic response. In Chapter 3, using such first-principles density-functional theory calculations, we determine the vibrational properties of ultra-thin n(1,2,...,7)-layer graphene films and present a detailed analysis of their zone-center phonons. We present the results (including structural relaxations, phonons, mode symmetries, optical activities) for bulk Graphite, single-layer graphene and ultrathin n-layer graphene films. and discuss the underlying physics of our main results together with a pictorial representation of the phonon modes. We demonstrate that a low-frequency (∼ 112 cm−1 ) optical phonon with out-of-plane displacements exhibits a particularly large sensitivity to the number of layers, although no discernible change in the interlayer spacing is found as n varies. Frequency shifts of the optical phonons in bilayer graphene are also calculated as a function of its interlayer separation and interpreted in terms of the inter-planar interaction. The surface vibrational properties of n-layer graphene films are presented in Chapter 4, which renders a detailed and thorough analysis of all the surface phonon modes by determining, classifying and identifying them accurately. The response of surface modes to the presence of adsorbed hydrogen molecules is determined. As an illustrative adsorbate, hydrogen is chosen here mainly because of its huge importance in fuel cell technology and as a molecular sensor. We demonstrate that a doubly degenerate surface phonon mode with low-frequency (~ 35cm−1)exhibits a particularly large sensitivity to the adsorption of hydrogen molecules, as compared to other surface modes. Futhermore, we show that a low-frequency (108.8 cm−1)bulk-like phonon with out-of-plane displacements is also very sensitive and gets upshifted by as much as 21 cm−1 due to this adsorption. In Chapter 5, we determine the adiabatic frequency shift of the and phonons in a monolayer graphene as a function of both electron and hole doping. The doping is simulated here to correspond to electrochemically gated graphene. Compared to the results for the E2g -Γ phonon (Raman G band), the results for the phonon are dramatically different, while those for the phonon are not so different. Furthermore, we calculate the frequency shifts, as a function of the charge doping, of the (K + ΔK) phonons responsible for the Raman 2D band –a key finger print of graphene, where [ΔK] is determined by the double resonance Raman process. Doping graphene with electron donating or accepting molecules is an interesting approach to introduce carriers into it, analogous to electrochemical doping accomplished in graphene when used in a field-effect transistor. In Chapter 6, we use first-principles density-functional theory to determine changes in the electronic structure and vibrational properties of graphene that arise from the adsorption of aromatic molecules such as aniline and nitrobenzene. Identifying the roles of various mechanisms of chemical interaction between graphene and the adsorbed molecules, we bring out the contrast between electrochemical and molecular doping of graphene. Our estimates of various contributions to shifts in the Raman active modes of graphene with molecular doping are fundamental to the possible use of Raman spectroscopy in (a)characterization of the nature and concentration of carriers in graphene arising from molecular doping, and (b) graphene-based chemical sensors. Graphene doped electrochemically or through charge-transfer with electron-donor and acceptor molecules, shows marked changes in electronic structure, with characteristic signatures in the Raman spectra. Substitutional doping, universally used in tuning properties of semiconductors, could also be a powerful tool to control the electronic properties of graphene. In Chapter 7, we present the structure and properties of boron and nitrogen doped graphenes, again using first-principles density functional theory. We demonstrate systematic changes in the carrier-concentration and electronic structure of graphenes with B/N-doping, accompanied by a stiffening of the G-band and change of the defect related D-band in the Raman spectra. Such n/p -type graphenes obtained without external fields or chemical agents should find device applications.
10

Préparation de matériaux à base de graphène et leur application en catalyse

Anouar, Aicha 22 March 2021 (has links)
[ES] Para abordar los desafíos ambientales, la química y los procesos químicos deben ser más sostenibles. Para ello, el desarrollo de nuevos catalizadores especialmente activos es de suma importancia. En catálisis heterogénea, el grafeno ha surgido recientemente como un excelente candidato desde que fue posible aislarlo a partir del grafito. Sus propiedades únicas han despertado un gran interés para aplicarlo en varios campos, desde el refuerzo de matrices poliméricas hasta el desarrollo de materiales para catálisis. En catálisis, su uso como soporte catalítico o como carbocatalizador es todavía objeto de varios estudios. Con el objetivo de preparar catalizadores extremadamente activos en varias reacciones de química fina o de producción de hidrógeno, nuestro trabajo de investigación se ha centrado en el uso de materiales a base de grafeno como soportes catalíticos. Se consideraron diferentes aspectos: La funcionalización del grafeno; al ser un material de baja dimensionalidad, las propiedades del grafeno están estrechamente relacionadas con la química de su superficie. Mediante la fosforilación del óxido de grafeno, hemos demostrado que la estabilidad térmica y la estabilización de las nanopartículas metálicas mejoran significativamente. La combinación de grafeno con otros materiales; Pequeñas nanopartículas de paladio estabilizadas sobre materiales porosos a base de óxido de grafeno y quitosano han demostrado una excelente actividad para la deshidrogenación del formiato de amonio. La estrategia de síntesis adoptada para preparar el grafeno; La pirólisis de películas de alginato de amonio y un precursor de rutenio (Ru) en diferentes atmósferas permitió la preparación de nanopartículas de Ru soportadas en grafeno cuya orientación depende de la atmósfera de pirólisis. Por lo tanto, fue posible una comparación de la actividad catalítica de diferentes facetas cristalográficas. Dopaje de grafeno; la presencia de diferentes heteroátomos en su estructura ha permitido una mejor estabilización de nanopartículas y clusters metálicos. Los materiales basados en nanopartículas de óxido de cobre y grafenos dopados han demostrado poseer una excelente actividad catalítica en la síntesis de nuevas moléculas de interés farmacéutico. / [CA] Per a abordar els desafiaments ambientals, la química i els processos químics han de ser més sostenibles. Per a això, el desenvolupament de nous catalitzadors especialment actius és de summa importància. En catàlisi heterogènia, el grafé ha sorgit recentment com un excel·lent candidat des que va ser possible aïllar-lo a partir del grafit. Les seues propietats úniques han despertat un gran interés per a aplicar-lo en diversos camps,des del reforç de matrius polimèriques fins al desenvolupament de materials per a catàlisis. En catàlisi, el seu ús com a suport catalític o com carbocatalitzador és encara objecte de diversos estudis. Amb l'objectiu de preparar catalitzadors extremadament actius en diverses reaccions de química fina o de producció d'hidrogen, el nostre treball de recerca s'ha centrat en l'ús de materials a base de grafé com a suports catalítics. Es van considerar diferents aspectes: La funcionalització del grafé; a l'ésser un material de baixa dimensionalitat, les propietats del grafé estan estretament relacionades amb la química de la seua superfície. Mitjançant la fosforilació de l'òxid de grafé, hem demostrat que l'estabilitat tèrmica i l'estabilització de les nanopartícules metàl·liques milloren significativament. La combinació de grafé amb altres materials; Xicotetes nanopartícules de pal·ladi estabilitzades sobre materials porosos a base d'òxid de grafé i quitosà han demostrat una excel·lent activitat per a la deshidrogenació del formiat d'amoni. L'estratègia de síntesi adoptada per a preparar el grafé; La piròlisi de pel·lícules de alginat d'amoni i un precursor de ruteni (Ru) en diferents atmosferes va permetre la preparació de nanopartícules de Ru suportades en grafé, l'orientació del qual depén de l'atmosfera de piròlisi. Per tant, va ser possible una comparació de l'activitat catalítica de diferents facetes cristal¿logràfiques. Dopatge de grafé; la presència de diferents heteroàtoms en la seua estructura ha permés una millor estabilització de nanopartícules i clústers metàl·lics. Els materials basats en nanopartícules d'òxid de coure i grafens dopats han demostrat posseir una excel·lent activitat catalítica en la síntesi de noves molècules d'interés farmacèutic. / [EN] To address environmental challenges, chemistry and chemical processes need to be more sustainable. For this, developing new particularly active catalysts is of paramount importance. In heterogeneous catalysis, graphene has emerged as an excellent candidate since it was possible to isolate it from graphite. Its properties have aroused substantial interest, earning it applications in various fields spanning from the reinforcement of polymer matrices to the development of materials for catalysis. In catalysis, its use both as a catalytic support or as a carbocatalyst is still the subject of several studies. Aiming to prepare extremely active catalysts in various fine chemical reactions or hydrogen production, our research work has focused on the use of graphene-based materials as catalytic supports. Different aspects were considered: The functionalization of graphene; being a material of low dimensionality, the properties of graphene are intimately related to the chemistry of its surface. Through phosphorylation of graphene oxide, we have shown that the thermal stability and stabilization of metal nanoparticles are significantly improved. Combination of graphene with other materials; small palladium nanoparticles stabilized on porous materials based on graphene oxide and chitosan have demonstrated excellent activity for the dehydrogenation of ammonium formate. The synthetic strategy adopted to prepare graphene; pyrolysis of films of ammonium alginate and ruthenium precursor (Ru) in different atmospheres enabled the preparation of Ru nanoparticles supported on graphene whose orientation depends on the atmosphere of pyrolysis. Thus, a comparison of the catalytic activity of different crystallographic facets was possible. Doping of graphene; the presence of different heteroatoms in its structure has allowed a better stabilization of metal nanoparticles and clusters. Materials based on copper oxide nanoparticles and tridoped graphene have demonstrated an excellent catalytic activity in the synthesis of new molecules of pharmaceutical interest. / Anouar, A. (2021). Préparation de matériaux à base de graphène et leur application en catalyse [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/164030

Page generated in 0.048 seconds