• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 24
  • 24
  • 24
  • 12
  • 8
  • 8
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Applications of Surface Analysis Techniques to the Study of Electrochemical Systems

Johnston, Matthew Gerard 14 July 2004 (has links)
No description available.
12

Determining the voltage range of a carbon-based supercapacitor

Wells, Thomas January 2014 (has links)
The focus of this thesis has been to determine the usable voltage range of carbon-based supercapacitors (SC). Supercapacitors are a relatively new type of capacitors with a vast increase in capacitance compared to capacitors which utilize a dielectric as charge separator. A SC consists of two electrodes and an electrolyte separating the electrodes. The charges are stored by electrostatic forces in the interface between the electrode and the electrolyte, forming the so called electrochemical double-layer (EDL). With porous electrodes the effective surface area of the interfacial zone can be made very large, giving SCs a large storage capacity. The limiting factors of a SC is the decomposition potential of the electrolyte and the decomposition of the electrodes. For commercially manufactured SCs the electrolyte is usually an organic solvent, which has a decomposition potential of up to 2.7-2.8 V. Compared to aqueous electrolytes with a thermodynamic limit of 1.23 V. The drawback of using non-aqueous electrolytes is that they are not environmentally friendly, and they increase the production cost. It is claimed that the voltage range can be up to 1.9 V using aqueous electrolytes. Some researchers have focused on aqueous electrolytes for these reasons. In this thesis two different electrolytes were tested to determine if the voltage range could be extended. The experiments were conducted using a three electrode cell and performing cyclic voltammogram measurements (CV). The carbon electrodes were made of  two different sources of grahite, battery graphite or exfoliated graphite, and nano fibrilated cellulose was added to increase the mechanical stability. The results show that the oxidation potential of the carbon electrode was the positive limit. A usable potential of about 1 V was shown. However, when cycling the electrodes to potentials below the decomposition limit, for hydrogen evolution, interesting effects were seen. A decrease in reaction kinetics, indicating a type of conditioning of the electrode was observed. An increase in charge storage capacitance was also observed when comparing the initial measurements with the final, probably corresponding to an increase in porosity. / KEPS projekt Sundsvall Mitt Universitet
13

Paper-based Supercapacitors

Andres, Britta January 2014 (has links)
The growing market of mobile electronic devices, renewable off-grid energy sources and electric vehicles requires high-performance energy storage devices. Rechargeable batteries are usually the first choice due to their high energy density. However, supercapacitors have a higher power density and longer life-time compared to batteries. For some applications supercapacitors are more suitable than batteries. They can also be used to complement batteries in order to extend a battery's life-time. The use of supercapacitors is, however, still limited due to their high costs. Most commercially available supercapacitors contain expensive electrolytes and costly electrode materials. In this thesis I will present the concept of cost efficient, paper-based supercapacitors. The idea is to produce supercapacitors with low-cost, green materials and inexpensive production processes. We show that supercapacitor electrodes can be produced by coating graphite on paper. Roll-to-roll techniques known from the paper industry can be employed to facilitate an economic large-scale production. We investigated the influence of paper on the supercapacitor's performance and discussed its role as passive component. Furthermore, we used chemically reduced graphite oxide (CRGO) and a CRGO-gold nanoparticle composite to produce electrodes for supercapacitors. The highest specific capacitance was achieved with the CRGO-gold nanoparticle electrodes. However, materials produced by chemical synthesis and intercalation of nanoparticles are too costly for a large-scale production of inexpensive supercapacitor electrodes. Therefore, we introduced the idea of producing graphene and similar nano-sized materials in a high-pressure homogenizer. Layered materials like graphite can be exfoliated when subjected to high shear forces. In order to form mechanical stable electrodes, binders need to be added. Nanofibrillated cellulose (NFC) can be used as binder to improve the mechanical stability of the porous electrodes. Furthermore, NFC can be prepared in a high-pressure homogenizer and we aim to produce both NFC and graphene simultaneously to obtain a NFC-graphene composite. The addition of 10% NFC in ratio to the amount of graphite, increased the supercapacitor's capacitance, enhanced the dispersion stability of homogenized graphite and improved the mechanical stability of graphite electrodes in both dry and wet conditions. Scanning electron microscope images of the electrode's cross section revealed that NFC changed the internal structure of graphite electrodes depending on the type of graphite used. Thus, we discussed the influence of NFC and the electrode structure on the capacitance of supercapacitors.
14

Synthesis of sulphonated and transition metal oxide doped polymeric nanocomposites for application in design of supercapacitors

Njomo, Njagi January 2011 (has links)
Philosophiae Doctor - PhD / To meet a fast-growing market demand for next generation portable electronic devices with higher performance and increased device functionalities, efficient electrical energy devices with substantially higher energy, power densities and faster recharge times such as supercapacitors are needed. The overall aim of this thesis was to synthesize nanostructured sulphonated polyaniline and transition metal single, binary and ternary mixed oxide doped nanocomposites with electro-conductive properties. These nanocomposites were anchored on activated graphitic carbon and used in design of asymmetric supercapacitors. Tantalum(IV)oxide, tantalum(IV)oxide-nickel(II)oxide, tantalum(II)oxide-manganese(III)oxide, tantalum(II)oxide-nickel(II)oxide-manganese(II,III)oxide nanoparticles were synthesised using modified sol-gel methods. These were then dispersed, individually, in acidic media through sonication and incorporated in-situ into the polymeric matrix during the oxidative chemical polymerization of aniline doped with poly(4-styrene sulphonic acid). These novel polymeric nanocomposites were characterised with FTIR, UV-visible, TEM, SEM, EDS, XRD to ascertain successful polymerization, doping, morphology and entrapment of the metal oxide nanoparticles. SECM approach curves and interrogation of CV revealed that these nanocomposites are conductive and electro-active. The cells showed good supercapacitor characteristics with high specific capacitances of 170.5 Fg⁻¹ in TaO₂- PANi-PSSA, 166.1 Fg⁻¹ in TaO₂-NiO-PANi-PSSA, 248.4 Fg-1 in TaO-Mn₂O₃-PANi- PSSA and 119.6 Fg⁻¹ in TaO-NiO-Mn₃O₄-PANi-PSSA. Their corresponding energy densities were calculated as 245.5 Whg⁻¹, 179.4 Whg⁻¹, 357.7 Whg⁻¹ and 172.3 Whg⁻¹ respectively. They also gave respective power densities of 0.50 Whg⁻¹, 0.61 Whg⁻¹, 0.57 Whg⁻¹ and 0.65 Whg⁻¹ and showed good coulombic efficiencies ranging between 77.97% and 83.19%. These materials are found to have a long cycle life and therefore good electrode materials for constructing supercapacitor cells. / National Research Foundation (NRF)
15

Low-Cost, Environmentally Friendly Electric Double-Layer Capacitors : Conept, Materials and Production

Andres, Britta January 2017 (has links)
Today’s society is currently performing an exit from fossilfuel energy sources. The change to sustainable alternativesrequires inexpensive and environmentally friendly energy storagedevices. However, most current devices contain expensive,rare or toxic materials. These materials must be replaced bylow-cost, abundant, nontoxic components.In this thesis, I suggest the production of paper-based electricdouble-layer capacitors (EDLCs) to meet the demand oflow-cost energy storage devices that provide high power density.To fulfill the requirements of sustainable and environmentallyfriendly devices, production of EDLCs that consist of paper,graphite and saltwater is proposed. Paper can be used as aseparator between the electrodes and as a substrate for theelectrodes. Graphite is suited for use as an active material in theelectrodes, and saltwater can be employed as an electrolyte.Westudied and developed different methods for the productionof nanographite and graphene from graphite. Composites containingthese materials and similar advanced carbon materialshave been tested as electrode materials in EDLCs. I suggest theuse of cellulose nanofibers (CNFs) or microfibrillated cellulose(MFC) as a binder in the electrodes. In addition to improvedmechanical stability, the nanocellulose improved the stabilityof graphite dispersions and the electrical performance of theelectrodes. The influence of the cellulose quality on the electricalproperties of the electrodes and EDLCs was investigated.The results showed that the finest nanocellulose quality is notthe best choice for EDLC electrodes; MFC is recommended forthis application instead. The results also demonstrated thatthe capacitance of EDLCs can be increased if the electrodemasses are adjusted according to the size of the electrolyte ions.Moreover, we investigated the issue of high contact resistancesat the interface between porous carbon electrodes and metalcurrent collectors. To reduce the contact resistance, graphitefoil can be used as a current collector instead of metal foils.Using the suggested low-cost materials, production methodsand conceptual improvements, it is possible to reduce the material costs by more than 90% in comparison with commercialunits. This confirms that paper-based EDLCs are apromising alternative to conventional EDLCs. Our findings andadditional research can be expected to substantially supportthe design and commercialization of sustainable EDLCs andother green energy technologies. / I dagens samhälle pågår en omställning från användning avfossila energikällor till förnybara alternativ. Denna förändringkräver miljövänliga och kostnadseffektiva elektriska energilagringsenheterför att möjliggöra en kontinuerlig energileverans.Dagens energilagringsenheter innehåller ofta dyra, sällsyntaeller giftiga material som behöver bytas ut för att nå hållbaralösningar.I denna avhandling föreslås att tillverka pappersbaseradesuperkondensatorer som möter kraven för kostnadseffektivaelektriska energilagrare med hög effekttäthet. För att nå kravenpå miljömässigt hållbara enheter föreslås användning avendast papper, grafit och saltvatten. Papper kan användas somseparator mellan elektroder likväl som substrat vid elektrodbestrykning.Grafit kan användas som aktivt elektrodmaterialoch saltvatten fungerar som elektrolyt. Olika metoder har härutvecklats för att producera nanografit och grafen från grafit.Dessa material har tillsammans med liknande, kommersiellt tillgängliga,avancerade kolmaterial testats i elektrodkompositerför superkondensatorer. Som bindemedel i dessa kompositerföreslås nanofibrillerad eller mikrofibrillerad cellulosa. Jaghar demonstrerat att nanocellulosa ökar dispersionsstabilitetensamt förbättrar den mekaniska stabiliteten och dom elektriskaegenskaperna i elektroderna. Hur cellulosans kvalitet påverkarelektroderna har undersökts och visar att den finaste kvaliteteninte är det bästa valet för superkondensatorer, istället rekommenderasmikrofibrillerad cellulosa. Utöver detta demonstrerasmöjligheten att öka superkondensatorernas kapacitans genomatt balansera elektrodernas massa med hänsyn till jonernasstorlek i elektrolyten. I avhandlingen diskuteras även svårigheternamed hög kontaktresistans i gränssnittet mellan porösakolstrukturer och metallfolie och hur detta kan undvikas omgrafitfolie används som kontakt.Genom att använda de material, produktionstekniker ochkonceptförbättringar som föreslås i avhandlingen är det möjligtatt reducera materialkostnaderna med mer än 90% i jämförelsemed kommersiella superkondensatorer. Detta bekräftar att pappersbaserade superkondensatorer är ett lovande alternativoch våra resultat tillsammans med vidare utveckling harstor potential att stödja övergången till miljömässigt hållbarasuperkondensatorer och annan grön energiteknik. / <p>Vid tidpunkten för disputationen var följande delarbeten opublicerade: delarbete 6 inskickat.</p><p>At the time of the doctoral defence the following papers were unpublished: paper 6 submitted.</p>
16

Synthese von porösen Kohlenstoffmaterialien aus Polysilsesquioxanen für die Anwendung in elektrochemischen Doppelschichtkondensatoren

Meier, Andreas 18 February 2015 (has links) (PDF)
Elektrochemische Doppelschichtkondensatoren (engl. Electrochemical Double-Layer Capacitors, EDLCs) stellen eine zunehmend wichtige Technologie auf dem Markt der elektrischen Energiespeicher dar. Sie zeichnen sich durch die Aufnahmefähigkeit großer Energiemengen, eine hohe Langzeitstabilität und ein schnelles Ansprechverhalten aus. Diese Eigenschaften sind Gründe, weshalb EDLCs als Speicherbausteine für Energierück-gewinnungssysteme oder zur Stabilisierung der Stromversorgung in diversen elektronischen Bauelementen eingesetzt werden. Die Aufnahme der Energie erfolgt über Ladungsseparation von Elektrolytionen an der Elektrodenoberfläche. Die Kapazität der Speicherfähigkeit wird dabei maßgeblich vom Betrag der Elektrodenoberfläche und dem Abstand der Elektrolytionen zur Oberfläche der Elektrode bestimmt (bei gleichbleibendem Elektrolyten). In der gegenwärtigen Forschung werden neue Elektrodenmaterialien entwickelt, um über deren Systemeigenschaften, wie Leitfähigkeit und Porosität, die Leistungsfähigkeit der Doppelschichtkondensatoren weiter zu optimieren. Gängige Komponenten für Elektroden in diesen Bauelementen stellen Kohlenstoffmaterialien dar, da diese chemisch inert und zumeist kostengünstig in der Produktion sind. In der vorliegenden Arbeit sollte die Eignung der Materialklasse der Siliziumoxykarbid-abgeleiteten Kohlenstoffe (engl. Silicon Oxycarbide-Derived Carbons, SiOCDCs) für die Anwendung in elektrochemischen Doppelschichtkondensatoren untersucht werden. Die SiOCDCs wurden über die Pyrolyse (700 – 1500 °C) und Chlorierung (700 – 1000 °C) eines kohlenstoffreichen Polysilsesquioxans mit der theoretischen Zusammensetzung C6H5SiO3/2 erzeugt. Dabei zeigte sich, dass sowohl die porösen Eigenschaften als auch die Leitfähigkeit innerhalb der erhaltenen Kohlenstoffmaterialien stark von der Synthesetemperatur abhängen. Somit konnten reine Kohlenstoffe mit spezifischen Oberflächen bis zu 2400 m2 g-1 und Porenvolumina von 1,9 cm3 g-1 synthetisiert werden. Im Verlauf der Arbeit wurde eine geeignete Methode zur Verarbeitung der erzeugten Oxykarbid-abgeleiteten Kohlenstoffe zu Elektroden evaluiert, um eine elektrochemische Charakterisierung vorzunehmen. Ein vielversprechender Ansatz stellt die vollkommen trockene Umsetzung der SiOCDCs zu freistehenden Elektrodenschichten dar. Dieses Verfahren nutzt die Verreibung der Aktivkomponente mit einem geringen Anteil (5 Gew.-%) eines Bindemittels (Polytetrafluorethylen, PTFE) aus, um flexible und selbsttragende Elektrodenfolien zu erzeugen. Die Vorteile dieses Prozesses gegenüber anderen Verarbeitungsarten liegen darin, dass aufwendige Trocknungsverfahren während der Elektrodenherstellung entfallen und die Schichtdicken der resultierenden Folien unmittelbar eingestellt werden können. Während der Untersuchung der unterschiedlichen Elektrodensysteme im organischen Elektrolyten (1 M Tetraethylammoniumtetrafluoroborat-Lösung in Acetonitril) konnten spezifische Kapazitäten von bis zu 120 F g-1 gemessen werden. Des Weiteren zeigte sich der Einfluss der Kohlenstoffstruktur innerhalb der Aktivmaterialien auf die elektrochemischen Resultate. So konnte festgestellt werden, dass eine zunehmende Graphitisierung im Kohlenstoff, welche mit einer steigenden Mesoporosität im SiOCDC einherging, zu einer verbesserten Leitfähigkeit innerhalb der EDLC-Elektroden führte, aber auch eine Verringerung der spezifischen Kapazität bedeutete. Die Verringerung der Widerstände im System weitete erheblich den Bereich der nutzbaren Arbeitsfrequenzen und die Strombelastbarkeit des Elektrodenmaterials aus. So bestand die Möglichkeit ein mesoporöses Kohlenstoffmaterial zu synthetisieren, welches mit einer maximalen Arbeitsfrequenz von 8 Hz einen Wert zeigte, der zwei Größenordnungen über der Arbeitsfrequenz eines kommerziell erhältlichen Standards (Aktivkohle YP-50F) lag. Dieses exzellente Ansprechverhalten bildet die Grundlage für den Einsatz in Hochleistungsspeichersystemen. Des Weiteren offenbarte sich, dass die trocken prozessierten Elektroden das Potential für eine hohe Langzeitstabilität besitzen, da je nach Elektrodensystem ein Erhalt von 94% der Ursprungskapazität über 10.000 Lade-/Entladezyklen beobachtet werden konnte. Die Modifikation der Elektrodenmaterialien mittels CO2-Aktivierung und eine damit verbundene Erhöhung der spezifischen Oberfläche führten zu einer Verbesserung der spezifischen Kapazität der Aktivkomponenten um bis zu 33%. Zusammenfassend bleibt zu erwähnen, dass poröse Oxykarbid-abgeleitete Kohlenstoffe erfolgreich über die Chlorierung von keramischen Vorläuferverbindungen synthetisiert werden konnten. Die Kohlenstoffmaterialien zeigten nach der Prozessierung zu freistehenden und flexiblen Elektrodenfilmen vielversprechende Eigenschaften bei der Nutzung in elektrochemischen Doppelschichtkondensatoren, wie hohe spezifische Kapazitäten, gute Langzeitstabilitäten und hohe Arbeitsfrequenzen bei Lade- und Entladevorgängen.
17

Superkapacitory pro akumulaci energie / Supercapacitors energy storage

Kovařík, Jakub January 2017 (has links)
This paper describes the design of DC/DC converters designed for charging supercapacitors and subsequent transformation of voltage to the desired value. In the text are presented decreasing and increasing switched-mode voltage converter including the calculation of the individual components and also the design of converter that combines both types. Using simulation software has been verified the function of each circuits, which can serves as a lower power backup supply.
18

Nanoporous Carbons: Porous Characterization and Electrical Performance in Electrochemical Double Layer Capacitors

Caguiat, Johnathon 21 November 2013 (has links)
Nanoporous carbons have become a material of interest in many applications such as electrochemical double layer capacitors (supercapacitors). Supercapacitors are being studied for their potential in storing electrical energy storage from intermittent sources and in use as power sources that can be charged rapidly. However, a lack of understanding of the charge storage mechanism within a supercapacitor makes it difficult to optimize them. Two components of this challenge are the difficulties in experimentally characterizing the sub-nanoporous structure of carbon electrode materials and the electrical performance of the supercapacitors. This work provides a means to accurately characterize the porous structure of sub-nanoporus carbon materials and identifies the current limitations in characterizing the electrical performance of a supercapacitor cell. Future work may focus on the relationship between the sub-nano porous structure of the carbon electrode and the capacitance of supercapacitors, and on the elucidation of charge storage mechanisms.
19

Nanoporous Carbons: Porous Characterization and Electrical Performance in Electrochemical Double Layer Capacitors

Caguiat, Johnathon 21 November 2013 (has links)
Nanoporous carbons have become a material of interest in many applications such as electrochemical double layer capacitors (supercapacitors). Supercapacitors are being studied for their potential in storing electrical energy storage from intermittent sources and in use as power sources that can be charged rapidly. However, a lack of understanding of the charge storage mechanism within a supercapacitor makes it difficult to optimize them. Two components of this challenge are the difficulties in experimentally characterizing the sub-nanoporous structure of carbon electrode materials and the electrical performance of the supercapacitors. This work provides a means to accurately characterize the porous structure of sub-nanoporus carbon materials and identifies the current limitations in characterizing the electrical performance of a supercapacitor cell. Future work may focus on the relationship between the sub-nano porous structure of the carbon electrode and the capacitance of supercapacitors, and on the elucidation of charge storage mechanisms.
20

Synthese von porösen Kohlenstoffmaterialien aus Polysilsesquioxanen für die Anwendung in elektrochemischen Doppelschichtkondensatoren

Meier, Andreas 20 January 2015 (has links)
Elektrochemische Doppelschichtkondensatoren (engl. Electrochemical Double-Layer Capacitors, EDLCs) stellen eine zunehmend wichtige Technologie auf dem Markt der elektrischen Energiespeicher dar. Sie zeichnen sich durch die Aufnahmefähigkeit großer Energiemengen, eine hohe Langzeitstabilität und ein schnelles Ansprechverhalten aus. Diese Eigenschaften sind Gründe, weshalb EDLCs als Speicherbausteine für Energierück-gewinnungssysteme oder zur Stabilisierung der Stromversorgung in diversen elektronischen Bauelementen eingesetzt werden. Die Aufnahme der Energie erfolgt über Ladungsseparation von Elektrolytionen an der Elektrodenoberfläche. Die Kapazität der Speicherfähigkeit wird dabei maßgeblich vom Betrag der Elektrodenoberfläche und dem Abstand der Elektrolytionen zur Oberfläche der Elektrode bestimmt (bei gleichbleibendem Elektrolyten). In der gegenwärtigen Forschung werden neue Elektrodenmaterialien entwickelt, um über deren Systemeigenschaften, wie Leitfähigkeit und Porosität, die Leistungsfähigkeit der Doppelschichtkondensatoren weiter zu optimieren. Gängige Komponenten für Elektroden in diesen Bauelementen stellen Kohlenstoffmaterialien dar, da diese chemisch inert und zumeist kostengünstig in der Produktion sind. In der vorliegenden Arbeit sollte die Eignung der Materialklasse der Siliziumoxykarbid-abgeleiteten Kohlenstoffe (engl. Silicon Oxycarbide-Derived Carbons, SiOCDCs) für die Anwendung in elektrochemischen Doppelschichtkondensatoren untersucht werden. Die SiOCDCs wurden über die Pyrolyse (700 – 1500 °C) und Chlorierung (700 – 1000 °C) eines kohlenstoffreichen Polysilsesquioxans mit der theoretischen Zusammensetzung C6H5SiO3/2 erzeugt. Dabei zeigte sich, dass sowohl die porösen Eigenschaften als auch die Leitfähigkeit innerhalb der erhaltenen Kohlenstoffmaterialien stark von der Synthesetemperatur abhängen. Somit konnten reine Kohlenstoffe mit spezifischen Oberflächen bis zu 2400 m2 g-1 und Porenvolumina von 1,9 cm3 g-1 synthetisiert werden. Im Verlauf der Arbeit wurde eine geeignete Methode zur Verarbeitung der erzeugten Oxykarbid-abgeleiteten Kohlenstoffe zu Elektroden evaluiert, um eine elektrochemische Charakterisierung vorzunehmen. Ein vielversprechender Ansatz stellt die vollkommen trockene Umsetzung der SiOCDCs zu freistehenden Elektrodenschichten dar. Dieses Verfahren nutzt die Verreibung der Aktivkomponente mit einem geringen Anteil (5 Gew.-%) eines Bindemittels (Polytetrafluorethylen, PTFE) aus, um flexible und selbsttragende Elektrodenfolien zu erzeugen. Die Vorteile dieses Prozesses gegenüber anderen Verarbeitungsarten liegen darin, dass aufwendige Trocknungsverfahren während der Elektrodenherstellung entfallen und die Schichtdicken der resultierenden Folien unmittelbar eingestellt werden können. Während der Untersuchung der unterschiedlichen Elektrodensysteme im organischen Elektrolyten (1 M Tetraethylammoniumtetrafluoroborat-Lösung in Acetonitril) konnten spezifische Kapazitäten von bis zu 120 F g-1 gemessen werden. Des Weiteren zeigte sich der Einfluss der Kohlenstoffstruktur innerhalb der Aktivmaterialien auf die elektrochemischen Resultate. So konnte festgestellt werden, dass eine zunehmende Graphitisierung im Kohlenstoff, welche mit einer steigenden Mesoporosität im SiOCDC einherging, zu einer verbesserten Leitfähigkeit innerhalb der EDLC-Elektroden führte, aber auch eine Verringerung der spezifischen Kapazität bedeutete. Die Verringerung der Widerstände im System weitete erheblich den Bereich der nutzbaren Arbeitsfrequenzen und die Strombelastbarkeit des Elektrodenmaterials aus. So bestand die Möglichkeit ein mesoporöses Kohlenstoffmaterial zu synthetisieren, welches mit einer maximalen Arbeitsfrequenz von 8 Hz einen Wert zeigte, der zwei Größenordnungen über der Arbeitsfrequenz eines kommerziell erhältlichen Standards (Aktivkohle YP-50F) lag. Dieses exzellente Ansprechverhalten bildet die Grundlage für den Einsatz in Hochleistungsspeichersystemen. Des Weiteren offenbarte sich, dass die trocken prozessierten Elektroden das Potential für eine hohe Langzeitstabilität besitzen, da je nach Elektrodensystem ein Erhalt von 94% der Ursprungskapazität über 10.000 Lade-/Entladezyklen beobachtet werden konnte. Die Modifikation der Elektrodenmaterialien mittels CO2-Aktivierung und eine damit verbundene Erhöhung der spezifischen Oberfläche führten zu einer Verbesserung der spezifischen Kapazität der Aktivkomponenten um bis zu 33%. Zusammenfassend bleibt zu erwähnen, dass poröse Oxykarbid-abgeleitete Kohlenstoffe erfolgreich über die Chlorierung von keramischen Vorläuferverbindungen synthetisiert werden konnten. Die Kohlenstoffmaterialien zeigten nach der Prozessierung zu freistehenden und flexiblen Elektrodenfilmen vielversprechende Eigenschaften bei der Nutzung in elektrochemischen Doppelschichtkondensatoren, wie hohe spezifische Kapazitäten, gute Langzeitstabilitäten und hohe Arbeitsfrequenzen bei Lade- und Entladevorgängen.

Page generated in 0.0817 seconds