351 |
Uncovering the complexity of muscular dystrophy pathology through disease signalingWissing, Erin R. 17 October 2014 (has links)
No description available.
|
352 |
Dystrophin genotype-cardiac phenotype correlations in Duchenne and Becker muscular dystrophy using cardiac magnetic resonance imagingTandon, Animesh 17 October 2014 (has links)
No description available.
|
353 |
The Role of GSK3ß-CUGBP1 Pathway in the Correction of Myotonic Dystrophy Type 1 Muscle PathologyWei, Christina January 2016 (has links)
No description available.
|
354 |
In Vitro Differentiation of Muscle Side Population Cells from Dystrophic Muscle Reveals Absence of Myogenesis and Implications for Hedgehog SignalingPenton, Christopher January 2013 (has links)
No description available.
|
355 |
New insights into the disease mechanisms of Duchenne Muscular Dystrophy through analyses of the Dystrophin, IκBβ, and CASK proteinsGardner, Katherine Lynn 12 September 2006 (has links)
No description available.
|
356 |
Commentary on Viewpoint: The interaction between SARS-CoV-2 and ACE2 may have consequences for skeletal muscle viral susceptibility and myopathiesTan, A.L., Farrow, Matthew, Biglands, J. 27 April 2021 (has links)
Yes
|
357 |
Fundus-controlled perimetry (microperimetry): Application as outcome measure in clinical trialsPfau, M., Jolly, J.K., Wu, Z., Denniss, Jonathan, Lad, E.M., Guymer, R.H., Fleckenstein, M., Holz, F.G., Schmitz-Valckenberg, S. 11 October 2021 (has links)
Yes / Fundus-controlled perimetry (FCP, also called 'microperimetry') allows for spatially-resolved mapping of visual sensitivity and measurement of fixation stability, both in clinical practice as well as research. The accurate spatial characterization of visual function enabled by FCP can provide insightful information about disease severity and progression not reflected by best-corrected visual acuity in a large range of disorders. This is especially important for monitoring of retinal diseases that initially spare the central retina in earlier disease stages. Improved intra- and inter-session retest-variability through fundus-tracking and precise point-wise follow-up examinations even in patients with unstable fixation represent key advantages of these technique. The design of disease-specific test patterns and protocols reduces the burden of extensive and time-consuming FCP testing, permitting a more meaningful and focused application. Recent developments also allow for photoreceptor-specific testing through implementation of dark-adapted chromatic and photopic testing. A detailed understanding of the variety of available devices and test settings is a key prerequisite for the design and optimization of FCP protocols in future natural history studies and clinical trials. Accordingly, this review describes the theoretical and technical background of FCP, its prior application in clinical and research settings, data that qualify the application of FCP as an outcome measure in clinical trials as well as ongoing and future developments.
|
358 |
Multi-omics Data Integration for Identifying Disease Specific Biological PathwaysLu, Yingzhou 05 June 2018 (has links)
Pathway analysis is an important task for gaining novel insights into the molecular architecture of many complex diseases. With the advancement of new sequencing technologies, a large amount of quantitative gene expression data have been continuously acquired. The springing up omics data sets such as proteomics has facilitated the investigation on disease relevant pathways.
Although much work has previously been done to explore the single omics data, little work has been reported using multi-omics data integration, mainly due to methodological and technological limitations. While a single omic data can provide useful information about the underlying biological processes, multi-omics data integration would be much more comprehensive about the cause-effect processes responsible for diseases and their subtypes.
This project investigates the combination of miRNAseq, proteomics, and RNAseq data on seven types of muscular dystrophies and control group. These unique multi-omics data sets provide us with the opportunity to identify disease-specific and most relevant biological pathways. We first perform t-test and OVEPUG test separately to define the differential expressed genes in protein and mRNA data sets. In multi-omics data sets, miRNA also plays a significant role in muscle development by regulating their target genes in mRNA dataset. To exploit the relationship between miRNA and gene expression, we consult with the commonly used gene library - Targetscan to collect all paired miRNA-mRNA and miRNA-protein co-expression pairs. Next, by conducting statistical analysis such as Pearson's correlation coefficient or t-test, we measured the biologically expected correlation of each gene with its upstream miRNAs and identify those showing negative correlation between the aforementioned miRNA-mRNA and miRNA-protein pairs. Furthermore, we identify and assess the most relevant disease-specific pathways by inputting the differential expressed genes and negative correlated genes into the gene-set libraries respectively, and further characterize these prioritized marker subsets using IPA (Ingenuity Pathway Analysis) or KEGG. We will then use Fisher method to combine all these p-values derived from separate gene sets into a joint significance test assessing common pathway relevance. In conclusion, we will find all negative correlated paired miRNA-mRNA and miRNA-protein, and identifying several pathophysiological pathways related to muscular dystrophies by gene set enrichment analysis.
This novel multi-omics data integration study and subsequent pathway identification will shed new light on pathophysiological processes in muscular dystrophies and improve our understanding on the molecular pathophysiology of muscle disorders, preventing and treating disease, and make people become healthier in the long term. / Master of Science / Identification of biological pathways play a central role in understanding both human health and diseases. A biological pathway is a series of information processing steps via interactions among molecules in a cell that partially determines the phenotype of a cell. Specifically, identifying disease-specific pathway will guide focused studies on complex diseases, thus potentially improve the prevention and treatment of diseases.
To identify disease-specific pathways, it is crucial to develop computational methods and statistical tests that can integrate multi-omics (multiple omes such as genome, proteome, etc) data. Compared to single omics data, multi-omics data will help gaining a more comprehensive understanding on the molecular architecture of disease processes.
In this thesis, we propose a novel data analytics pipeline for multi-omics data integration. We test and apply our method on/to the real proteomics data sets on muscular dystrophy subtypes, and identify several biologically plausible pathways related to muscular dystrophies.
|
359 |
Establishment of quantitative and consistent in vitro skeletal muscle pathological models of myotonic dystrophy type 1 using patient-derived iPSCs / 患者由来iPS細胞を用いた筋強直性ジストロフィー骨格筋病態の再現と薬効評価のための定量的な細胞評価系の確立Kawada, Ryu 25 March 2024 (has links)
京都大学 / 新制・論文博士 / 博士(医科学) / 乙第13611号 / 論医科博第12号 / 新制||医科||11(附属図書館) / 九州大学大学院薬学府創薬科学専攻 / (主査)教授 井上 治久, 教授 松田 秀一, 教授 萩原 正敏 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
360 |
Tissue engineering pour la reconstruction cornéenne / Tissue engineering for cornea reconstructionKocaba, Viridiana 18 May 2018 (has links)
En France, les dysfonctions endothéliales représentent environ la moitié des indications de greffes de cornée réalisées chaque année. Cependant, les problématiques liées à la pénurie de greffon, aux difficultés des techniques chirurgicales de greffes endothéliales ainsi qu’aux risques d’échec ou de rejet de greffe poussent les chercheurs à développer de nouvelles thérapies moins invasives et plus efficaces. La thérapie cellulaire cornéenne endothéliale est une des voies de recherche actuellement explorées dont le but est de s’affranchir des aléas de la greffe de cornée. La cornée humaine est un tissu idéal pour la thérapie cellulaire. Grâce à ses caractéristiques d’organe à la fois avasculaire et immunitairement privilégié, les cellules transplantées sont ainsi bien mieux tolérées par rapport aux autres tissus et organes vascularisés. Les avancées dans le domaine des cellules souches, de l'ingénierie, particulièrement avec l’arrivée des greffes de cellules souches épithéliales pour le traitement des pathologies sévères de la surface oculaire, ont suscité un intérêt massif afin d’adapter ces techniques aux cellules endothéliales / In France, around half of all corneal keratoplasties are performed to treat corneal endothelial dysfunction each year. However, the use of endothelial keratoplasty is limited by the technical difficulty of the procedure, a shortage of available grafts, and the potential for graft failure or rejection. These limitations are driving researchers to develop new, less invasive, and more effective therapies. Corneal endothelial cell therapy is being explored as a potential therapeutic measure, to avoid the uncertainty associated with grafting. The human cornea is an ideal tissue for cell therapy as owing to its avascular characteristics, transplanted cells are better tolerated compared with other vascularized tissues and organs. Advances in the field of stem-cell engineering, particularly the development of corneal epithelial stem cell therapy for the treatment of severe diseases of the ocular surface, have aroused a massive interest in adapting cell-therapy techniques to corneal endothelial cells
|
Page generated in 0.0404 seconds