• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • 27
  • 15
  • 2
  • Tagged with
  • 133
  • 88
  • 59
  • 46
  • 34
  • 25
  • 24
  • 20
  • 18
  • 16
  • 16
  • 16
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Étude dans la cellule bêta pancréatique de voies inhibitrices de la sécrétion d'insuline liées au métabolisme des lipides

Pepin, Émilie 03 1900 (has links)
Le diabète de type 2 (DT2) est une maladie métabolique complexe causée par des facteurs génétiques mais aussi environnementaux, tels la sédentarité et le surpoids. La dysfonction de la cellule β pancréatique est maintenant reconnue comme l’élément déterminant dans le développement du DT2. Notre laboratoire s’intéresse à la sécrétion d’insuline par la cellule β en réponse aux nutriments calorigéniques et aux mécanismes qui la contrôle. Alors que la connaissance des mécanismes responsables de l’induction de la sécrétion d’insuline en réponse aux glucose et acides gras est assez avancée, les procédés d’inhibition de la sécrétion dans des contextes normaux ou pathologiques sont moins bien compris. L’objectif de la présente thèse était d’identifier quelques-uns de ces mécanismes de régulation négative de la sécrétion d’insuline dans la cellule β pancréatique, et ce en situation normale ou pathologique en lien avec le DT2. La première hypothèse testée était que l’enzyme mitochondriale hydroxyacyl-CoA déshydrogénase spécifique pour les molécules à chaîne courte (short-chain hydroxyacyl-CoA dehydrogenase, SCHAD) régule la sécrétion d’insuline induite par le glucose (SIIG) par la modulation des concentrations d’acides gras ou leur dérivés tels les acyl-CoA ou acyl-carnitine dans la cellule β. Pour ce faire, nous avons utilisé la technologie des ARN interférants (ARNi) afin de diminuer l’expression de SCHAD dans la lignée cellulaire β pancréatique INS832/13. Nous avons par la suite vérifié chez la souris DIO (diet-induced obesity) si une exposition prolongée à une diète riche en gras activerait certaines voies métaboliques et signalétiques assurant une régulation négative de la sécrétion d’insuline et contribuerait au développement du DT2. Pour ce faire, nous avons mesuré la SIIG, le métabolisme intracellulaire des lipides, la fonction mitochondriale et l’activation de certaines voies signalétiques dans les îlots de Langerhans isolés des souris normales (ND, normal diet) ou nourries à la dière riche en gras (DIO) Nos résultats suggèrent que l’enzyme SCHAD est importante dans l’atténuation de la sécrétion d’insuline induite par le glucose et les acides aminés. En effet, l’oxydation des acides gras par la protéine SCHAD préviendrait l’accumulation d’acyl-CoA ou de leurs dérivés carnitine à chaîne courtes potentialisatrices de la sécrétion d’insuline. De plus, SCHAD régule le métabolisme du glutamate par l’inhibition allostérique de l’enzyme glutamate déshydrogénase (GDH), prévenant ainsi une hyperinsulinémie causée par une sur-activité de GDH. L’étude de la dysfonction de la cellule β dans le modèle de souris DIO a démontré qu’il existe une grande hétérogénéité dans l’obésité et l’hyperglycémie développées suite à la diète riche en gras. L’orginialité de notre étude réside dans la stratification des souris DIO en deux groupes : les faibles et forts répondants à la diète (low diet responders (LDR) et high diet responder (HDR)) sur la base de leur gain de poids corporel. Nous avons mis en lumières divers mécanismes liés au métabolisme des acides gras impliqués dans la diminution de la SIIG. Une diminution du flux à travers le cycle TG/FFA accompagnée d’une augmentation de l’oxydation des acides gras et d’une accumulation intracellulaire de cholestérol contribuent à la diminution de la SIIG chez les souris DIO-HDR. De plus, l’altération de la signalisation par les voies AMPK (AMP-activated protein kinase) et PKC epsilon (protéine kinase C epsilon) pourrait expliquer certaines de ces modifications du métabolisme des îlots DIO et causer le défaut de sécrétion d’insuline. En résumé, nous avons mis en lumière des mécanismes importants pour la régulation négative de la sécrétion d’insuline dans la cellule β pancréatique saine ou en situation pathologique. Ces mécanismes pourraient permettre d’une part de limiter l’amplitude ou la durée de la sécrétion d’insuline suite à un repas chez la cellule saine, et d’autre part de préserver la fonction de la cellule β en retardant l’épuisement de celle-ci en situation pathologique. Certaines de ces voies peuvent expliquer l’altération de la sécrétion d’insuline dans le cadre du DT2 lié à l’obésité. À la lumière de nos recherches, le développement de thérapies ayant pour cible les mécanismes de régulation négative de la sécrétion d’insuline pourrait être bénéfique pour le traitement de patients diabétiques. / Type 2 diabetes (T2D) is a complex metabolic disease caused by genetic as well as environmental factors, such as sedentarity and obesity. Pancreatic β cell dysfunction is now recognized as the key factor in T2D development. Our laboratory is studying the mechanisms of regulation of insulin secretion by the pancreatic β cell in response to nutrients. While the knowledge of the mechanisms responsible for initiation of insulin secretion in response to glucose and fatty acids is quite advanced, the inhibitory processes of insulin secretion in normal or pathological situations are still poorly understood. This doctoral thesis has focused on the identification of some of the mechanisms responsible for negative regulation of insulin secretion in pancreatic β cell. We have addressed this issue under normal situation or pathological conditions related to T2D. We first tested the hypothesis by which a mitochondrial enzyme, short-chain hydroxyacyl-CoA dehydrogenase (SCHAD), negatively regulates glucose-induced insulin secretion (GIIS) by limiting the concentrations of some fatty acids and their derivatives such as acyl-CoA or acyl-carnitine molecules in the β cell. For this purpose, the downregulation of SCHAD by RNA interference (RNAi) was used in the pancreatic β cell line INS832/13. Then, we tested wether a prolonged administration of high-fat diet to mice (diet-induced obesity mouse model, DIO) would modulate intracellular metabolic and molecular pathways responsible for inhibition of insulin secretion. C57BL/6 mice were therefore fed a high-fat diet for 8 weeks followed by insulin secretion, intracellular lipid metabolism, mitochondrial function and intracellular signaling measurements on isolated pancreatic islets of Langerhans of those mice. Our results suggest that SCHAD negatively regulates GIIS and amino acid-induced insulin secretion. We propose that fatty acid oxidation by SCHAD would prevent the accumulation of short-chain acyl-CoAs or acyl-carnitines capable of potentiating insulin secretion. In addition, SCHAD regulates glutamate metabolism by the allosteric inhibition of glutamate dehydrogenase (GDH) preventing the hyperinsulinemia caused by excessive GDH activity. The study of β cell dysfunction in the DIO mouse model stratified LDR and HDR highlighted various fatty acid metabolism pathways involved in the reduction of GIIS. A decrease in the triglycerides/free fatty acid (TG/FFA) cycling associated with an increase in fatty acid oxidation and intracellular accumulation of cholesterol was shown to contribute to the decreased GIIS in DIO-HDR mice. Furthermore, alteration of AMP-activated kinase (AMPK) and protein kinase C epsilon (PKC epsilon) signaling pathways would be responsible for those alterations in metabolic pathways observed in DIO islets and cause decreased insulin secretion. In summary, we have shed light on important pathways negatively regulating insulin secretion in pancreatic β cell. These pathways could either limit the amplitude or duration of insulin secretion after a meal, or help to preserve β-cell function by delaying exhaustion. Some of those signaling pathways could explain the altered insulin secretion observed in T2D obese patients. In light of our research, the development of therapies targeting pathways that negatively regulate insulin secretion may be beneficial for treating diabetic patients.
132

Étude dans la cellule bêta pancréatique de voies inhibitrices de la sécrétion d'insuline liées au métabolisme des lipides

Pepin, Émilie 03 1900 (has links)
Le diabète de type 2 (DT2) est une maladie métabolique complexe causée par des facteurs génétiques mais aussi environnementaux, tels la sédentarité et le surpoids. La dysfonction de la cellule β pancréatique est maintenant reconnue comme l’élément déterminant dans le développement du DT2. Notre laboratoire s’intéresse à la sécrétion d’insuline par la cellule β en réponse aux nutriments calorigéniques et aux mécanismes qui la contrôle. Alors que la connaissance des mécanismes responsables de l’induction de la sécrétion d’insuline en réponse aux glucose et acides gras est assez avancée, les procédés d’inhibition de la sécrétion dans des contextes normaux ou pathologiques sont moins bien compris. L’objectif de la présente thèse était d’identifier quelques-uns de ces mécanismes de régulation négative de la sécrétion d’insuline dans la cellule β pancréatique, et ce en situation normale ou pathologique en lien avec le DT2. La première hypothèse testée était que l’enzyme mitochondriale hydroxyacyl-CoA déshydrogénase spécifique pour les molécules à chaîne courte (short-chain hydroxyacyl-CoA dehydrogenase, SCHAD) régule la sécrétion d’insuline induite par le glucose (SIIG) par la modulation des concentrations d’acides gras ou leur dérivés tels les acyl-CoA ou acyl-carnitine dans la cellule β. Pour ce faire, nous avons utilisé la technologie des ARN interférants (ARNi) afin de diminuer l’expression de SCHAD dans la lignée cellulaire β pancréatique INS832/13. Nous avons par la suite vérifié chez la souris DIO (diet-induced obesity) si une exposition prolongée à une diète riche en gras activerait certaines voies métaboliques et signalétiques assurant une régulation négative de la sécrétion d’insuline et contribuerait au développement du DT2. Pour ce faire, nous avons mesuré la SIIG, le métabolisme intracellulaire des lipides, la fonction mitochondriale et l’activation de certaines voies signalétiques dans les îlots de Langerhans isolés des souris normales (ND, normal diet) ou nourries à la dière riche en gras (DIO) Nos résultats suggèrent que l’enzyme SCHAD est importante dans l’atténuation de la sécrétion d’insuline induite par le glucose et les acides aminés. En effet, l’oxydation des acides gras par la protéine SCHAD préviendrait l’accumulation d’acyl-CoA ou de leurs dérivés carnitine à chaîne courtes potentialisatrices de la sécrétion d’insuline. De plus, SCHAD régule le métabolisme du glutamate par l’inhibition allostérique de l’enzyme glutamate déshydrogénase (GDH), prévenant ainsi une hyperinsulinémie causée par une sur-activité de GDH. L’étude de la dysfonction de la cellule β dans le modèle de souris DIO a démontré qu’il existe une grande hétérogénéité dans l’obésité et l’hyperglycémie développées suite à la diète riche en gras. L’orginialité de notre étude réside dans la stratification des souris DIO en deux groupes : les faibles et forts répondants à la diète (low diet responders (LDR) et high diet responder (HDR)) sur la base de leur gain de poids corporel. Nous avons mis en lumières divers mécanismes liés au métabolisme des acides gras impliqués dans la diminution de la SIIG. Une diminution du flux à travers le cycle TG/FFA accompagnée d’une augmentation de l’oxydation des acides gras et d’une accumulation intracellulaire de cholestérol contribuent à la diminution de la SIIG chez les souris DIO-HDR. De plus, l’altération de la signalisation par les voies AMPK (AMP-activated protein kinase) et PKC epsilon (protéine kinase C epsilon) pourrait expliquer certaines de ces modifications du métabolisme des îlots DIO et causer le défaut de sécrétion d’insuline. En résumé, nous avons mis en lumière des mécanismes importants pour la régulation négative de la sécrétion d’insuline dans la cellule β pancréatique saine ou en situation pathologique. Ces mécanismes pourraient permettre d’une part de limiter l’amplitude ou la durée de la sécrétion d’insuline suite à un repas chez la cellule saine, et d’autre part de préserver la fonction de la cellule β en retardant l’épuisement de celle-ci en situation pathologique. Certaines de ces voies peuvent expliquer l’altération de la sécrétion d’insuline dans le cadre du DT2 lié à l’obésité. À la lumière de nos recherches, le développement de thérapies ayant pour cible les mécanismes de régulation négative de la sécrétion d’insuline pourrait être bénéfique pour le traitement de patients diabétiques. / Type 2 diabetes (T2D) is a complex metabolic disease caused by genetic as well as environmental factors, such as sedentarity and obesity. Pancreatic β cell dysfunction is now recognized as the key factor in T2D development. Our laboratory is studying the mechanisms of regulation of insulin secretion by the pancreatic β cell in response to nutrients. While the knowledge of the mechanisms responsible for initiation of insulin secretion in response to glucose and fatty acids is quite advanced, the inhibitory processes of insulin secretion in normal or pathological situations are still poorly understood. This doctoral thesis has focused on the identification of some of the mechanisms responsible for negative regulation of insulin secretion in pancreatic β cell. We have addressed this issue under normal situation or pathological conditions related to T2D. We first tested the hypothesis by which a mitochondrial enzyme, short-chain hydroxyacyl-CoA dehydrogenase (SCHAD), negatively regulates glucose-induced insulin secretion (GIIS) by limiting the concentrations of some fatty acids and their derivatives such as acyl-CoA or acyl-carnitine molecules in the β cell. For this purpose, the downregulation of SCHAD by RNA interference (RNAi) was used in the pancreatic β cell line INS832/13. Then, we tested wether a prolonged administration of high-fat diet to mice (diet-induced obesity mouse model, DIO) would modulate intracellular metabolic and molecular pathways responsible for inhibition of insulin secretion. C57BL/6 mice were therefore fed a high-fat diet for 8 weeks followed by insulin secretion, intracellular lipid metabolism, mitochondrial function and intracellular signaling measurements on isolated pancreatic islets of Langerhans of those mice. Our results suggest that SCHAD negatively regulates GIIS and amino acid-induced insulin secretion. We propose that fatty acid oxidation by SCHAD would prevent the accumulation of short-chain acyl-CoAs or acyl-carnitines capable of potentiating insulin secretion. In addition, SCHAD regulates glutamate metabolism by the allosteric inhibition of glutamate dehydrogenase (GDH) preventing the hyperinsulinemia caused by excessive GDH activity. The study of β cell dysfunction in the DIO mouse model stratified LDR and HDR highlighted various fatty acid metabolism pathways involved in the reduction of GIIS. A decrease in the triglycerides/free fatty acid (TG/FFA) cycling associated with an increase in fatty acid oxidation and intracellular accumulation of cholesterol was shown to contribute to the decreased GIIS in DIO-HDR mice. Furthermore, alteration of AMP-activated kinase (AMPK) and protein kinase C epsilon (PKC epsilon) signaling pathways would be responsible for those alterations in metabolic pathways observed in DIO islets and cause decreased insulin secretion. In summary, we have shed light on important pathways negatively regulating insulin secretion in pancreatic β cell. These pathways could either limit the amplitude or duration of insulin secretion after a meal, or help to preserve β-cell function by delaying exhaustion. Some of those signaling pathways could explain the altered insulin secretion observed in T2D obese patients. In light of our research, the development of therapies targeting pathways that negatively regulate insulin secretion may be beneficial for treating diabetic patients.
133

Rôle de la pression pulsée dans la détérioration des fonctions cérébrovasculaires et cognitives, avec l’âge et en association avec des facteurs de risque vasculaires

de Montgolfier, Olivia 03 1900 (has links)
Au cours du vieillissement, la rigidification des artères élastiques entraine une augmentation de l'amplitude de la pression pulsée centrale, qui se propage dans la microcirculation cérébrale. De façon chronique, l’élévation anormale de la pression pulsée endommage les fonctions vasculaires et cérébrales, pouvant être impliquée dans le développement d’une déficience cognitive d’origine vasculaire. Ceci est supporté par l’observation d’anomalies cérébrovasculaires chez les individus atteints de démence vasculaire et de la maladie d’Alzheimer. De plus, les individus exposés aux facteurs de risque vasculaires (hypertension, obésité, diabète, athérosclérose), démontrent une vascularisation fragilisée, une augmentation de la pression pulsée centrale et présentent un déclin cognitif. Il est donc probable qu’en association avec l’âge, les facteurs de risque vasculaires favorisent de façon mécanistique la propagation de la pression pulsée dans la circulation cérébrale et révèlent de façon prématurée le déclin cognitif. Le lien mécanistique entre l’augmentation de la pression pulsée cérébrale, les facteurs de risque vasculaires, les dommages cérébrovasculaires et l’incidence de la démence reste à être plus clairement investigué. La présente thèse vise ainsi à étudier l’hypothèse biomécanique du rôle délétère de la pression pulsée dans la détérioration des fonctions cérébrovasculaires et cognitives, avec l’âge et en association avec les facteurs de risque vasculaires, en élucidant la cascade des événements pathologiques depuis l’élévation de la pression pulsée centrale jusqu’à l’incidence de la démence. Afin de vérifier notre hypothèse, nous avons entrepris dans une première étude d’étudier chez la souris WT, l’impact de l’augmentation in vivo d’un stress mécanique pulsatile central (par chirurgie TAC) sur la vasculature cérébrale, le tissu cérébral et les fonctions cognitives. Ce stress a été induit en parallèle dans le modèle de souris transgénique APP/PS1 de la maladie d’Alzheimer. Nous avons pu démontrer que les vaisseaux cérébraux des souris WT et APP/PS1 sont vulnérables au stress mécanique de la pression pulsée, caractérisé par une diminution de la réponse vasodilatatrice des artères piales, une raréfaction des capillaires due à une apoptose, l’incidence de micro-hémorragies, une rupture de la barrière hémato-encéphalique et une hypoperfusion cérébrale. Ces dommages cumulatifs à la microcirculation cérébrale sont associés à une inflammation cérébrale et à une diminution des performances d’apprentissage et de mémoire de travail et spatiale des souris. De plus, le phénotype Alzheimer des souris APP/PS1 est exacerbé en présence du stress vasculaire, exprimé par l’augmentation des dépôts béta-amyloïdes, ainsi que la dysfonction endothéliale cérébrale et l’inflammation cérébrale déjà présentes dans ce modèle. Dans une deuxième étude, nous avons caractérisé les fonctions cérébrovasculaires et cognitives des souris transgéniques LDLR-/-;hApoB100+/+ avec l’ajout ou non d’un stress mécanique pulsatile central in vivo (par chirurgie TAC). Ces souris présentent des facteurs de risques des maladies cardiovasculaires (hypertension et dyslipidémie) menant au développement d’athérosclérose et miment un vieillissement artériel central accéléré (rigidité aortique et des carotides, dysfonction endothéliale, augmentation de la pression pulsée). Nous avons démontré que les souris LDLR-/-;hApoB100+/+ exhibent des anomalies cérébrovasculaires structurelles et fonctionnelles, dont une atrophie cérébrale, une dysfonction endothéliale cérébrale, une hypoperfusion cérébrale, une augmentation de la perméabilité de la barrière hémato-encéphalique, des micro-hémorragies corticales, la présence d’inflammation, de sénescence et de stress oxydant au niveau vasculaire et parenchymateux. L’ensemble de ces altérations majoritairement vasculaires, sont associées à une diminution des performances cognitives et sont exacerbées en présence d’un stress vasculaire additif. Nos deux études chez la souris démontrent qu’en présence d’une pression pulsée élevée, les dommages à la microvasculature cérébrale conduisent à une perte fonctionnelle de l’homéostasie cérébrale et à un déclin cognitif, dont l’incidence est accélérée soit dans un modèle de démence ou soit de vieillissement artériel central et en présence de facteurs de risque des maladies cardiovasculaires. Nos études fournissent la démonstration mécanistique d’un continuum entre une augmentation de pression pulsée et un déclin cognitif vasculaire. / With advancing age, the large elastic arteries undergo significant stiffening, resulting in increased central pulse pressure waves that penetrates deeper the cerebral microcirculation and may result in cerebrovascular and neuronal tissue damages, likely contributing to the development of cognitive impairment from vascular injury origin. This is compatible with strong evidence between impaired cerebrovascular structure and function in the brain of patients with vascular dementia or Alzheimer’s disease. In addition, elderly individuals are subjected in their lifetime to multiple vascular risk factors (hypertension, obesity, diabetes, atherosclerosis), all of which are known to be deleterious to the vascular function, are associated with an increase in central pulse pressure and with cognitive decline. Therefore, it is likely that with age, risk factors for vascular diseases may mechanistically promote the propagation of pulse pressure into the cerebrovascular system and reveal prematurely the brain susceptibility to cognitive decline. The present thesis was conducted to study the biomechanical hypothesis of the deleterious role of the pulse pressure in the deterioration of cerebrovascular and cognitive functions, with age and in association with vascular risk factors, by elucidating the cascade of pathological events linking the increase in central pulse pressure to the expression of dementia. To validate our hypothesis, we first studied in mice the impact of the in vivo increase of central pulsatile mechanical stress (achieved by trans-aortic constriction surgery) on the cerebral vasculature, brain tissue and cognitive functions. This stress was also induced in the APP/PS1 transgenic mouse model of Alzheimer's disease. We have shown that cerebral vessels of WT and APP/PS1 mice are vulnerable to the mechanical stress of the increased pulse pressure, which is characterized by a decrease in the vasodilatory response of the pial arteries, a rarefaction of the capillaries due to apoptosis, the incidence of micro-hemorrhages, a rupture of the blood-brain barrier and cerebral hypoperfusion. These cumulative damages to the cerebral microcirculation are associated with brain inflammation and poorer learning and working and spatial memory performances in mice. The Alzheimer's phenotype of APP/PS1 mice was exacerbated in the presence of elevated pulse pressure, as shown by the increase in beta-amyloid deposits, the decreased in endothelial cerebral vasodilatory responses and brain inflammation, which are already present in this model. In a second study, we sought to characterize the cerebrovascular and cognitive functions in the transgenic mouse model LDLR-/-;hApoB100+/+, subjected or not in vivo to a central pulsatile mechanical stress (by trans-aortic constriction surgery). These mice exhibit risk factors for cardiovascular diseases (hypertension and dyslipidemia), develop atherosclerosis and mimic premature central arterial aging (aortic and carotid stiffness, endothelial dysfunction, increased pulse pressure). We reported that LDLR-/-;hApoB100+/+ mice were characterized by structural and functional brain vascular abnormalities, including cerebral hypoperfusion, increased permeability of the blood-brain barrier, endothelial cerebral dysfunction, microhemorrhages, but also cerebral atrophy and the presence of inflammation, senescence and high oxidative stress at the vascular and parenchymal level. In addition, all these alterations, which are mainly vascular, were associated with a decrease in the cognitive performance of mice. Also, these vascular, parenchymal and cognitive changes were exacerbated in the presence of the vascular stress induced by transverse aortic constriction. Altogether, our two studies in mice demonstrated that, in the presence of an increase in pulse pressure, the damages to the micro-cerebrovascular system lead to loss of cerebral homeostasis and to cognitive decline, which are accelerated in a model of dementia or a model of central vascular aging and in presence or vascular risk factors. Our studies highlight the mechanistic demonstration of a continuum between an increase in pulse pressure and vascular cognitive decline.

Page generated in 0.0874 seconds