Spelling suggestions: "subject:"dystrophie"" "subject:"dystrophic""
11 |
Análise da expressão das glicosiltransferases relacionadas com a via de glicosilação da proteína α-distroglicana nas distrofias musculares humanas e murinas / Expression analysis of α-dystroglycan glycosyltranferases in human and murine muscular dystrophiesPinheiro, Danielle Ayub de Barros Guerrieri 24 April 2013 (has links)
As Distrofias Musculares Progressivas constituem um grupo heterogêneo de doenças genéticas caracterizadas por uma degeneração progressiva e irreversível da musculatura esquelética. Recentemente, associaram-se defeitos do mecanismo de glicosilação da proteína α-DG com diversos tipos de distrofias musculares graves. Alterações nesse processo constituem, portanto um novo mecanismo patogenético nas doenças neuromusculares, abrindo novas possibilidades de estudo. Neste sentido, foram objetivos deste trabalho avaliar o perfil de expressão dos genes envolvidos na glicosilação da proteína α-DG em modelos murinos e em pacientes, e tentar relacionar com os diferentes processos distróficos. Verificamos que tanto camundongos normais como distróficos expressam os genes codificantes das glicosiltransferases na seguinte ordem: Pomgnt1>Large>Fkrp>Pomt1, em todas as idades e em todas as linhagens estudadas, sugerindo um mecanismo constante de regulação gênica, independente do crescimento, envelhecimento ou processo distrófico. Também observamos que a sua expressão não é influenciada pelo processo de degeneração/regeneração, uma vez que não houve concordância entre os animais com músculos mais afetados e degenerados (Largemyd e Lama2dy2J/J) e aqueles com músculos menos degenerados (Dmdmdx e SJL/J), e esse padrão se mantém quando se comparam músculos com graus de degeneração diferentes. Nos animais recém-nascidos, verificou-se um aumento de expressão significativo nas linhagens Dmdmdx e Largemyd e uma queda nas linhagens Lama2dy2J/J e SJL/J. Já nos animais adultos, verificou-se maior semelhança ao perfil dos camundongos controles normais da mesma idade, com exceção do gene Large que apresentou expressão diminuída em quase todos os animais em estudo. No músculo humano, observamos uma ordem do nível de expressão diferente do observado em camundongos, com POMT1>POMGnT1>FKRP>LARGE. Os pacientes com DMD apresentaram um aumento da expressão de todos os genes estudados, de forma similar ao observado no grupo de camundongos Dmdmdx recém-nascidos, sugerindo uma associação com a falta de distrofina. Os pacientes LGMD 2I não apresentaram redução significativa da expressão de FKRP, sugerindo que o processo de transcrição é normal, mas a tradução ou a função/atividade da enzima deve estar comprometida. Nos pacientes CMD 1A, onde a deficiência primária da α2-laminina não está associada a defeito de glicosilação da α-DG, observou-se redução na expressão de POMT1 e FKRP, sugerindo que, a deficiência dessas enzimas possivelmente não altera este processo. Na análise de proteínas, não se observou uma correlação direta com os resultados da expressão gênica das glicosiltrasferases, sugerindo mais uma vez que, por serem enzimas, essas proteínas funcionam de forma diferenciada quando comparadas a proteínas estruturais. Entretanto, nas reações com os anticorpos Anti-POMT1 e Anti-FKRP, os camundongos recém-nascidos apresentaram bandas adicionais de peso molecular maior, sugerindo que essas enzimas estão ligadas a outras proteínas ou entre si nos estágios iniciais de desenvolvimento muscular / Muscular Dystrophies (MD) are a heterogeneous group of genetic diseases characterized by progressive and irreversible degeneration of skeletal muscle. Recently, defects in α-DG glycosylation have been associated with different types of severe forms of muscular dystrophies. Therefore, alteration in this mechanism has been considered an important pathogenetic cause of muscle degeneration, opening new avenues for therapies. The main objective of this study is to evaluate the expression cascade of genes involved in the glycosylation of α-DG in murine models and in patients with different molecular defects causing MD. We found that both normal and dystrophic mice express the glycosyltransferases genes in the following quantitative order: Pomgnt1>Large>Fkrp>Pomt1, in all ages and in all studied strains, suggesting a constant mechanism of gene regulation, independent of growth, aging or dystrophic process. We also observed that this pattern of expression is not related to the degeneration/regeneration process, since there was no concordance between the animals with the most degenerated muscles (Largemyd and Lama2dy2J/J) or the less degenerated muscles (Dmdmdx and SJL/J). Additionally, both gastrocnemius (less degenerated in Dmdmdx) and diaphragm (more degenerated in Dmdmdx) presented the same pattern of expression. In newborn animals, a significant increased expression was observed in Dmdmdx and Largemyd and a decrease in Lama2dy2J/J and SJL/J. In adult animals, the expression profile of Pomt1, Pomgnt1 and Fkrp was similar in normal and affected mice, while Large showed a decreased expression in almost all affected animals. In human muscle, the quantitative order of expression of the 4 genes was: POMT1>POMGnT1>FKRP>LARGE, different from the mice. DMD patients showed an increased expression of all the studied genes, in a pattern similar as the observed in the newborns group of the murine Dmdmdx model, suggesting an association with the lack of protein dystrophin. LGMD 2I patients showed no significant reduction in FKRP expression, indicating a normal transcriptional process. In CMD 1A patients, there was a reduction in POMT1 and FKRP expression, in spite of a normal α-DG glycosylation observed in this disease, suggesting that the deficiency of these enzymes may not alter this process. At the protein level, we did not observe a direct correlation between protein quantities of glicosiltrasferases and gene expression, suggesting that enzymes regulation functions differently as compared with structural proteins. Interestingly, antibodies for POMT1 and FKRP detected, in newborn mice, additional bands of higher molecular weight, suggesting that these enzymes are linked to each other or with other proteins in the early stages of muscle development
|
12 |
Phénotypage cardiaque des dystrophies musculaires à l'aide des ultrasons / Cardiac phenotype of muscular dystrophy using echocardiography DopplerFayssoil, Abdallah 14 October 2014 (has links)
Les myopathies d’origine génétique sont des pathologies musculaires en rapport avec des anomalies génétiques. Les myopathies sont à l’origine d’un handicap physique majeur et affectent souvent la fonction respiratoire et parfois le cœur. Nous nous sommes intéressés à la caractérisation myocardique de 4 types de myopathies d’origine génétique à l’aide de l’échocardiographie Doppler : myopathie de Duchenne, sarcoglycanopathies, MELAS syndrome et maladie de Pompe.Nous avons analysé la fonction cardiaque dans 2 modèles murins de dystrophies musculaires: la souris mdx et la souris sgca null. En clinique, nous avons analysé la fonction cardiaque des sujets atteints de myopathie de Duchenne, de sarcoglycanopathies, de MELAS syndrome et de maladie de Pompe en échocardiographie Doppler.Dans les modèles animaux, nous avons retrouvé des anomalies myocardiques chez la souris mdx et chez la souris sgca null. Chez l’homme, l’atteinte myocardique est sévère chez les sujets atteints de myopathie de Duchenne et certains patients présentent un asynchronisme ventriculaire soulevant les indications éventuelles de resynchronisation myocardique. Les sujets atteints de gamma sarcoglycanopathies présentent de façon significative des anomalies de contraction du ventricule gauche comparativement aux sujets atteints d’alpha-sarcoglycanopathies. La fonction ventriculaire droite et gauche est préservée chez les sujets atteints de maladie de Pompe. Les sujets atteints de MELAS présentent des hypertrophies du ventricule gauche. L’analyse génétique retrouve une corrélation significative entre le taux d’hétéroplamie et la survenue d’événements cliniques. / Muscular dystrophies are genetic neuromuscular disorders that affect skeletal muscle. We sought to assess heat involvement in four genetic muscular disorders : Duchenne muscular dystrophy, sarcoglycanopathies, MELAS and adulte Pompe disease. In animal models, we sought to assess, using Echocardiography Doppler, mdx mice and sgca null mice. Myocardiac abnormalities were found in mdx mice and sgca null mice. Clinical studies found severe cardiac impairment in Duchenne muscular dystrophies and ventricular asynchrony was found in patients with severe heart failure. Patients with gamma sarcoglycanopathy have significant alteration of left ventricular function in comparison with patients with alpha sarcoglycanopathy. Left and right ventricular function were preserved in patients with Pompe disease. Left ventricular hypertrophy was found in patients with MELAS. Genetic analysis disclosed significant correlation between heteroplasmy and significant clinical events.
|
13 |
Living with muscular dystrophy : illness experience, activities of daily living, coping, quality of life and rehabilitation /Nätterlund, Birgitta, January 1900 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2001. / Härtill 5 uppsatser.
|
14 |
Análise da expressão das glicosiltransferases relacionadas com a via de glicosilação da proteína α-distroglicana nas distrofias musculares humanas e murinas / Expression analysis of α-dystroglycan glycosyltranferases in human and murine muscular dystrophiesDanielle Ayub de Barros Guerrieri Pinheiro 24 April 2013 (has links)
As Distrofias Musculares Progressivas constituem um grupo heterogêneo de doenças genéticas caracterizadas por uma degeneração progressiva e irreversível da musculatura esquelética. Recentemente, associaram-se defeitos do mecanismo de glicosilação da proteína α-DG com diversos tipos de distrofias musculares graves. Alterações nesse processo constituem, portanto um novo mecanismo patogenético nas doenças neuromusculares, abrindo novas possibilidades de estudo. Neste sentido, foram objetivos deste trabalho avaliar o perfil de expressão dos genes envolvidos na glicosilação da proteína α-DG em modelos murinos e em pacientes, e tentar relacionar com os diferentes processos distróficos. Verificamos que tanto camundongos normais como distróficos expressam os genes codificantes das glicosiltransferases na seguinte ordem: Pomgnt1>Large>Fkrp>Pomt1, em todas as idades e em todas as linhagens estudadas, sugerindo um mecanismo constante de regulação gênica, independente do crescimento, envelhecimento ou processo distrófico. Também observamos que a sua expressão não é influenciada pelo processo de degeneração/regeneração, uma vez que não houve concordância entre os animais com músculos mais afetados e degenerados (Largemyd e Lama2dy2J/J) e aqueles com músculos menos degenerados (Dmdmdx e SJL/J), e esse padrão se mantém quando se comparam músculos com graus de degeneração diferentes. Nos animais recém-nascidos, verificou-se um aumento de expressão significativo nas linhagens Dmdmdx e Largemyd e uma queda nas linhagens Lama2dy2J/J e SJL/J. Já nos animais adultos, verificou-se maior semelhança ao perfil dos camundongos controles normais da mesma idade, com exceção do gene Large que apresentou expressão diminuída em quase todos os animais em estudo. No músculo humano, observamos uma ordem do nível de expressão diferente do observado em camundongos, com POMT1>POMGnT1>FKRP>LARGE. Os pacientes com DMD apresentaram um aumento da expressão de todos os genes estudados, de forma similar ao observado no grupo de camundongos Dmdmdx recém-nascidos, sugerindo uma associação com a falta de distrofina. Os pacientes LGMD 2I não apresentaram redução significativa da expressão de FKRP, sugerindo que o processo de transcrição é normal, mas a tradução ou a função/atividade da enzima deve estar comprometida. Nos pacientes CMD 1A, onde a deficiência primária da α2-laminina não está associada a defeito de glicosilação da α-DG, observou-se redução na expressão de POMT1 e FKRP, sugerindo que, a deficiência dessas enzimas possivelmente não altera este processo. Na análise de proteínas, não se observou uma correlação direta com os resultados da expressão gênica das glicosiltrasferases, sugerindo mais uma vez que, por serem enzimas, essas proteínas funcionam de forma diferenciada quando comparadas a proteínas estruturais. Entretanto, nas reações com os anticorpos Anti-POMT1 e Anti-FKRP, os camundongos recém-nascidos apresentaram bandas adicionais de peso molecular maior, sugerindo que essas enzimas estão ligadas a outras proteínas ou entre si nos estágios iniciais de desenvolvimento muscular / Muscular Dystrophies (MD) are a heterogeneous group of genetic diseases characterized by progressive and irreversible degeneration of skeletal muscle. Recently, defects in α-DG glycosylation have been associated with different types of severe forms of muscular dystrophies. Therefore, alteration in this mechanism has been considered an important pathogenetic cause of muscle degeneration, opening new avenues for therapies. The main objective of this study is to evaluate the expression cascade of genes involved in the glycosylation of α-DG in murine models and in patients with different molecular defects causing MD. We found that both normal and dystrophic mice express the glycosyltransferases genes in the following quantitative order: Pomgnt1>Large>Fkrp>Pomt1, in all ages and in all studied strains, suggesting a constant mechanism of gene regulation, independent of growth, aging or dystrophic process. We also observed that this pattern of expression is not related to the degeneration/regeneration process, since there was no concordance between the animals with the most degenerated muscles (Largemyd and Lama2dy2J/J) or the less degenerated muscles (Dmdmdx and SJL/J). Additionally, both gastrocnemius (less degenerated in Dmdmdx) and diaphragm (more degenerated in Dmdmdx) presented the same pattern of expression. In newborn animals, a significant increased expression was observed in Dmdmdx and Largemyd and a decrease in Lama2dy2J/J and SJL/J. In adult animals, the expression profile of Pomt1, Pomgnt1 and Fkrp was similar in normal and affected mice, while Large showed a decreased expression in almost all affected animals. In human muscle, the quantitative order of expression of the 4 genes was: POMT1>POMGnT1>FKRP>LARGE, different from the mice. DMD patients showed an increased expression of all the studied genes, in a pattern similar as the observed in the newborns group of the murine Dmdmdx model, suggesting an association with the lack of protein dystrophin. LGMD 2I patients showed no significant reduction in FKRP expression, indicating a normal transcriptional process. In CMD 1A patients, there was a reduction in POMT1 and FKRP expression, in spite of a normal α-DG glycosylation observed in this disease, suggesting that the deficiency of these enzymes may not alter this process. At the protein level, we did not observe a direct correlation between protein quantities of glicosiltrasferases and gene expression, suggesting that enzymes regulation functions differently as compared with structural proteins. Interestingly, antibodies for POMT1 and FKRP detected, in newborn mice, additional bands of higher molecular weight, suggesting that these enzymes are linked to each other or with other proteins in the early stages of muscle development
|
15 |
Análise molecular dos genes CAPN3 e FKRP em pacientes com distrofia muscular tipo cinturas / Molecular analysis of the CAPN3 and FKRP genes in patients with limb-girdle muscular dystrophyFrancisco Marcos Alencar da Silva 12 September 2016 (has links)
Introdução: As distrofias musculares de cinturas (limb-girdle muscular dystrophies - LGMD) são causadas por mutações em uma grande variedade de genes que codificam proteínas musculares, podendo ser herdadas de forma autossômica dominante ou recessiva. O diagnóstico é feito tanto através de exame de biópsia muscular que mostra um padrão histológico distrófico ao lado de deficiência específica de proteínas musculares quanto por estudo genético. Em alguns subtipos de LGMD não é possível fazer o diagnóstico específico pela biópsia muscular, tais como na deficiência da calpaína-3 (CAPN3) e da proteína relacionada a fukutina (FKRP). Nestes casos, portanto, o exame molecular é de grande valor para a confirmação do diagnóstico. Objetivos: Analisar os genes CAPN3 e FKRP em pacientes com diagnóstico histológico de LGMD e verificar a expressão proteica da CAPN3 nesses pacientes, correlacionando com as mutações identificadas e com o quadro clínico e histológico dos mesmos. Resultados: Fizeram parte deste estudo 36 pacientes com LGMD provenientes do ambulatório de miopatias do HC-FMUSP em que a biópsia muscular não identificou deficiência de distrofina, disferlina, caveolina-3 e sarcoglicanas. Destes, nove (25%) foram diagnosticados com LGMD2A, seis (17%) com LGMD2I e em 21 (58%) não foi possível identificar o subtipo específico. Foram encontradas mutações patogênicas no gene CAPN3 em oito pacientes, sendo em homozigose em dois casos, heterozigose composta em cinco casos e em heterozigose em um caso. Em um caso o diagnóstico de LGMD2A foi realizado baseado apenas na análise da expressão da proteína CAPN3 no tecido muscular. Em seis pacientes foram identificadas mutações patogênicas no FKRP, sendo em homozigose em cinco casos e em heterozigose em um caso. A maioria dos pacientes com LGMD2I (cinco casos) apresentava a mutação c.826C > A. Foi observada ausência total ou parcial da expressão da CAPN3 em pacientes com LGMD2A. Conclusões: O presente estudo mostrou que mutações nos genes CAPN3 e FKRP são frequentes em pacientes com diagnóstico clínico e histológico de LGMD. A análise da expressão da CAPN3 se mostrou como uma importante ferramenta no diagnóstico da LGMD2A / Introduction: The Limb-Girdle Muscular Dystrophies (LGMD) are caused by mutations on a wide variety of genes that encode muscular proteins which can be inherited in dominant or recessive autosomal forms. The diagnosis is made either by genetic study or by muscle biopsy which shows a dystrophic histologic pattern with specific deficiency of muscular proteins. On some LGMD subtypes such as calpain-3 (CAPN3) and fukutin related protein (FKRP) deficiencies it is not possible to make a specific diagnosis by muscle biopsy. In these cases, the molecular exam is of great value to confirm the diagnosis. Objectives: Analyze the CAPN3 and FKRP genes in patients with histological diagnoses of LGMD, and verify the protein expression of CAPN3 on these patients correlating it with the identified mutations and their clinical and histological pattern. Results: Thirty-six patients with LGMD, where the muscular biopsy did not identify deficiency of dystrophin, dysferlin, caveolin-3 and sarcoglycans, from the Muscle Ambulatory of HC-FMUSP took part in this study. Of these, nine (25%) were diagnosed with LGMD2A, six (17%) with LGMD2I, and on 21 of them (58%), it was not possible to identify the specific subtype. Pathogenic mutations on CAPN3 were found in eight patients, being homozygous in two cases, compound heterozygous in five cases and heterozygous in one case. The diagnosis of LGMD2A in one patient was done based exclusively by CAPN3 protein analysis on the muscle tissue. Pathogenic mutations on FKRP were found in six patients, being homozygous in five cases and heterozygous in one case. Most of the patients with LGMD2I (five cases) presented the mutation c.826C > A. It was observed total or partial absence of the CAPN3 expression in patients with LGMD2A. Conclusions: The study showed that mutations on CAPN3 and FKRP are frequent in patients with clinical and histological diagnosis of LGMD. The CAPN3 expression analysis proved as an important tool in the LGMD2A diagnosis
|
16 |
Pathogenetic mechanisms in the dystroglycanopathies pathogenesisBooler, Helen January 2015 (has links)
No description available.
|
17 |
Génétique moléculaire de la maladie de Stargardt : étude des mutations du gène ABCA4 dans la population canadienne-françaiseGauthier, Marie-Krystel 17 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2010-2011 / La maladie de Stargardt est la dégénérescence maculaire la plus fréquente chez les enfants de 6 à 12 ans. La maladie se caractérise par une perte graduelle et irréversible de la vision centrale. La forme récessive du Stargardt (90% des cas) est causée par le gène ABCA4. Le but de notre étude était d'identifier la nature et la prévalence des mutations retrouvées dans ABC A4 chez la population canadienne-française souffrant de Stargardt. Parmi les 19 familles recrutées, 29 patients souffraient de Stargardt et se partageaient 39 haplotypes distincts. Sur les 20 variations détectées, 15 étaient de réelles mutations alors que les cinq autres étaient des polymorphismes sans conséquence sur la maladie. 45% des 58 chromosomes étudiés ont été associés à une mutation. Sept nouvelles mutations ont été confirmées, mais aucun effet fondateur n'a été observé. Ceci est dû au gène ABCA4 qui est extrêmement polymorphique et sujet aux réarrangements géniques.
|
18 |
Etude des bases moléculaires à l'origine des troubles cardiaques des patients atteints de dystrophies myotoniques / Study of molecular basis at the origin of cardiac defects of patients affected by myotonic dystrophiesFreyermuth, Fernande 27 September 2013 (has links)
Les dystrophies myotoniques sont les formes les plus communes des dystrophies musculaires chez l’adulte, caractérisées par de nombreux symptômes tels que les défauts de conduction et de rythme cardiaques fatals chez 30% des patients DM, dont les causes moléculaires sont inconnues. Les DM sont des maladies à gain de fonction d’ARN faisant intervenir une séquestration des facteurs d’épissage alternatif MBNL par des ARNs contenant de longues répétitions (C)CUG, conduisant à des altérations de l’épissage alternatif. Par des approches de puces à ADN, nous avons identifié et confirmé la diminution spécifique de miR-1, conduisant à la dérégulation de l’expression de la connexine 43 et du canal à calcium cardiaque Cav1.2 dans le coeur de patients DM. Par séquençage à haut débit d’ARNs de cœur de patients atteints ou non de DM, j’ai montré la dérégulation de plus d’une centaine d’épissages alternatifs dont celui des exons 6A/6B du principal canal à sodium cardiaque, SCN5A. J’ai montré que cet épissage est régulé par MBNL, et j’ai confirmé l’inclusion anormale de l’exon 6A à la place de l’exon 6B dans l’ARNm SCN5A conduisant à une diminution de l’activité du canal SCN5A, pouvant expliquer les défauts cardiaques des patients DM. / The myotonic dystrophies (DM) are the most common forms of muscular dystrophies in adults, characterized by several symptoms such as cardiac conduction defects and arrhythmias, fatals in 30% of DM patients. The molecular causes of DM cardiac defects are unknown. The RNA gain of function involving a sequestration of MBNL, alternatives splicing factors by large RNAs containing large (C)CUG, leading to alternative splicing defects. By microarray analysis, we identified and confirmed the specific decrease of miR-1, leading to misregulation of connexin 43 and cardiac calcium channel Cav1.2 expressions in DM patients’ hearts. By RNA-Sequencing of samples from DM and non-DM patients hearts, we have shown misregulation of more than 100 alternative splicing, such as the most interesting splicing alteration which is that of exons 6A/6B of SCN5A, the maincardiac sodium channel. We have shown this splicing is regulated by MBNL, and we have confirmed the abnormal inclusion of exon 6A instead of exon 6B in SCN5A mRNA in heart of DM patients, resulting in the decrease of SCN5A channel activity. This decrease could explain the cardiac defects of DM patients.
|
19 |
Rôle de la cavéoline-3 et de la mécanique des cavéoles dans la physiopathologie du muscle / Role of caveolin-3 and caveolae mechanics in muscle pathophysiologyDewulf, Melissa 29 March 2018 (has links)
Les cavéoles sont des invaginations de la membrane plasmique qui nécessitent les cavéolines pour leur biogénèse. Récemment, mon laboratoire d’accueil a décrit un nouveau rôle pour les cavéoles dans la réponse au stress mécanique (Sinha et al, Cell, 2011). Des mutations de la Cavéoline-3 (Cav3), isoforme spécifique du muscle, qui mènent à la rétention de la protéine dans l’appareil de Golgi, ont été décrites dans certaines dystrophies musculaires (DM). Mon projet consiste en l’identification du lien fonctionnel entre les mutations de la Cavéoline-3 et les dystrophies musculaires, qui ont comme phénotype principal un défaut d’intégrité et de réparation membranaire et des dérégulations dans l’homéostasie du muscle.Dans des myotubes humains provenant d’un patient portant la mutation Cav3-P28L ou Cav3-R26Q, j’ai pu montré une diminution de la quantité de cavéoles à la membrane plasmique. En conséquence, les myotubes mutants ne sont plus capables de tamponner l’augmentation de la tension membranaire provoquée par un stress mécanique, ce qui conduit à un défaut d’intégrité membranaire. J’ai aussi montré que la voie de l’interleukin-6 (IL6), importante pour l’homéostasie du muscle, est hyperactivée dans les myotubes mutants, révélant un rôle de régulateur négatif de la voie IL6 par Cav3. De plus, cette voie n’est plus régulée négativement quand un stress mécanique est appliqué comme c’est le cas dans les myotubes sauvages (WT). De manière intéressante, les myotubes mutés phénocopient une déplétion de Cav3 et ce phénotype est réversible lorsque l’on reforme des cavéoles à la membrane plasmiques des myotubes mutés en exprimant la forme WT de Cav3. Ceci confirme un lien direct entre les mutations de Cav3 induisant l’absence de cavéoles et le défaut de mécano-protection et mécano-signalisation de la voie IL6. / Caveolae are plasma membrane invaginations that require caveolin proteins for their biogenesis. Recently, our laboratory reported a new role for caveolae in the cell response to mechanical stress (Sinha et al, Cell, 2011). Mutations in the CAV3 gene (muscle isoform), which lead to Cav3 retention in the Golgi apparatus, are associated with muscular dystrophies (MD). My project consists in identifying the functional link between Cav3 mutations and MDs, which exhibit defects in membrane integrity and repair, and in muscle homeostasis.In Cav3-P28L and Cav3-R26Q mutated human myotubes, I showed a lack of caveolae structures at the plasma membrane. This results in a failed buffering of membrane tension increase upon mechanical stress, which leads to membrane integrity defects. I also showed that the interleukin-6 (IL6) pathway, important for muscle homeostasis, is overactivated in mutant myotubes, showing evidence of a negative regulation of the pathway by Cav3. Furthermore, the IL6 pathway is no longer negatively regulated upon mechanical stress, as it is the case in wild-type (WT) myotubes. Interestingly, mutated myotubes phenocopy Cav3 depletion, and the phenotype is reversible with caveolae reformation upon expression of the WT form of Cav3. This confirms the direct link between Cav3 mutations and the absence of caveolae with failed mechano-protection and IL6/STAT3 mechano-signaling.
|
20 |
Rôle de l'Annexine-A5 dans la réparation membranaire du muscle strié squelettique et du placenta humains / Role of Annexin-A5 in cell membrane repair in human skeletal muscle and placentaCarmeille, Romain 27 November 2015 (has links)
La membrane plasmique est un assemblage supramoléculaire qui délimite la cellule. C’est une structure fine, complexe et dynamique assurant des fonctions multiples et vitales pour la cellule. Sa rupture est un évènement physiologique pour les cellules soumises à des stress mécaniques fréquents et/ou importants, comme les cellules épithéliales, les cellules endothéliales ou les cellules musculaires. Dans des conditions physiopathologiques, la membrane plasmique peut également être endommagée par l’insertion de toxines bactériennes formant des pores (PFTs, pour « pore forming toxins »). Le processus de réparation membranaire et la machinerie protéique associée sont encore mal connus. Connaître les partenaires protéiques et comprendre les mécanismes mis en jeu durant le processus de réparation de la membrane plasmique sont deux enjeux fondamentaux majeurs. En effet, il a été établi qu’une défaillance du processus de réparation membranaire pour les fibres musculaires est la cause principale de certaines dystrophies musculaires. La machinerie protéique de réparation comprend des protéines comme la dysferline, la cavéoline-3 et certaines Annexines (Anx). Les Anx appartiennent à une superfamille de protéines répandue chez la plupart des eucaryotes, qui ont la propriété commune de se lier aux membranes biologiques en présence de calcium (Ca2+). Certaines Anx, comme l’AnxA5, une fois liées aux membranes biologiques s’auto-assemblent spontanément en réseau-2D. Lors de ce travail de thèse, nous avons étudié le rôle de l’AnxA5 dans la réparation membranaire des trophoblastes placentaires et des cellules du muscle squelettique humain. Pour les deux types cellulaires, nous avons montré que l’AnxA5 est un acteur indispensable du processus de réparation membranaire dans le cas de ruptures mécaniques. En associant des approches de microscopie de fluorescence et de microscopie électronique à transmission (MET), nous avons mis en évidence que dans ces cellules, le mécanisme de réparation est principalement basé sur la formation d’un « patch » lipidique. Dans les cellules musculaires, les expériences de MET ont mis en évidence qu’un pool d’AnxA5 endogène se lie aux bords du site de rupture quelques secondes après la lésion du sarcolemme. Ceci suggère qu’après rupture de la membrane plasmique, l’augmentation locale de la concentration calcique intracellulaire provoque la liaison de l’AnxA5 spécifiquement aux bords de la région membranaire lésée où elle forme un réseau-2D. Le réseau-2D stabiliserait localement la membrane et préviendrait sa déchirure, induite par les forces de tensions exercées par le cytosquelette cortical. Nous avons également montré que l’AnxA5 ne semble pas impliquée dans la réparation de la membrane plasmique après insertion de PFTs. Ceci suggère que différents mécanismes de réparation existent et que leur mise en place dépend probablement du type ou de l’importance des dommages. Finalement nous avons étendu notre étude à des lignées cellulaires établies à partir de patients diagnostiqués comme souffrant de dystrophies des ceintures de type 2B (déficience en dysferline) et 1C (déficience en cavéoline-3), respectivement. Nous avons montré, pour ces lignées, que la déficience en dysferline ou cavéoline-3 provoque un défaut de réparation dans le cas des ruptures mécaniques de la membrane plasmique. Dans ces cellules musculaires pathologiques intactes ou endommagées, l’AnxA5 a le même comportement, ce qui suggère que l’action de l’AnxA5 est indépendante de ces protéines. A la différence des cellules déficientes en dysferline, nous avons observé que les cellules déficientes en cavéoline-3 sont capables de réparer efficacement des lésions créées par l’insertion de PFTs dans le sarcolemme. Ce résultat supporte l’hypothèse de l’existence de plusieurs mécanismes de réparation. En conclusion, ce travail montre que l’AnxA5 est un composant clé de la machinerie de réparation dans le cas des ruptures mécaniques. / Plasma membrane is the supramolecular assembly that delimits the cell. It is a thin, dynamic and complex structure, ensuring multiple and vital cell functions. Its disruption is a physiological event occurring in cells submitted to frequent mechanical stresses, such as endothelial cells, epithelial cells and muscle cells. It is also a physiological event for cells exposed to pore forming bacterial toxins (PFTs). Membrane repair mechanisms and associated protein machinery are still poorly understood. This knowledge is, however, essential for obvious physiopathological issues. Indeed, a defect of membrane repair in muscle cells leads to some muscular dystrophies. Membrane repair machinery includes proteins such as dysferlin, MG-53, caveolin-3 and some Annexins (Anx). Anx belong to a superfamily of proteins widely spread in most of eukaryotes, which share the property of binding to biological membranes in the presence of calcium (Ca2+). Here, we investigated the role of AnxA5 in cell membrane repair of human trophoblastic and skeletal muscle cells. We showed that AnxA5 is required for membrane repair of mechanical damages in the two cell types. By combining fluorescence and transmission electron microscopy approaches, we evidenced that membrane repair mechanism in these cells is based on the formation of a lipid “patch”. In human muscle cells, TEM experiments revealed that a pool of endogenous AnxA5 binds to the edges of the torn sarcolemma as soon as a few seconds after membrane disruption. Our results suggest the following mechanism: triggered by the local increase in Ca2+ concentration, AnxA5 molecules bind to PS exposed at the edges of the torn membrane, where they self-assemble into 2D arrays. The formation of 2D arrays strengthens the damaged sarcolemma, counteracts the tensions exerted by the cortical cytoskeleton and thus prevents the expansion of the tear. We showed also that a pool of endogenous AnxA5 binds to intracellular vesicles that obstruct the wounding site. It is likely these vesicles, once associated one to each other, ensure membrane resealing. Our results suggest that sarcolemma repair of damages caused by PFTs is independent of AnxA5. Therefore, different membrane repair mechanisms may exist, their occurrence probably depending on the type and/or the size of damages. Finally, we performed studies on muscle cells established from patients diagnosed with limb girdle muscular dystrophies type 2B (dysferlin-deficient) and 1C (caveolin-3-deficient), respectively. We found that dysferlin or caveolin-3 deficiency leads to a defect of membrane repair, in the case of mechanical damages. AnxA5 behaved similarly in these damaged cells and wild-type cells, suggesting that its function is independent of dysferlin or caveolin-3. Unlike dysferlin-deficient cells, damages created by PFTs are efficiently repaired in caveolin- 3-deficient cells. This result supports the hypothesis that different mechanisms occur in muscle cells, depending on the type of damage. In conclusion, this work indicates that AnxA5 is a key component of the membrane repair machinery, in the case of mechanical disruptions. Our results enable to propose a detailed mode of action for AnxA5.
|
Page generated in 0.0571 seconds