• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 19
  • 11
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 95
  • 44
  • 16
  • 15
  • 15
  • 12
  • 12
  • 12
  • 12
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Influence de la formulation de pâtes de farine de blé sur leur consommation d'oxygène et leur production de dioxyde de carbone au cours du pétrissage et de la fermentation : Conséquences biochimiques et rhéologiques / Influence of wheat dough formulation on its oxygen consumption and its carbon dioxide production during kneading and fermentation : Biochemical et rheological consequences

Buche, François 26 May 2011 (has links)
Le pétrissage et la fermentation des pâtes constituent deux étapes clé de la panification. Lors du pétrissage, l'oxygène incorporé à la pâte alimente en substrat oxydant les réactions d'oxydation, pour la plupart enzymatiques, conduisant au développement des réseaux de gluten et d'arabinoxylanes donnant à la pâte ses propriétés viscoélastiques et son aptitude à la rétention gazeuse. Lors de la fermentation, la production de dioxyde de carbone par la levure conditionne la levée du pâton. Un pétrin-fermenteur étanche, le sitoxygraphe, a été utilisé pour quantifier, à tout instant au cours du pétrissage et de la fermentation, la consommation d'oxygène et la production de dioxyde de carbone en distinguant la part de CO2 qui est retenue par la pâte de celle qui apparaît dans la phase gazeuse. Une modification de la formulation de la pâte de farine de blé – par l'ajout, seul ou en mélange, de levure, d'oses oxydases, de farine de fève ou de soja, de lipases – augmente sa consommation d'oxygène, et affecte sa teneur en acides gras polyinsaturés, son état d'agrégation des protéines et ses propriétés rhéologiques. Il existe, par exemple, une compétition pour l'utilisation de l'oxygène entre la levure, qui respire durant le pétrissage, et les oxydoréductases endogènes ou exogènes. Elle se traduit par une diminution des effets biochimiques et rhéologiques des oxydoréductases exogènes. L'utilisation d'atmosphères enrichies en oxygène en début de pétrissage devrait permettre de limiter ces compétitions et donc d'amplifier l'activité des oxydoréductases exogènes. / Kneading and fermentation of dough are two key steps in bread making. During kneading, incorporated oxygen into dough supplies in oxidizing substrate oxidation reactions, most of them are enzymatic, leading to the development of gluten and arabinoxylans networks giving dough viscoelastic properties and its ability to gas retention. During fermentation, the production of carbon dioxide by yeast determines the volume increase of the dough. An airtight knerder-fermenter, the sitoxygraphe, has been used to quantify, at any moment during of kneading and fermentation, oxygen consumption and carbon dioxide production by distinguishing the part of CO2 that is retained by dough from that which appears in the gas phase. A modification of dough formulation prepared with wheat flour - by adding one or a mix of, yeast, oses oxidases, horse bean or soybean flour, lipases - increases oxygen consumption and affects its content of polyunsaturated fatty acids, its protein aggregation and its rheological properties. For example, there is a competition for the use of oxygen between the yeast, which breathes during kneading and endogenous or exogenous oxidoreductases. It results in a decrease of rheological and biochemical effects of exogenous oxidoreductases. The use of atmospheres enriched with oxygen at the beginning of kneading should allow limiting these competitions and amplifying exogenous oxidoreductases activity.
42

A procedure for the production of millet rotis

Olewnik, Maureen C January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
43

Comparison of residual sugar and firming characteristics of white pan bread made by sponge dough and short-time dough processes

Kai, Tatsuo. January 1985 (has links)
Call number: LD2668 .T4 1985 K34 / Master of Science
44

The use of chemical leavening in frozen doughs

Holm, Jill T. January 1986 (has links)
Call number: LD2668 .T4 1986 H645 / Master of Science / Grain Science and Industry
45

Estudo da estrutura de massas de pães elaboradas a partir de diferentes processos fermentativos / Study of the dough structure of bread made from different fermentation processes

Aquino, Vanessa Cukier de 18 May 2012 (has links)
Massas de pães são preparadas a partir da mistura de farinha de trigo, água, sal e fermento. Ao entrar em contato com a água e sofrer amassamento mecânico, a farinha de trigo tem a propriedade, quase exclusiva, de produzir uma massa coesa e viscoelástica, por conter proteínas formadoras de glúten. O processo de mistura pela qual passam as massas de pães, seguido de etapas de fermentação é fundamental para o bom desenvolvimento da massa e qualidade final do pão acabado. As análises de textura (back extrusion e extensibilidade) e volume, em massa crua de pão, podem avaliar o desenvolvimento e a qualidade de massas, eficácia de formulações e a eficiência dos ingredientes usados na melhoria do desenvolvimento da massa e do pão acabado. O projeto teve como objetivo elaborar formulações de massas de pães por diferentes processos de fermentação e testá-las através das análises de textura por extensibilidade e back extrusion, e volume sendo esta última sugerida para esse fim. Também foi testada a substituição de parte da farinha de trigo por triticale. As formulações utilizadas incluíram diferentes métodos de preparo de massas, como método direto e indireto, sendo nove formulações propostas. Pelo método direto o fermento seco instantâneo é adicionado diretamente à farinha e em seguida os demais ingredientes da formulação são adicionados, em uma única fase, seguido das etapas de mistura e fermentação. Já para as massas elaboradas de forma indireta, preparou-se uma massa fermentada denominada esponja, que foi feita com parte da farinha e da água e todo fermento seco instantâneo da formulação, deixada fermentar durante uma hora. Em uma segunda fase, a esponja foi adicionada ao restante dos ingredientes, seguido das etapas de mistura e fermentação. Os resultados das análises mostraram as diferenças do comportamento reológico de massas preparadas por diferentes processos fermentativos e a influência dos ingredientes como, o iogurte, adicionado por conter substâncias que são encontradas em pães fermentados naturalmente, resultando no aumento dos parâmetros reológico das massas contendo esse ingrediente. / Dough of bread are prepared from the mixture of flour wheat, water, salt and yeast. By contacting the water and suffer mechanical kneading the flour has property, almost exclusively, to produce a cohesive dough and viscoelasticity, which contain gluten-forming proteins. The mixing process through which runs the dough of bread, followed stages of fermentation is essential for the dough development and final quality of the finished bread. The analysis of texture (back extrusion and extensibility) and the volume dough of raw bread, can measure the development and quality of dough, formulation\'s effectiveness and efficiency of ingredients used in enhancing development of dough and the finished bread. The project had the object to develop formulations of doug for different fermentation processes and test them through the analysis of texture by extensibility and back extrusion, the latter being suggested for this purpose. Also was tested the substitution of part of the flour for triticale. The formulations used included different methods of preparation of dough, as a direct and indirect method, being nine formulations proposed. Through direct method the instant dry yeast is added directly to flour and then other ingredients formulation are added in a single phase, followed by stages of mixing and fermentation. To the dough produced in an indirect way, has been prepared a fermented dough called sponge, which is made with part of the flour and water and all instant dry yeast used in the formulation, and left to ferment for one hour. In a second phase, the sponge was added to the rest of the ingredients, followed the steps of mixing and fermentation. The analysis results showed the differences of rheological behavior of doughs prepared by different fermentation processes and the influence of ingredients as yogurt, added to contain substances that are found in naturally fermented breads, resulting in the increase of rheological parameters of the dough containing this ingredient.
46

Ey! Dough

Canales Montoya, Joana Vanessa, Heringman Schnaiderman, Berko, Jara Almonte Cuadra, Diego Renato, Jimenez Cohen, Gabriela Adriana, Valdivia Orchessi, Jose Luis 05 July 2019 (has links)
Nuestro trabajo de investigación se basa en un plan de negocio, el cual demuestra como una industria o mercado estático puede revolucionarse integrando la innovación y personalización en conjunto. En este sentido, se ha creado la marca “Ey! Dough”, un nuevo formato para consumir masa de galletas, en donde el cliente puede diseñar su pedido, combinando diferentes sabores y toppings en base a sus gustos y preferencias. A partir del uso de métodos de validación, como encuestas y focus group, hemos podido determinar que nuestro público objetivo se encuentra en un entorno cambiante y busca seguir las tendencias, sobre todo cuando se trata del sector gastronómico, que es uno de los más fuertes en nuestro país. La ventaja competitiva de nuestra marca es la diferenciación. Actualmente, los competidores de nuestro sector solo ofrecen productos hechos a base de masa de galletas en un formato predeterminado y con un único sabor, ninguno de ellos aplica nuestro formato personalizable. Por otro lado, se ha logrado validar la aceptación del producto a través de nuestros canales de ventas. De ellos, el más importante son las redes sociales, ya que nos han generado las ganancias más significativas de la empresa hasta el momento. Ha sido tan buena la aceptación de la marca que una de las plataformas móviles de entrega a domicilio más importantes, Uber Eats, nos han ofrecido afiliarse con nosotros por un periodo de prueba determinado. / Our research work is based on a business plan, which demonstrates how an industry or static market can be revolutionized by integrating innovation and personalization together. In this sense, the brand "Ey! Dough", a new format to consume cookie dough, where the customer can design their order, combining different flavors and toppings based on their tastes and preferences. From the use of validation methods, such as surveys and focus group, we have been able to determine that our target audience is in a changing environment and seeks to follow trends, especially when it comes to the culinary sector, which is one of the strongest in our country. The competitive advantage of our brand is differentiation. Currently, the competitors of our sector only offer products made from cookie dough in a predetermined format and with a unique flavor, none of them applies our customizable format. On the other hand, we have validated the acceptance of the product through our sales channels. Of these, the most important are social networks, since they have generated the most significant earnings of the company so far. Acceptance of the brand has been so good that one of the most important mobile home delivery platforms, Uber Eats, has offered to join us for a certain trial period. / Trabajo de investigación
47

Genetic manipulation of baker's yeast for improved maltose utilisation

Yip, Hopi, University of Western Sydney, Hawkesbury, Faculty of Science and Technology January 1999 (has links)
Two yeast/E.coli shuttle vector plasmids were studied in 1994, termed pIBIDB and pBP33. According to this study, each plasmid should contain at least one ADH2UAS (upstream activation sequence in the alcohol dehydrogenase 2 gene) insert. In the present study, the constructed plasmids were analysed and transformed into laboratory strain yeast. The aim of this project was to identify the orientation, quantity and quality of the insert in the selected plasmids. Methods such as restriction analysis, polymerase chained reaction (PCR), sequencing, plate assays and enzyme assays were used to identify and evaluate the novel inserts. The data presented in this thesis suggest the inserted ADH2UAS fragment did enhance the production of maltose permease and maltase when the transformants were cultivated in maltose and ethanol-glycerol medium. The results suggested that transformants containing two inserts of ADH2UAS had a greater influence on the transformants than a single insert. But the inserts within the vectors and in transformed laboratory stain yeast appeared unstable. This could be due to the method used for plasmid construction and the storage condition of the transformants / Master of Science (Hons)
48

Bubble size distributions in non-yeasted wheat (Triticum aestivum L.) flour dough

Koksel, Havva Filiz January 2014 (has links)
Bread owes its appeal to its aerated structure which directly relies on the bubbles entrained into the dough during mixing. If the bubble size distribution (BSD) in the dough can be determined at the end of mixing, then the resulting loaf quality could be predicted before bread is fully manufactured. However, non-invasively monitoring the structure of a fragile opaque soft solid such as dough is challenging. This thesis addressed the challenge by determining dough’s BSD and its evolution using ultrasound and X-ray microtomography. Using a resonant scattering model and the frequency dependence of the ultrasonic parameters measured in the dough, the change in the BSD in dough (made without yeast) with time as a result of disproportionation was determined. At 30 min after mixing, the median radius (R0) of the lognormal BSD was 6.5 microns. Converting the BSD to the radius dependence of bubble volume fraction (BVF(R)), R0V (the median radius of BVF(R)) was 66.4 microns and increased 18 % in the succeeding 90 min. In order to validate the bubble sizes determined ultrasonically, X-rays from a synchrotron source were utilized to examine dough’s microstructure. Large numbers of very small bubbles were discovered and it was apparent that lognormality did not describe the BSDs. Nevertheless, lognormal characterization of the BVF(R) was appropriate. At 30 min after mixing R0V of the BVF(R) was 32.5 microns and it increased by 20 % in the succeeding 90 min, supporting the ultrasonic quantification of bubble volume changes due to disproportionation. Changes in the mode, median and mean of the BVF(R) with time after mixing had the same trend for ultrasound and for X-ray microtomography. The time evolution of the mode of the BVF(R) obtained by ultrasound and X-ray microtomography matched very well; both increasing linearly as a function of time. Ultrasonic assessments of bubble sizes and their changes with time are very encouraging, but the ultrasonic model should use distribution functions that precisely define the empirical data, perhaps not making ‘pre-assumptions’ of lognormality for the BSD data. / February 2015
49

Conformational Change in the Structure of Wheat Proteins During Mixing in Hard and Soft Wheat Doughs

Jazaeri, Sahar 19 March 2013 (has links)
This thesis describes an investigation of the mechanistic differences of hard and soft wheat varieties in the course of dough formation. These two classes of wheat exhibit dissimilar end-use, as hard wheat flour is known for its bread making attributes, whereas soft wheat flour is suitable for cake and cookie production. This difference is related to the grain hardness, protein content and property of gluten, in addition to chemical interactions that are occurring during dough making. Covalent and hydrophobic interactions, as well as hydrogen bond formation, are the main interactions that take place during dough mixing. However, the contribution of each interaction in dough formation of hard and soft wheat is not known. One variety of hard and one variety of soft wheat flour were mixed to their optimum hydration level (500 BU), as determined by farinograph. The extent of covalent interactions of gluten proteins during dough mixing was examined by monitoring changes in the solubility of flour proteins in a 2% Sodium Dodecyl Sulfate (SDS) media. Moreover, the contribution of thiol groups to covalent bond was examined by measuring the changes in the accessible thiols throughout the mixing. Lower extractability of proteins and accessible thiols of hard wheat dough, compared to soft wheat dough, indicated the predominant role of covalent interactions in hard wheat dough. The complementary results from Size Exclusion High Performance Liquid Chromatography (SE-HPLC) indicated that covalent interaction of hard wheat dough primarily occurs between Low Molecular Weight (LMW) and High Molecular Weight (HMW) gluten proteins, whereas this interaction mainly occurs among LMW proteins in soft wheat doughs. Fewer hydrophobic interactions in hard wheat dough in compare with soft wheat measured by Front-face fluorescence spectroscopy indicated that this interaction is more dominant in soft wheat dough. Study of the conformational change in secondary structure of protein (indirect approach to monitor hydrogen bond) by fourier transform infrared (FTIR) spectroscopy showed that β-sheets are formed in both varieties at their optimum dough strength. In hard wheat dough this structure resulted mainly from disulfide linkages, whereas in soft wheat dough this structure is more likely the result of hydrophobic interactions.
50

Rheological and thermal properties of sorghum dough

Kulamarva, Arun. January 2005 (has links)
Sorghum is a gluten free cereal and forms the staple diet of a majority of the populations living in the semi-arid tropics dough. It is usually consumed in the form of bread made from the grain flour. Dough made with sorghum flour has poor viscoelastic properties compared to wheat dough and mechanical methods for production of sorghum roti are scarce. This study was conducted to elucidate the rheological and thermal properties of sorghum dough to establish its behavior. The temperature and amount of water used for preparation of the dough and the composition of the flour were varied. Wheat, soya and black gram flours were used to prepare the composite doughs. Sensory characteristics of roti made with these dough samples by the traditional method and mechanical compression were studied. The results are presented and their implications are discussed.

Page generated in 0.0238 seconds