• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 13
  • 2
  • 1
  • Tagged with
  • 38
  • 38
  • 32
  • 23
  • 15
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Simulação de escoamentos não-periódicos utilizando as metodologias pseudo-espectral e da fronteira imersa acopladas / Simulation of non-periodics flows using the fourier pseudo-spectral and immersed boundary methods

Mariano, Felipe Pamplona 06 March 2007 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Modern engineering increasingly requires the comprehension of phenomena related to combustion, aeroacustics, turbulence transition, among others. For these purposes the Computational Fluids Dynamics (CFD) requires the used high order methods. One of these methods is the Fourier pseudo-spectral method, that provides an excellent numerical accuracy, and with the use of the Fast Fourier Transform algorithm (FFT), it presents a low computational cost in comparison to anothers high-order methods. Another important issue is the projection method of the pression term, which does not require the pressure computation from the Navier-Stokes equations. The procedure to calculate the pression field is usually the most onerous in classical methodologies. Nevertheless, the pseudo-spectral method can be only applied to periodic boundary flows, thus limiting its use. Aiming to solve this restriction, a new methodology is proposed at the present work, which has the objective of simulating nonperiodic flows using the Fourier pseudo-spectral method. For this purpose the immersed boundary method, that represents the boundary conditions through a force field imposed at Navier-Stokes equations is used. As a test to this new methodology, a classic problem of Computational Fluid Dynamics, The Lid Driven Cavity was simulated. The obtained results are promising and demonstrate the possibility to simulating non-periodic flows making use of the Fourier pseudo-spectral method. / Para compreender fenômenos relacionados à combustão, aeroacústica, transição a turbulência entre outros, a Dinâmica de Fluídos Computacional (CFD) utiliza os métodos de alta ordem. Um dos mais conhecidos é o método pseudo-espectral de Fourier, o qual alia: alta ordem de precisão na resolução das equações, com um baixo custo computacional. Este está ligado à utilização da FFT e do método da projeção do termo da pressão, o qual desvincula os cálculos da pressão da resolução das equações de Navier-Stokes. O procedimento de calcular o campo de pressão, normalmente é o mais oneroso nas metodologias convencionais. Apesar destas vantagens, o método pseudo-espectral de Fourier só pode ser utilizado para resolver problemas com condições de contorno periódicas, limitando o seu uso no campo da dinâmica de fluídos. Visando resolver essa restrição uma nova metodologia é proposta no presente trabalho, que tem como objetivo simular escoamentos não-periódicos utilizando o método pseudo-espectral de Fourier. Para isso, é utilizada a metodologia da Fronteira Imersa, a qual representa as condições de contorno de um escoamento através de um campo de força imposto nas equações de Navier-Stokes. Como teste, para essa nova metodologia, foi simulada uma cavidade com tampa deslizante (Lid Driven Cavity), problema clássico da mecânica de fluídos, que objetiva validar novas metodologias e códigos computacionais. Os resultados obtidos são promissores e demostram que é possível simular um escoamento não-periódico com o método pseudo-espectral de Fourier. / Mestre em Engenharia Mecânica
32

Efficient Semi-Implicit Time-Stepping Schemes for Incompressible Flows

Loy, Kak Choon January 2017 (has links)
The development of numerical methods for the incompressible Navier-Stokes equations received much attention in the past 50 years. Finite element methods emerged given their robustness and reliability. In our work, we choose the P2-P1 finite element for space approximation which gives 2nd-order accuracy for velocity and 1st-order accuracy for pressure. Our research focuses on the development of several high-order semi-implicit time-stepping methods to compute unsteady flows. The methods investigated include backward difference formulae (SBDF) and defect correction strategy (DC). Using the defect correction strategy, we investigate two variants, the first one being based on high-order artificial compressibility and bootstrapping strategy proposed by Guermond and Minev (GM) and the other being a combination of GM methods with sequential regularization method (GM-SRM). Both GM and GM-SRM methods avoid solving saddle point problems as for SBDF and DC methods. This approach reduces the complexity of the linear systems at the expense that many smaller linear systems need to be solved. Next, we proposed several numerical improvements in terms of better approximations of the nonlinear advection term and high-order initialization for all methods. To further minimize the complexity of the resulting linear systems, we developed several new variants of grad-div splitting algorithms besides the one studied by Guermond and Minev. Splitting algorithm allows us to handle larger flow problems. We showed that our new methods are capable of reproducing flow characteristics (e.g., lift and drag parameters and Strouhal numbers) published in the literature for 2D lid-driven cavity and 2D flow around the cylinder. SBDF methods with grad-div stabilization terms are found to be very stable, accurate and efficient when computing flows with high Reynolds numbers. Lastly, we showcased the robustness of our methods to carry 3D computations.
33

Simulação de grandes escalas de escoamentos turbulentos com filtragem temporal via método de volumes finitos / Temporal large eddy simulation of turbulent flows via finite volume method

Laís Corrêa 14 December 2015 (has links)
Este trabalho tem como principal objetivo o desenvolvimento de um método numérico para simulação das grandes escalas de escoamentos turbulentos tridimensionais utilizando uma modelagem de turbulência baseada em filtragem temporal (denominada TLES - Temporal Large Eddy Simulation). O método desenvolvido combina discretizações temporais com ordem de mínima precisão 2 (Adams-Bashforth, QUICK, Runge-Kutta), um método de projeção de ordem 2, com discretizações espaciais também de ordem 2 obtidas pelo método de volumes finitos. Esta metodologia foi empregada na simulação de problemas teste turbulentos como o canal e a cavidade impulsionada, sendo este último resultado simulado pela primeira vez com modelagem TLES. Os resultados mostram uma excelente concordância quando comparado com resultados de simulações diretas (DNS) e dados experimentais, superando resultados clássicos obtidos com formulação LES com filtragem espacial. / The main objective of this work is to develop a numerical method for large eddy simulation of tridimensional turbulent flows using a model based on temporal filtering (TLES - Temporal Large Eddy Simulation). The developed method combines at least 2nd order temporal discretizations (Adams-Bashforth, QUICK, Runge-Kutta), a 2nd order projection method, and 2nd order spatial discretizations obtained by the finite volume method. This methodology was employed to the simulation of turbulent benchmark problems such as channel and lid-driven cavity flows. The latter is simulated for the first time using a TLES turbulence modelling. Results show excellent agreement when compared to Direct Numerical Simulations (DNS) and experimental data, with better results than classical results produced by standard LES formulation with spatial filtering.
34

Numerická simulace proudění nestlačitelných kapalin metodou spektrálních prvků / Numerical simulation of incompressible fluid flow by the spectral element method

Pokorný, Jan January 2008 (has links)
Tato diplomová práce prezentuje metodu spektrálních prvků. Tato metoda je použita k řešení stacionárního 2-D laminárního proudění Newtonovské nestlačitelné tekutiny. Proudění je popsáno stacionarní Navier-Stokesovou rovnicí. Dohromady s okrajovou pod- mínkou tvoří Navier-Stokesův problém. Na slabou formulaci této úlohy je aplikována metoda spektrálních prvků. Touto discretizací se získá soustava nelineárních rovnic. K obrdžení lineární soustavy je použita Newtonova iterační metoda. Podorobný algorit- mus tvoří jádro Navier-Stokeseva solveru, který je naprogramován v Matlabu. Na závěr jsou pomocí tohoto solveru řešeny dva příklady: proudění v kavitě a obtékání válce. Přík- lady jsou řešeny pro různé Reynoldsovy čísla. První od 1 do 1000 a druhý od 1 do 100.
35

Global stability analysis of three-dimensional boundary layer flows

Brynjell-Rahkola, Mattias January 2015 (has links)
This thesis considers the stability and transition of incompressible boundary layers. In particular, the Falkner–Skan–Cooke boundary layer subject to a cylindrical surface roughness, and the Blasius boundary layer with applied localized suction are investigated. These flows are of great importance within the aviation industry, feature complex transition scenarios, and are strongly three-dimensional in nature. Consequently, no assumptions regarding homogeneity in any of the spatial directions are possible, and the stability of the flow is governed by an extensive three-dimensional eigenvalue problem. The stability of these flows is addressed by high-order direct numerical simulations using the spectral element method, in combination with a Krylov subspace projection method. Such techniques target the long-term behavior of the flow and can provide lower limits beyond which transition is unavoidable. The origin of the instabilities, as well as the mechanisms leading to transition in the aforementioned cases are studied and the findings are reported. Additionally, a novel method for computing the optimal forcing of a dynamical system is developed. This type of analysis provides valuable information about the frequencies and structures that cause the largest energy amplification in the system. The method is based on the inverse power method, and is discussed in the context of the one-dimensional Ginzburg–Landau equation and a two-dimensional flow case governed by the Navier–Stokes equations. / <p>QC 20151015</p>
36

Approximations de rang faible et modèles d'ordre réduit appliqués à quelques problèmes de la mécanique des fluides / Low rank approximation techniques and reduced order modeling applied to some fluid dynamics problems

Lestandi, Lucas 16 October 2018 (has links)
Les dernières décennies ont donné lieux à d'énormes progrès dans la simulation numérique des phénomènes physiques. D'une part grâce au raffinement des méthodes de discrétisation des équations aux dérivées partielles. Et d'autre part grâce à l'explosion de la puissance de calcul disponible. Pourtant, de nombreux problèmes soulevés en ingénierie tels que les simulations multi-physiques, les problèmes d'optimisation et de contrôle restent souvent hors de portée. Le dénominateur commun de ces problèmes est le fléau des dimensions. Un simple problème tridimensionnel requiert des centaines de millions de points de discrétisation auxquels il faut souvent ajouter des milliers de pas de temps pour capturer des dynamiques complexes. L'avènement des supercalculateurs permet de générer des simulations de plus en plus fines au prix de données gigantesques qui sont régulièrement de l'ordre du pétaoctet. Malgré tout, cela n'autorise pas une résolution ``exacte'' des problèmes requérant l'utilisation de plusieurs paramètres. L'une des voies envisagées pour résoudre ces difficultés est de proposer des représentations ne souffrant plus du fléau de la dimension. Ces représentations que l'on appelle séparées sont en fait un changement de paradigme. Elles vont convertir des objets tensoriels dont la croissance est exponentielle $n^d$ en fonction du nombre de dimensions $d$ en une représentation approchée dont la taille est linéaire en $d$. Pour le traitement des données tensorielles, une vaste littérature a émergé ces dernières années dans le domaine des mathématiques appliquées.Afin de faciliter leurs utilisations dans la communauté des mécaniciens et en particulier pour la simulation en mécanique des fluides, ce manuscrit présente dans un vocabulaire rigoureux mais accessible les formats de représentation des tenseurs et propose une étude détaillée des algorithmes de décomposition de données qui y sont associées. L'accent est porté sur l'utilisation de ces méthodes, aussi la bibliothèque de calcul texttt{pydecomp} développée est utilisée pour comparer l'efficacité de ces méthodes sur un ensemble de cas qui se veut représentatif. La seconde partie de ce manuscrit met en avant l'étude de l'écoulement dans une cavité entraînée à haut nombre de Reynolds. Cet écoulement propose une physique très riche (séquence de bifurcation de Hopf) qui doit être étudiée en amont de la construction de modèle réduit. Cette étude est enrichie par l'utilisation de la décomposition orthogonale aux valeurs propres (POD). Enfin une approche de construction ``physique'', qui diffère notablement des développements récents pour les modèles d'ordre réduit, est proposée. La connaissance détaillée de l'écoulement permet de construire un modèle réduit simple basé sur la mise à l'échelle des fréquences d'oscillation (time-scaling) et des techniques d'interpolation classiques (Lagrange,..). / Numerical simulation has experienced tremendous improvements in the last decadesdriven by massive growth of computing power. Exascale computing has beenachieved this year and will allow solving ever more complex problems. But suchlarge systems produce colossal amounts of data which leads to its own difficulties.Moreover, many engineering problems such as multiphysics or optimisation andcontrol, require far more power that any computer architecture could achievewithin the current scientific computing paradigm. In this thesis, we proposeto shift the paradigm in order to break the curse of dimensionality byintroducing decomposition and building reduced order models (ROM) for complexfluid flows.This manuscript is organized into two parts. The first one proposes an extendedreview of data reduction techniques and intends to bridge between appliedmathematics community and the computational mechanics one. Thus, foundingbivariate separation is studied, including discussions on the equivalence ofproper orthogonal decomposition (POD, continuous framework) and singular valuedecomposition (SVD, discrete matrices). Then a wide review of tensor formats andtheir approximation is proposed. Such work has already been provided in theliterature but either on separate papers or into a purely applied mathematicsframework. Here, we offer to the data enthusiast scientist a comparison ofCanonical, Tucker, Hierarchical and Tensor train formats including theirapproximation algorithms. Their relative benefits are studied both theoreticallyand numerically thanks to the python library texttt{pydecomp} that wasdeveloped during this thesis. A careful analysis of the link between continuousand discrete methods is performed. Finally, we conclude that for mostapplications ST-HOSVD is best when the number of dimensions $d$ lower than fourand TT-SVD (or their POD equivalent) when $d$ grows larger.The second part is centered on a complex fluid dynamics flow, in particular thesingular lid driven cavity at high Reynolds number. This flow exhibits a seriesof Hopf bifurcation which are known to be hard to capture accurately which iswhy a detailed analysis was performed both with classical tools and POD. Oncethis flow has been characterized, emph{time-scaling}, a new ``physics based''interpolation ROM is presented on internal and external flows. This methodsgives encouraging results while excluding recent advanced developments in thearea such as EIM or Grassmann manifold interpolation.
37

Studies on instability and optimal forcing of incompressible flows

Brynjell-Rahkola, Mattias January 2017 (has links)
This thesis considers the hydrodynamic instability and optimal forcing of a number of incompressible flow cases. In the first part, the instabilities of three problems that are of great interest in energy and aerospace applications are studied, namely a Blasius boundary layer subject to localized wall-suction, a Falkner–Skan–Cooke boundary layer with a localized surface roughness, and a pair of helical vortices. The two boundary layer flows are studied through spectral element simulations and eigenvalue computations, which enable their long-term behavior as well as the mechanisms causing transition to be determined. The emergence of transition in these cases is found to originate from a linear flow instability, but whereas the onset of this instability in the Blasius flow can be associated with a localized region in the vicinity of the suction orifice, the instability in the Falkner–Skan–Cooke flow involves the entire flow field. Due to this difference, the results of the eigenvalue analysis in the former case are found to be robust with respect to numerical parameters and domain size, whereas the results in the latter case exhibit an extreme sensitivity that prevents domain independent critical parameters from being determined. The instability of the two helices is primarily addressed through experiments and analytic theory. It is shown that the well known pairing instability of neighboring vortex filaments is responsible for transition, and careful measurements enable growth rates of the instabilities to be obtained that are in close agreement with theoretical predictions. Using the experimental baseflow data, a successful attempt is subsequently also made to reproduce this experiment numerically. In the second part of the thesis, a novel method for computing the optimal forcing of a dynamical system is developed. The method is based on an application of the inverse power method preconditioned by the Laplace preconditioner to the direct and adjoint resolvent operators. The method is analyzed for the Ginzburg–Landau equation and afterwards the Navier–Stokes equations, where it is implemented in the spectral element method and validated on the two-dimensional lid-driven cavity flow and the flow around a cylinder. / <p>QC 20171124</p>
38

A Fractional Step Zonal Model and Unstructured Mesh Generation Frame-work for Simulating Cabin Flows

Tarroc Gil, Sergi January 2021 (has links)
The simulation of physical systems in the early stages of conceptual designs has shown to be a key factor for adequate decision making and avoiding big and expensive issues downstream in engineering projects. In the case of aircraft cabin design, taking into account the thermal comfort of the passengers as well as the proper air circulation and renovation can make this difference. However, current numerical fluid simulations (CFD) are too computationally expensive for integrating them in early design stages where extensive comparative studies have to be performed. Instead, Zonal Models (ZM) appear to be a fast-computation approach that can provide coarse simulations for aircraft cabin flows. In this thesis, a Zonal Model solver is developed as well as a geometry-definition and meshing framework, both in Matlab®, for performing coarse, flexible and computationally cheap flow simulations of user-defined cabin designs. On one hand, this solver consists of a Fractional Step approach for coarse unstructured bi-dimensional meshes. On the other, the cabin geometry can be introduced by hand for simple shapes, but also with Computational Aided Design tools (CAD) for more complex designs. Additionally, it can be chosen to generate the meshes from scratch or morph them from previously generated ones. / <p>The presentation was online</p>

Page generated in 0.068 seconds