• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 160
  • 52
  • 31
  • 12
  • 10
  • 8
  • 7
  • 7
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 338
  • 119
  • 54
  • 51
  • 42
  • 34
  • 32
  • 32
  • 30
  • 29
  • 28
  • 27
  • 27
  • 26
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Functional and Mechanistic Consequences of Dual Oxidase 1 Suppression in Lung Cancer

Little, Andrew Charles 01 January 2017 (has links)
The NADPH oxidase homolog, dual oxidase 1 (DUOX1), is an H2O2 producing transmembrane enzyme highly expressed in the airway epithelium. DUOX1-dependent redox signaling has been characterized to regulate many homeostatic processes in the lung epithelium, such as host defense, wound healing, and type II immune responses. Intriguingly, DUOX1 has been found to be suppressed in many epithelial cancers, including lung cancer, by hypermethylation of its promoter. Epigenetic silencing of DUOX1 in cancer is paradoxical to the understanding that tumors harbor elevated levels of reactive oxygen species (ROS), suggesting that DUOX1 may be a tumor suppressor. Since DUOX1 loss occurs in many forms of lung cancer, we aimed to characterize the functional importance of DUOX1 suppression. RNAi-mediated knockdown of DUOX1 in lung epithelial cells induced features of the epithelial-to-mesenchymal transition (EMT), a characteristic of aggressive or invasive tumor cells. Indeed, DUOX1 suppression promoted the acquisition of molecular signatures associated with EMT, such as the loss of E-cadherin, and induced expression of vimentin and smooth muscle actin. Additionally, we find that DUOX1 suppression promotes the acquisition of other EMT-related features, such as enhanced levels of cancer stem cell molecular markers, cellular invasiveness, and critically, resistance to epidermal growth factor receptor (EGFR) inhibition. Importantly, overexpression of DUOX1 in DUOX1-lacking lung cancer cells promoted the recovery of epithelial characteristics, pinning DUOX1 as a critical mediator of the epithelial phenotype. Based on prior studies demonstrating DUOX1 as an important regulator of EGFR signaling in the lung epithelium, we hypothesized that DUOX1 loss in lung cancer may impact EGFR regulation. EGFR belongs to a larger family of ErbB receptor tyrosine kinases, which are often overexpressed or mutated in many forms of lung cancer. Surprisingly, we find that lung cancer cells lacking DUOX1 have significantly altered EGFR redox regulation, specifically, kinetically enhanced cysteine oxidation-reduction dynamics. Additionally, our results demonstrate DUOX1-lacking cancer cells have altered intracellular EGFR trafficking with enhanced nuclear targeting. Indeed, we observe many oncogenic features of nuclear EGFR e.g. enhanced migratory capacity, resistance to EGFR blocking antibodies. Finally, we have uncovered that EGFR cysteine redox dynamics may regulate intracellular trafficking and/or nuclear transport, offering potentially novel avenues in the design of therapeutics. Proper DUOX1 localization and enzymatic function in the plasma membrane requires partnership with its maturation factor, dual oxidase maturation factor 1 (DUOXA1). Preliminary findings from a newly designed DUOX1-DUOXA1 co-expression system suggests that following enzymatic activation of DUOX1, DUOXA1 dissociates from DUOX1 and potentially translocates to the nucleus, a feature not previously described in lung epithelial or cancer cells. While these preliminary results require additional experimentation, this could be a unique regulatory feature of DUOX1 and a novel role for DUOXA1. Collectively, the research demonstrated in this dissertation characterizes the functional and mechanistic importance of DUOX1 suppression in cancer. Indeed, loss of DUOX1 expression may be an indicator of tumor aggressiveness and responsiveness to EGFR-targeted therapies, warranting its potential for use as a clinical biomarker in lung cancer.
202

The effects of various combinations of different classes of anticancer drugs and tyrosine kinase inhibitors on the human MCF-7 breast carcinoma cell line

Abrahams, Beynon January 2014 (has links)
Magister Scientiae (Medical Bioscience) - MSc(MBS) / This study investigated the effects of TKIs on the growth and proliferation of MCF-7 breast carcinoma cells in culture. MCF-7 cells were exposed to different concentrations of TKIs alone and in combination with each other. Inhibition of cell growth by TKIs used individually occurred in a dose- and time-dependent manner. When EGFR Inhibitor I, EGFR Inhibitor II/BIBX1382 and the multi-specific EGFR/ErbB-2/ErB-4 Inhibitor were used in combination with each other at equimolar log dose concentrations, the combined effects on cell growth was significantly different to inhibitors used individually as reflected in a decreased EC50 (IC50) during combination treatments. Generally, for the combinations with DOX, CPL and the TKIs, synergistic as well as antagonistic effects were observed at isoeffective concentrations with resultant decreases in dose reduction indices (DRIs) implying greater efficacies with the respective combinations. In this study, conventional PCR was used to detect and illustrate the presence of the EGFR gene in the samples, while RT-qPCR was used to determine the mRNA expression levels of this gene in MCF-7 breast carcinoma cells
203

The combination of pan-ErbB tyrosine kinase inhibitor CI-1033 and lovastatin: A potential novel therapeutic approach in squamous cell carcinoma of the head and neck

Guimond, Tanya January 2011 (has links)
The ErbB family of receptors are key regulators of growth, differentiation, migration and survival of epithelial cells. CI-1033 is an irreversible pan-ErbB tyrosine kinase inhibitor that has the ability to inhibit EGFR function but has shown limited therapeutic efficacy. Lovastatin targets the activity of HMG-CoA reductase, the rate-limiting step in the mevalonate pathway. In this study, the ability of lovastatin to potentiate the cytotoxic effects of CI-1033 was evaluated. The combination of lovastatin and CI-1033 exhibited some cooperative cytotoxic activity in a squamous cell carcinoma–derived cell line. This combination resulted in enhanced cell death by induction of a potent apoptotic response. Furthermore, this drug combination inhibited EGF-induced EGFR autophosphorylation and activation of the downstream signaling effectors, ERK and AKT. These findings suggest that combining lovastatin and tyrosine kinase inhibitors may represent a novel combinational therapeutic approach in squamous cell carcinoma of the head and neck.
204

Alternative Endpoints and Analysis Techniques in Kidney Transplant Trials

Fergusson, Nicholas Anthony January 2017 (has links)
Clinical trials in kidney transplantation suffer from several major issues including: 1) Unfeasibility due to low short-term event rates of hard outcomes and 2) Reliance on a composite outcome that consists of unequal endpoints that may generate misleading results. This thesis attempts to explore and apply methods to solve these issues and ultimately, improve kidney transplantation trials. We present a secondary analysis of the ACE trial in kidney transplant using composites with alternative graft function surrogate endpoints. Typically, kidney transplant trials—including the ACE trial— use a time-to-event composite of death, end-stage renal disease (ESRD), and doubling of serum creatinine. Instead of doubling of serum creatinine, we investigated the use of percentage declines of estimate glomerular filtration rate (eGFR) within a time-to-event composite of death and ESRD. Additionally, we present an application of an innovative analysis method, the win ratio approach, to the ACE trial as a way of lessening concerns associated with unequal composite endpoints. Composites of death, ESRD, and either a 40%, 30% or 20% decline in eGFR did not alter original ACE trial results, interpretations, or conclusions. The win ratio approach, and the presentation of a win ratio, generated very comparable results to a standard time-to-event analysis while lessening the impact of unequal composite endpoints and making fewer statistical assumptions. This research provides a novel, trial-level application of alternative endpoints and analysis techniques within a kidney transplant trial setting.
205

The role of MYD88-dependent receptors in the anti-tumor efficacy of the EGFR inhibitor Erlotinib in head and neck cancer

Koch, Adam Taylor 01 July 2014 (has links)
No description available.
206

The Role of Signal Transducer and Activator of Transcription 1 (STAT1) and 3 (STAT3) in Primary and Metastatic Breast Cancer

Remah Ali (8086364) 05 December 2019 (has links)
<p>Breast cancer is the most frequently diagnosed malignancy and the second most lethal cancer in women. Metastasis in breast cancer is invariably responsible for patient death and is comprised of many steps, of which proliferation in vital organs is responsible for morbidity and mortality due to vital organ failure. Patients with the metastatic disease are limited to chemotherapy, which non-specifically targets proliferating cells. Despite it being initially effective, chemotherapy is associated with high toxicity and many patients develop resistance. Thus, there is an urgent need to characterize the biology of metastatic breast cancer to develop targeted therapies for the late-stage disease.</p> <p>EGFR is a member of the ErbB family of receptor tyrosine kinases, which have particular relevance in breast tumorigenesis. Clinical studies show that high expression levels of EGFR in the primary mammary tumors correlate with poor prognosis and decreased survival of breast cancer patients due to metastasis. Patient data is supported by experimental and pre-clinical studies, which describe various signaling pathways that mediate the oncogenic effects of EGFR, such as the MAPK, STAT3, and PI3K pathways. Despite these well-documented roles of EGFR, clinical trials evaluating EGFR inhibitors (EGFRi) in metastatic breast cancer have been unanimously unsuccessful in improving patient prognosis, and the mechanisms that contribute to this intrinsic resistance are unknown.</p> <p>To characterize the signaling events that govern EGFR behavior in metastatic breast cancer resistant to EGFRi, we utilized multiple pre-clinical breast cancer progression series and patient-derived cells that display the intrinsic resistance phenomenon. In these models, EGFR functions as a pro-apoptotic molecule whose ligand-mediated activation results in growth inhibition and/or apoptosis of metastatic breast cancer cells. Here we show that in the later stages of metastasis, increased nuclear translocation of EGFR leads to increased physical access to STAT1 and STAT3 molecules residing in the nucleus. Indeed, an EGFR mutant that is defective in endocytosis is unable to elicit STAT1/3 phosphorylation. Additionally, specific inhibition of nuclear EGFR function using the EGFR kinase inhibitor gefitinib linked to a nuclear localization signal (NLS-gefitinib) prevents EGF-induced STAT1/3 phosphorylation. Altogether, these findings implicate nuclear localization of EGFR in downstream STAT1/3 signaling in metastatic breast cancer.</p> <p>Subsequently, we examined the involvement of nuclearly-activated STAT1/3 signaling in the apoptotic function of EGFR. NLS-gefitinib treatment or genetic/pharmacologic inhibition of STAT1/3 efficiently blocks EGF-induced apoptosis in metastatic breast cancer cells resistant to EGFRi. These findings were utilized therapeutically by activating EGFR with EGF treatment while simultaneously blocking the downstream proliferative MAPK:ERK1/2 pathway using the MEK1/2 inhibitor trametinib. EGF + trametinib combination preserved STAT1 signaling while effectively blocking the MAPK pathway, thus potentiating EGF-mediated apoptosis in metastatic breast cancer cells. Importantly, combined administration of trametinib and EGF resulted in STAT1-mediated apoptosis of primary mammary tumor cells, which respond to EGF in a proliferative fashion. These data provide a novel approach of targeting metastatic breast cancer by biasing EGFR signaling towards nuclear activation of STAT1/3 signaling resulting in apoptosis.</p> Our studies herein also examined the role of STAT3 in primary mammary tumor cells overexpressing EGFR. Depletion of STAT3 expression normalized the transformed phenotype of these cells <i>in vitro</i> and resulted in smaller mammary tumors <i>in vivo</i>. These results implicate STAT3 in EGFR-driven breast tumorigenesis localized to the mammary tissues. Further, systemic dissemination of breast cancer is associated with activation of the JAK1/2:STAT3 signaling axis. Despite the involvement of STAT3 in EGFR-mediated oncogenesis in the primary tumor setting, targeting JAK1/2:STAT signaling with the JAK1/2 inhibitor ruxolitinib proved ineffective in inhibiting the growth and invasion of metastatic cells derived from these primary tumors. These results are in agreement with the role of STAT1/3 in driving the pro-apoptotic function of EGFR in metastatic breast cancer cells. Altogether, these investigations provide a plausible explanation for the inability of JAK1/2 inhibitors to effectively target metastatic breast cancer in clinical and experimental investigations. Further, these findings indicate that the development of therapeutics or molecular tools that efficiently activate STAT1/3 signaling in metastatic breast cancer may represent an important concept for eradicating tumors resistant to targeted therapies.
207

TARGETING BREAST CANCER TRANSCRIPTION-DRIVEN SIGNALING PATHWAYS TO IMPROVE THERAPEUTIC RESPONSE IN TRIPLE NEGATIVE BREAST CANCER

Roberts, Melyssa Susann 02 June 2020 (has links)
No description available.
208

Delineating the Role of Enhancers in Extrachromosomal Oncogene Amplifications

Morton, Andrew Robert 01 June 2020 (has links)
No description available.
209

Cervical Cancer Metastasis

Aziz, S. W., Aziz, M. H. 01 January 2017 (has links)
Cancer metastasis is a highly complex process and is of great clinical importance since majority of cancer related mortality is associated with metastatic disease rather than primary tumor. The fact that cancer metastasis can develop years or even decades after primary tumor diagnosis, makes this process even more complex and therefore its understanding is of vital importance. Cervical cancer (CxC) is one of the most commonly diagnosed and cause of death among gynecologic cancers worldwide. In this chapter, our aim is to provide a broad overview of risk factors, modes of metastasis and major molecular factors and signaling pathways involved in the progression and metastasis of CxC. The understanding of these factors will enhance the knowledge of CxC pathogenesis and targeting these pathways would help combat against CxC and its metastasis.
210

Inhibition of Hypoxia and EGFR Sensitizes TNBC to Cisplatin and Suppresses Bulk and Cancer Stem Cells

McGarry, Sarah 26 November 2020 (has links)
Despite progress being made in our understanding of triple negative breast cancer (TNBC), the overall survival and disease-free survival for TNBC patients continues to be considerably poorer than their ER/PR/HER2+ counterparts. Metastasis and chemoresistance are the pivotal issues holding back the long-term success of TNBC treatments. In addition to the bulk tumor cells, cancer stem cells (CSCs) have emerged as important targets for alleviating TNBC progression and relapse. Cisplatin, a platinum based chemotherapeutic agent, has shown promising potential for the treatment of TNBC in clinical trials; however, cisplatin treatment is associated with tumor hypoxia that in turn promotes CSC enrichment and drug resistance. My work is to develop a combinational treatment to improve the long-term therapeutic potential of cisplatin that not only targeted the bulk TNBC population but also ALDHhigh and CD44+/CD24- CSC populations. Through clinical dataset analysis, I found that patient TNBC tumors expressed high levels of epidermal growth factor receptor (EGFR) and hypoxia genes. A similar expression pattern was demonstrated in cisplatin-resistant ovarian cancer. I therefore developed a combinational therapeutic to co-inhibit EGFR and hypoxia using metformin (an AMPK activator) and gefitinib (an EGFR inhibitor), which sensitized bulk TNBC cells to cisplatin and also led to the effective inhibition of both CD44+/CD24- and ALDHhigh CSCs. I obtained similar results by using clinically relevant TNBC patient samples ex vivo. Since these drugs are already frequently used in the clinic, this study illustrates a novel, clinically translatable therapeutic approach to improve the long-term therapeutic outcome of cisplatin for TNBC treatment.

Page generated in 0.0176 seconds