• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 9
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 44
  • 11
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Estudo de novas propriedades associadas à regulação e função de complexos do tipo eIF4F em Trypanosoma brucei

MALVEZZI, Amaranta Muniz 09 March 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-08-12T13:48:49Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) tese amaranta.pdf: 1596892 bytes, checksum: 5d4ba09b331b3e559fa3f104e519a054 (MD5) / Made available in DSpace on 2016-08-12T13:48:49Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) tese amaranta.pdf: 1596892 bytes, checksum: 5d4ba09b331b3e559fa3f104e519a054 (MD5) Previous issue date: 2015-03-09 / CNPq / A iniciação da tradução é a etapa mais complexa de um processo crítico para a sobrevivência dos seres vivos, onde se destaca a atuação do complexo eIF4F, formado pelas subunidades eIF4E, eIF4A, e eIF4G. Seis homólogos de eIF4E (EIF4E1 a 6) e cinco de eIF4G (EIF4G1 a 5) foram identificados no protozoário Trypanosoma brucei. Este trabalho buscou contribuir no estudo de complexos do tipo eIF4F neste patógeno, inicialmente analisando a expressão de subunidades de complexos já definidos, formado pelos EIF4E4/EIF4G3 e EIF4E3/EIF4G4. Observou-se que, à exceção do EIF4G3, essas subunidades são representadas por isoformas originárias de eventos de fosforilação. No caso do EIF4E4, esses eventos estão associados às fases de crescimento do microorganismo e as fosforilações dos EIF4E3 e EIF4E4 são direcionadas às suas extremidades N-terminais. A etapa seguinte compreendeu o estudo de duas proteínas hipotéticas, encontradas com novos complexos baseados nos EIF4E5/EIF4G1 e EIF4E6/EIF4G5 (Tb117.5 e TbG5-IP). Essas são homólogas de enzimas associadas a formação da extremidade 5’ dos mRNAs, porém apresentaram localização citoplasmática. Sua associação aos referidos complexos foi investigada e enquanto a Tb117.5 se associa com uma subpopulação do complexo EIF4E5/EIF4G1, a TbG5-IP se mostrou parte integrante do complexo EIF4E6/EIF5G5. A depleção por RNA interferência dessas proteínas não alterou a viabilidade celular apesar do insucesso na obtenção de deleção dupla dos seus genes. Os dados obtidos sugerem uma divergência funcional nesses complexos ainda não encontrada em outros eucariotos. / The initiation of translation is the most complex stage of a critical process required for the survival of all living beings and which requires the activity of the eIF4F complex, formed by the eIF4E, eIF4A, and eIF4G subunits. Six homologues of eIF4E (EIF4E1 to 6) and five of eIF4G (EIF4G1 to 5) were identified in the protozoan Trypanosoma brucei. This study aimed to contribute to the study of eIF4F-like complexes within this pathogen, initially analyzing the expression of subunits found in already defined complexes, formed by EIF4E4/EIF4G3 and EIF4E3/EIF4G4. Except for EIF4G3, all these subunits are represented by multiple isoforms originating from phosphorylation events. For EIF4E4, these events are associated with the microorganism’s growth phase and the phosphorylations of both EIF4E3 and EIF4E4 are directed to their N- terminal ends. The next step included the study of two hypothetical proteins found within new complexes based on EIF4E5/EIF4G1 and EIF4E6/EIF4G5 (Tb117.5 and TbG5-IP). These are homologous to enzymes associated with the formation of the mRNAs’ 5’ end but showed cytoplasmic localization. Their association with the new complexes was investigated and while Tb117.5 is associated with a subset of the EIF4E5/EIF4G1 complex, TbG5-IP proved to be an integral part of the EIF4E6/EIF5G5 complex. The depletion by RNA interference of these proteins did not affect cell viability despite the failure to achieve a double deletion of their genes. The data suggest a functional divergence in these complexes that is not found in other eukaryotes.
12

Aiming to identify protein co-factors contributing to eIF4E’s oncogenic potential

Ndreu, Elma 08 1900 (has links)
No description available.
13

THE ROLE OF MAPK P38 STRESS PATHWAY-INDUCED CELLULAR TRANSLATION IN HUMAN AND MACAQUE CELLS TARGETED DURING B VIRUS INFECTION

Cook, Morgan 09 May 2016 (has links)
Herpes B virus, otherwise known as Macacine herpesvirus 1, is a member of the family Herpesviridae, subfamily Alphaherpesvirinae, genus Simplex, and is closely related to human herpes simplex viruses 1 and 2 (HSV1 and HSV2). B virus is endemic in macaque monkeys, but is capable of zoonotic transmission to humans resulting in fatality in greater than 80% of untreated cases. The goal of our lab is to understand the disparity in the outcome of infection between the natural host- macaques and the foreign host- humans. An important barrier to progress is the lack of understanding of host cell: B virus interactions in response to infection. An important pathway activated by stress, known as the mitogen activated protein kinase (MAPK) p38 pathway, is activated by B virus infection. Of particular interest is its role in regulating cellular translation via stimulation of activation of the eukaryotic initiation factor 4E (eIF4E). The activation of eIF4E is a vital rate-limiting step in translation, which can be manipulated by a variety of viruses. For example HSV1 can activate eIF4E through the p38 pathway but in the absence of this pathway eIF4E activity and viral titers are decreased. Because of the effect HSV1 has on the p38 pathway, and because B virus is a close relative of HSV1, we hypothesized that B virus also utilizes the p38 pathway to activate eIF4E in a host-dependent manner. In this dissertation, we show that the role of MAPK p38 with regard to translation is crucial to cellular processes that reduce virus replication in natural host cells, but within human cells this stress pathway appears not to play a role in reducing B virus replication. Data generated for this dissertation suggest that the p38 pathway is responsible in part for controlling the virus infection and spread within the natural host, but does not dampen virus replication in human host cells encountering the virus. Taken together, our results suggest that this pathway has at least one host-specific defense to combat B virus infection and that both cellular and viral proteins require the presence or absence of this pathway to function.
14

S čepičkou nebo bez čepičky? Iniciace translace eukaryot se zaměřením na opurtunního patogena C. albicans / To cap or not to cap? Eukaryotic translation initiation with a special interest in human opportunistic pathogen C. albicans

Feketová, Zuzana January 2011 (has links)
Candida albicans belongs to serious human opportunistic pathogens, causing severe health complications to immunocompromised patients. To my best knowledge, it is the only organism that survives with unmethylated cap structures found on the 5'ends of mRNA molecules. Using functional assay, I demonstrated that orf19.7626 codes for C. albicans translation initiation factor 4E (Ca4E). We couldn't prove our hypothesis, that Ca4E could be responsible for the unmethylated cap recognition in our model organism S. cerevisiae. Candida sp. possesses also another rather unusual feature - ambiguous CUG codon. In most of the cases, CUG is decoded as a serine, but sometimes also as a leucine. This gives rise to a so called "statistical proteome". One CUG codon is also part of the mRNA coding for Ca4E protein, therefore two versions of Ca4E-Ca4ELeu and Ca4ESer -might occur in C. albicans simultaneously. Both of them are able to rescue deletion of S. cerevisiae eIF4E gene, but they confer temperature sensitivity to the heterologous host. This phenotype is more pronounced with the Ca4ELeu version. We observed milder temperature sensitive phenotype after co-expression of Ca4E together with C. albicans eIF4G (Ca4G). Conformational coupling between eIF4E and eIF4G leads to enhanced affinity of eIF4E to the cap...
15

eIF4E Phosphorylation Balances Cap-dependent and Cap-independent Translation Initiation

Goetz, Christian January 2011 (has links)
<p>Signaling pathways converge on the translation machinery and influence protein synthesis globally or specifically on certain classes of transcripts. The experiments described in this thesis focus on regulation of translation initiation through the cap-binding protein eIF4E. </p><p>Aberrant regulation of eIF4E has important roles in several pathologies and, most notably, in tumorigenesis. Nevertheless, the understanding of the molecular con-sequences of changes in eIF4E activity remains incomplete. We employ a cell-free system to demonstrate that eIF4E function is required for efficient cap-dependent translation but inhibitory for translation of both cellular and viral RNAs relying on cap-independent mechanisms. Furthermore, we show that phosphorylation of eIF4E favors cap-independent translation in vitro. </p><p>To verify that our findings in the cell-free system are representative of an in vivo system, we also analyzed growth of an oncolytic poliovirus, relying purely on cap-independent translation, in the context of varying activity of signaling pathways. Data obtained from this virus helps to confirm that phosphorylation of eIF4E does indeed result in increased cap-independent translation. Additionally, these experiments provide important information for the clinical application of this oncolytic poliovirus, as they help to explain virus specificity and might allow for rational patient selection.</p> / Dissertation
16

The Translational Machinery as a Target for Radiosensitization

Hayman, Thomas John 01 January 2013 (has links)
Current approaches aimed at improving the efficacy of radiation as a cancer treatment modality involve the development and application of molecularly targeted radiosensitizers, a strategy that requires a thorough understanding of the fundamental processes comprising the cellular radioresponse. Recent data indicating that radiation modifies gene expression primarily through translational control rather than transcriptional events suggests that mRNA translation contributes to cell survival after irradiation. The overall goal of this project is to determine whether the regulatory/rate-limiting components of the translational machinery provide targets for tumor cell radiosensitization. The majority of translation in mammalian cells occurs in a cap-dependent manner and is highly dependent on eIF4E. As such, we investigated a regulatory role for eIF4E in cellular radiosensitivity. eIF4E knockdown enhanced the radiosensitivity of tumor but not normal cells. eIF4E knockdown inhibited the dispersal of radiation-induced γH2AX foci. Furthermore, radiation was found to increase the binding of >1000 unique mRNAs to eIF4E, many involved in DNA replication, recombination, and repair. S6 kinase 1 (S6K1), also an important regulatory component of the translational machinery, enhances the translation of specific mRNA subpopulations, independent from eIF4E, and mediates ribosome biogenesis. The role of S6K1 in determing cell survival after radiation was determined in several tumor cell lines and one normal cell line. S6K1 knockdown enhanced the radiosensitivity of all 3 tumor lines. In contrast S6K1 knockdown had no effect on the cellular radiosensitivity of the one normal line tested. The mechanistic target of rapamycin (mTOR) is a critical kinase in the regulation of gene translation and has been suggested as a potential target for radiosensitization. Importantly, it plays a major role in regulating eIF4E availability as well as S6K1 activity. The radiosensitizing activities of the allosteric mTOR inhibitor rapamycin with that of the ATP competitive mTOR inhibitor PP242 were compared. Based on immunoblot analyses, whereas rapamycin only partially inhibited mTORC1 activity and had no effect on mTORC2, PP242 inhibited the activity of both mTOR containing complexes. In the two tumor cell lines evaluated, PP242 treatment 1h before irradiation increased radiosensitivity, whereas rapamycin had no effect. PP242 had no effect on the cellular radiosensitivity of a normal lung fibroblast line. PP242 exposure did not influence the initial level of γH2AX foci after irradiation, but did significantly delay the dispersal of radiation-induced γH2AX foci. Finally, PP242 administration to mice bearing U251 xenografts enhanced radiation-induced tumor growth delay. A next generation analog of PP242, INK128, is currently undergoing analysis in clinical trials. Given our data showing ATP-competitive mTOR inhibition is a strategy for tumor radiosensitization as well as the fact that radiotherapy is a primary treatment modality for locally advanced pancreatic ductal adenocarcinoma, the effects of INK128 on pancreatic cancer radiosensitivity were determined. In three pancreatic cancer cell lines addition of INK128 immediately after radiation resulted in radiosensitization. Consistent with the effects of PP242 on other cell lines, INK128 exposure did not influence the initial level of γH2AX foci after irradiation, but did significantly delay the dispersal of radiation-induced γH2AX foci. Furthermore, in pancreatic tumor xenografts INK128 inhibits mTOR activity as well as cap-complex formation in a time-dependent manner. Lastly, INK128 treatment significantly prolonged the radiation-induced tumor growth delay of pancreatic tumor xenografts. In summary, the data provided in this thesis have begun to characterize the role of the translational machinery in determining the cellular response to radiation.
17

Characterization of cytoplasmic bodies involved in 5' to 3' mRNA degradation in human cells / Charakterisierung von zytoplasmatischen Körper die an den 5' zu 3' mRNA Abbau in humanen Zellen beteiligt sind

Andrei, Maria Alexandra 04 May 2007 (has links)
No description available.
18

Testování rostlin na virovou rezistenci

Hudzieczek, Vojtěch January 2010 (has links)
No description available.
19

The MNK–eIF4E Signaling Axis Contributes to Injury-Induced Nociceptive Plasticity and the Development of Chronic Pain

Moy, Jamie K., Khoutorsky, Arkady, Asiedu, Marina N., Black, Bryan J., Kuhn, Jasper L., Barragán-Iglesias, Paulino, Megat, Salim, Burton, Michael D., Burgos-Vega, Carolina C., Melemedjian, Ohannes K., Boitano, Scott, Vagner, Josef, Gkogkas, Christos G., Pancrazio, Joseph J., Mogil, Jeffrey S., Dussor, Gregory, Sonenberg, Nahum, Price, Theodore J. 02 August 2017 (has links)
Injury-induced sensitization of nociceptors contributes to pain states and the development of chronic pain. Inhibiting activity-dependent mRNA translation through mechanistic target of rapamycin and mitogen-activated protein kinase (MAPK) pathways blocks the development of nociceptor sensitization. These pathways convergently signal to the eukaryotic translation initiation factor (eIF) 4F complex to regulate the sensitization of nociceptors, but the details of this process are ill defined. Here we investigated the hypothesis that phosphorylation of the 5' cap-binding protein eIF4E by its specific kinase MAPK interacting kinases (MNKs) 1/2 is a key factor in nociceptor sensitization and the development of chronic pain. Phosphorylation of ser209 on eIF4E regulates the translation of a subset of mRNAs. We show that pronociceptive and inflammatory factors, such as nerve growth factor (NGF), interleukin-6 (IL-6), and carrageenan, produce decreased mechanical and thermal hypersensitivity, decreased affective pain behaviors, and strongly reduced hyperalgesic priming in mice lacking eIF4E phosphorylation (eIF4E(S209A)). Tests were done in both sexes, and no sex differences were found. Moreover, in patch-clamp electrophysiology and Ca2+ imaging experiments on dorsal root ganglion neurons, NGF-and IL-6-induced increases in excitability were attenuated in neurons from eIF4ES209A mice. These effects were recapitulated in Mnk1/2(-/-) mice and with the MNK1/2 inhibitor cercosporamide. We also find that cold hypersensitivity induced by peripheral nerve injury is reduced in eIF4ES209A and Mnk1/2 (-/-) mice and following cercosporamide treatment. Our findings demonstrate that the MNK1/2-eIF4E signaling axis is an important contributing factor to mechanisms of nociceptor plasticity and the development of chronic pain.
20

Avaliação da importância para a viabilidade celular de três homólogos do fator de iniciação da tradução EIF4E de Leishmania sp

LIMA, Gustavo Barbosa de 09 March 2016 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-07-12T15:47:35Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Dissertação Gustavo Barbosa de Lima PPGG UFPE 2016.pdf: 2227933 bytes, checksum: 03616701d6dbf5994db493d4eb7b243c (MD5) / Made available in DSpace on 2017-07-12T15:47:35Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Dissertação Gustavo Barbosa de Lima PPGG UFPE 2016.pdf: 2227933 bytes, checksum: 03616701d6dbf5994db493d4eb7b243c (MD5) Previous issue date: 2016-03-09 / A família de protozoários tripanosomatídeos apresenta características moleculares diferenciadas dos demais eucariotos, onde a regulação da expressão gênica é feita principalmente em nível pós-transcricional. Como em outros eucariotos, acredita-se que a iniciação da tradução seja uma etapa crítica de controle pós-transcricional, onde atuam diferentes fatores de iniciação da tradução (eIFs). Nesta etapa os pontos centrais são o reconhecimento do mRNA maduro e o recrutamento do ribossomo para dar início ao processo, atividades realizadas pelo complexo eIF4F, formado por três subunidades: eIF4E, eIF4A e eIF4G. Nos tripanosomatídeos foram descritos seis homólogos de eIF4E, a proteína de ligação ao cap. Dois destes, EIF4E3 e EIF4E4, participam da formação de complexos envolvidos no processo de tradução e outros dois, EIF4E5 e EIF4E6, participam de novos complexos de função desconhecida. Destes quatro homólogos, o EIF4E4 já foi caracterizado, de forma que o presente trabalho visa contribuir para o entendimento da importância dos demais (EIF4E3, EIF4E5 e EIF4E6) na viabilidade e taxa de crescimento celular de Leishmania sp. Construções gênicas foram geradas de forma a permitir a deleção das duas cópias gênicas de cada proteína por meio da transfecção de Leishmania e seleção com antibióticos. As três proteínas, e mutantes do EIF4E3, foram ainda expressas em parasitas transgênicos para a realização de experimentos de complementação. Os resultados mostram que os baixos níveis de expressão de EF4E5 e EIF4E6 indicam que as três proteínas parecem ser importantes para a viabilidade celular com funções não sobrepostas. Sítios específicos no EIF4E3 foram também identificados de forma isolada como essenciais para a função da proteína e críticos para a sobrevivência do organismo. Os resultados obtidos neste trabalho mostram a importância do estudo do papel destes homólogos de eIF4E na síntese protéica, assim com seu papel na biologia celular de tripanossomatídeos. / The Trypanosomatid of protozoans display distinct molecular features not seen in other eukaryotes, where the regulation of gene expression is mainly performed at the post-transcriptional level. As in other eukaryotes, it is believed that the initiation of translation is a critical stage of post-transcriptional control, where different initiation factors (eIFs) are active. At this stage, critical steps are the recognition of the mature mRNA and the ribosome recruitment to start the process, activities of the eIF4F complex, consisting of three subunits: eIF4E, eIF4A and eIF4G. In trypanosomatids, six homologues of eIF4E, the cap binding protein, have been described. Two of these, EIF4E3 and EIF4E4, participate in the formation of complexes involved in the translation process and two others, EIF4E5 and EIF4E6, participate in new complexes of unknown function. Among these four homologues, EIF4E4 has been better characterized, so that the present work aims to contribute to the understanding of the remaining homologues (EIF4E3, EIF4E5 and EIF4E6) and study their importance for cell viability and growth rate of Leishmania species. Gene constructs were generated to allow deletion of the two gene copies of each protein by transfection of Leishmania cells and selection with antibiotics. The three proteins and EIF4E3 mutants were also expressed in transgenic parasites in order to carry out complementation experiments. The results show low levels of expression of EF4E5 and EIF4E6 and indicate that the three proteins appear to be important for cell viability with non-overlapping functions. EIF4E3 specific residues were also identified which are essential for the protein to the function and critical for the survival of the organism. The results of this study highlight the importance of the study on the role of eIF4E homologues in protein synthesis, as well as their role for the trypanosomatids cell biology.

Page generated in 0.0158 seconds