Spelling suggestions: "subject:"score."" "subject:"ecori.""
1 |
ENABLING THE EXCHANGE OF METAMODELS DEFINED IN ECORE FROM JETBRAINS MPS TO EMFTaha, Hilal January 2021 (has links)
Model-Driven Engineering has been developing since the first release of the Unified Modeling Language, passing several milestones and advancing ever since. Model-Driven Engineering is being used in various fields like medical, cyber-physical systems, web applications, etc. It is an engineering paradigm that allows developers to model systems at the level of abstraction of their choice. There are many available tools in the market offering different modelling capabilities to their users. Making use of more than one tool would give the users a wider range of options and higher flexibility in modelling their applications. The current market of open-source modelling tools has two main actors, being JetBrains MPS, mostly focused on textual modelling languages, and Eclipse Modelling Framework, mostly focused on graphical modelling languages. The goal of this thesis is to design and implement a bridge between these two modelling environments. More specifically, we engineer the modelling language Ecore, at the heart of the Eclipse Modeling Framework, in JetBrains MPS in order to enable the exchange of metamodels based on Ecore from MPS to Eclipse Modeling Framework.
|
2 |
Graphical Editor for Diagnostic Method DevelopmentRavi, Sudharshan, Vu, Quang January 2014 (has links)
The adage A picture is worth a thousand words conveys the notion that acomplex concept can be understood with just a single picture. Thus visualisingdata allows users to absorb and use large amounts of data quickly.Although textual programming is widely used, it is not best suited for allsituations. Some of these situations require a graphical way to programdata. This thesis investigates the dierent modeling frameworks available withinthe Eclipse ecosystem that allow the reuse of existing XML schema modelsand the creation as well as editing of diagnostic methods. The chosenframeworks were used to build a graphical editor that allows users to create,edit and use diagnostic methods graphically.
|
3 |
Konzeption und prototypische Implementierung eines Generators zur Softwarevisualisierung in 3DMüller, Richard 25 April 2018 (has links)
Softwareentwicklungsprojekte bringen viele verschiedene Artefakte hervor. Artefakte stellen unterschiedliche Aspekte wie Struktur (statische Informationen), Verhalten (dynamische Informationen) oder Evolution (historisierte Informationen) von Softwaresystemen dar. Die Softwarevisualisierung ist darauf ausgelegt, solche Artefakte in eine visuelle Form zu überführen. Externe Umfragen und eine intensive Literaturrecherche zeigen jedoch Defizite dieses Gebietes auf. So sind viele Werkzeuge zur Visualisierung vom Entwicklungsprozess entkoppelt, bieten unzureichenden Im- und Export von Visualisierungen und besitzen teilweise einen geringen Automatisierungsgrad des Visualisierungsprozesses, insbesondere bei Werkzeugen zur dreidimensionalen Visualisierung. In dieser Arbeit wurde durch Adaption und Kombination bestehender Theorien und Werkzeuge der generativen und der modellgetriebenen Softwareentwicklung in Verbindung mit Techniken aus der Softwarevisualisierung ein Konzept entwickelt, das beschreibt, wie dreidimensionale Visualisierungen von Softwaresystemen vollautomatisch generiert werden können. Im Mittelpunkt steht ein Generator, der ausgehend von einer Anforderungsspezifikation vollautomatisiert 3D-Modelle erzeugt. Zur Validierung des entwickelten Konzeptes wurde ein Prototyp implementiert, der auf die Visualisierung der Struktur von Softwaresystemen abzielt. Dieser lässt sich als Plugin in die Entwicklungsumgebung Eclipse integrieren und erzeugt aus Ecore-basierten Modellen nach Benutzeranforderungen mittels Modelltransformationen ein 3D-Modell im freien und standardisierten X3D-Format. Die Transformationen sind dabei mit dem Werkzeug openArchitectureWare realisiert. Schließlich wurde der Prototyp selbst einer Evaluation gemäß etablierten Kriterien aus der Softwarevisualisierung unterzogen.
|
4 |
Creating An Editor For The Implementation of WorkFlow+: A Framework for Developing Assurance CasesChiang, Thomas January 2021 (has links)
As vehicles become more complex, the work required to ensure that they are
safe increases enormously. This in turn results in a much more complicated
task of testing systems, subsystems, and components to ensure that they are
safe individually as well as when they are integrated. As a result, managing
the safety engineering process for vehicle development is of major interest to all
automotive manufacturers. The goal of this research is to introduce a tool that
provides support for a new framework for modeling safety processes, which can
partially address some of these challenges. WorkFlow+ is a framework that was
developed to combine both data flow and process flow to increase traceability,
enable users to model with the desired granularity safety engineering workflow
for their products, and produce assurance cases for regulators and evaluators
to be able to validate that the product is safe for the users and the public.
With the development of an editor, it will bring WorkFlow+ to life. / Thesis / Master of Applied Science (MASc)
|
5 |
REA Business Modeling Language : Toward a REA based Domain Specific Visual Language / REA Affärsmodelleringsspråk : ett REA baserat visuellt och domänspecifikt språkAl Jallad, Mohannad January 2012 (has links)
Resources Events Agents (REA) ontology is a profound business modeling ontology that was developed to define the architecture of accounting information systems. Nevertheless, REA did not manage to get the same attention as other business modeling ontologies. One reason of such abandon is the absence of a meaningful visual notation for the ontology, which has resulted in an abstruse ontology to non-academic audience. Another reason for this abandon is the fact that REA does not have a standard formal representation. This has resulted in a humble amount of researches which have focused on defining meta-models of the ontology while neglecting the wider purpose of REA-based information systems development. Consequently, the ontology was deviated away from its original purpose, and rather used in business schools. To solve the aforementioned issues, this research presents a Model Driven Development (MDD) technique in the form of a REA-based Domain Specific Visual Language (DSVL) that is implemented within a modeling and code generation editor. This effort was taken in order to answer the question of “How would a REA-DSVL based tool make the REA ontology implementable in the domain of information systems development?” In order to answer the research question, a design science methodology (DSRM) was implemented as the structure of this research. The DSRM was chosen because this research aims to develop three main artifacts. These are; a meta-model of REA, a visual notation of REA, and a REA-DSVL-based modeling and code generation tool. The first phase of the DSRM was to identify the problems which were mentioned earlier, followed by the requirements identification phase which drew the outline of the; meta-model, the visual notation, and the tool. After that, the development phase was conducted in order to develop the aforementioned artifacts. The editor was then demonstrated using a case study of a local company in Stockholm-Sweden. Finally, the resulted artifacts were evaluated based on the collected requirements and the results from the case study. Based on the analyses of the artifacts and the case study, this research was concluded with the result that a REA-based DSVL tool can help in boosting the planning and analysis phases of the software development lifecycle (SDLC). This is achieved by automating some of the conventional software planning and design tasks, which would lead to more accurate systems’ designs; thus, minimizing the time of the planning and design phases. And it can be achieved by abstracting the direct logic of REA through providing functionalities that help users from different backgrounds (academic and professional) to embrace a business modeling editor rather than an ontology; thus, attracting a wider users base for implementing REA.
|
6 |
MDCI: Model-Driven Continuous IntegrationGarcía Díaz, Vicente 29 June 2011 (has links)
El propósito de esta Tesis es llevar a cabo un proceso en el que se aplique la práctica de la integración continua en un desarrollo de software dirigido por modelos de forma eficiente, mediante el cual los desarrollos de software puedan beneficiarse conjuntamente de las mejoras y ventajas que proporcionan la aproximación de desarrollo de la ingeniería dirigida por modelos y la práctica de la integración continua.
La aproximación de la ingeniería dirigida por modelos es el último salto natural de la ingeniería del software en cuanto a la búsqueda de métodos de desarrollo que elevan el nivel de abstracción hasta el punto en el que los expertos de un dominio de conocimiento, ajenos al mundo informático, son capaces de guiar y cambiar la lógica de los sistemas informáticos.
La práctica de la integración continua es una recomendación de las principales metodologías de desarrollo, que tiene como objetivo la realización de integraciones automáticas del software en etapas tempranas del desarrollo, ofreciendo ventajas como la reducción del riesgo intrínseco que, dado su carácter temporal y único, tienen todos los proyectos.
Con la unión de la ingeniería dirigida por modelos y de la práctica de la integración continua se busca ofrecer, a los equipos de desarrollo que trabajan utilizando algún tipo de iniciativa de la ingeniería dirigida por modelos, la posibilidad de integrar de forma continua y distribuida sus desarrollos. Al mismo tiempo, los clientes, verdaderos expertos del dominio de conocimiento en su ámbito de negocio, se benefician del aumento del nivel de abstracción de las técnicas de desarrollo para que ellos mismos, y de forma transparente, sean capaces de modificar su propio sistema informático sin la ayuda de personal técnico ajeno a su negocio, ahorrando así tiempo y costes.
Para cumplir con el objetivo de esta Tesis doctoral se construye un prototipo que salva los impedimentos actuales que no permiten la unión entre estos dos nuevos activos de la ingeniería del software. Los principales problemas encontrados están relacionados con la selección de una iniciativa de desarrollo apropiada, los sistemas de control de versiones especialmente adaptados para trabajar con modelos, la generación incremental de artefactos a partir de modelos y la adaptación a las herramientas actuales de integración continua de forma optimizada. La separación del trabajo realizado en diferentes bloques permite ofrecer soluciones de forma tanto aislada como en conjunto, dando lugar a un trabajo iterativo e incremental de comienzo a fin. Para analizar las ventajas que ofrece la propuesta de este trabajo frente a otras posibilidades de desarrollo, se realiza una evaluación mediante la creación de diferentes casos de prueba en los que la medición de diferentes parámetros ofrecen una estimación numérica de las ventajas reales obtenidas. El análisis descriptivo, el contraste de hipótesis y las técnicas de regresión permiten una mejor interpretación de los resultados. Finalmente, se define el proceso, objetivo último de este trabajo, mediante la respuesta a diferentes preguntas planteadas, que facilitan su comprensión y entendimiento. / The purpose of this Thesis is to create a process in which the continuous integration
practice can be applied to a model-driven software development in an e ective
way, through which software developments can bene t jointly and simultaneously
from the improvements and advantages provided by the model-driven engineering
development approach and the continuous integration practice.
The model-driven engineering approach is the last natural step of software engineering
in the search for development approaches that raise the level of abstraction
to the point that experts in a domain of knowledge, outside the computer world, are
able to guide and change the logic of computer systems.
The continuous integration practice is a recommendation of the most widely
accepted development methodologies that aims to carry out automatic software
integrations in early stages of development, o ering bene ts such as reducing the
inherent risk that, given its unique nature, every project has.
By merging the model-driven engineering and the continuous integration practice,
the aim is to provide to development teams that work using some kind of
model-driven engineering initiative, the possibility to integrate their developments
in a continuous and distributed way. At the same time, customers, the real experts
in the domain of knowledge in their eld of business, can bene t from the increased
level of abstraction in developing techniques. Thus, they, in a transparent manner,
are able to modify their own computer system without the help of external technical
sta , so saving time and costs.
To meet the objective of this Thesis, a prototype which saves all the current
constraints that do not allow the union between these two new tools of software
engineering is build. The main problems found were related to the selection of an
appropriate development initiative, the version control systems specially adapted
to working with models, the incremental generation of artifacts from models, and
the optimized adaptation to existing continuous integration tools. The separation of
work in di erent blocks can provide solutions, both in isolation or in conjunction,
resulting in an iterative and incremental work from beginning to end.
To analyze the bene ts of the proposal in this work compared to other development
possibilities, an evaluation is performed by creating di erent test cases in which
the measurement of di erent parameters can give a numerical estimate of the real
bene ts obtained. The descriptive analysis, the hypothesis testing, and regression
techniques allow a better interpretation of results.
Finally, the process, the main objective of this work, is de ned by answering
various questions posed to facilitate its comprehension and understanding.
|
7 |
Component-Based Model-Driven Software DevelopmentJohannes, Jendrik 07 January 2011 (has links) (PDF)
Model-driven software development (MDSD) and component-based software development are both paradigms for reducing complexity and for increasing abstraction and reuse in software development. In this thesis, we aim at combining the advantages of each by introducing methods from component-based development into MDSD. In MDSD, all artefacts that describe a software system are regarded as models of the system and are treated as the central development artefacts. To obtain a system implementation from such models, they are transformed and integrated until implementation code can be generated from them. Models in MDSD can have very different forms: they can be documents, diagrams, or textual specifications defined in different modelling languages. Integrating these models of different formats and abstraction in a consistent way is a central challenge in MDSD.
We propose to tackle this challenge by explicitly separating the tasks of defining model components and composing model components, which is also known as distinguishing programming-in-the-small and programming-in-the-large. That is, we promote a separation of models into models for modelling-in-the-small (models that are components) and models for modelling-in-the-large (models that describe compositions of model components). To perform such component-based modelling, we introduce two architectural styles for developing systems with component-based MDSD (CB-MDSD).
For CB-MDSD, we require a universal composition technique that can handle models defined in arbitrary modelling languages. A technique that can handle arbitrary textual languages is universal invasive software composition for code fragment composition. We extend this technique to universal invasive software composition for graph fragments (U-ISC/Graph) which can handle arbitrary models, including graphical and textual ones, as components. Such components are called graph fragments, because we treat each model as a typed graph and support reuse of partial models.
To put the composition technique into practice, we developed the tool Reuseware that implements U-ISC/Graph. The tool is based on the Eclipse Modelling Framework and can therefore be integrated into existing MDSD development environments based on the framework.
To evaluate the applicability of CB-MDSD, we realised for each of our two architectural styles a model-driven architecture with Reuseware. The first style, which we name ModelSoC, is based on the component-based development paradigm of multi-dimensional separation of concerns. The architecture we realised with that style shows how a system that involves multiple modelling languages can be developed with CB-MDSD. The second style, which we name ModelHiC, is based on hierarchical composition. With this style, we developed abstraction and reuse support for a large modelling language for telecommunication networks that implements the Common Information Model industry standard.
|
8 |
Component-Based Model-Driven Software DevelopmentJohannes, Jendrik 15 December 2010 (has links)
Model-driven software development (MDSD) and component-based software development are both paradigms for reducing complexity and for increasing abstraction and reuse in software development. In this thesis, we aim at combining the advantages of each by introducing methods from component-based development into MDSD. In MDSD, all artefacts that describe a software system are regarded as models of the system and are treated as the central development artefacts. To obtain a system implementation from such models, they are transformed and integrated until implementation code can be generated from them. Models in MDSD can have very different forms: they can be documents, diagrams, or textual specifications defined in different modelling languages. Integrating these models of different formats and abstraction in a consistent way is a central challenge in MDSD.
We propose to tackle this challenge by explicitly separating the tasks of defining model components and composing model components, which is also known as distinguishing programming-in-the-small and programming-in-the-large. That is, we promote a separation of models into models for modelling-in-the-small (models that are components) and models for modelling-in-the-large (models that describe compositions of model components). To perform such component-based modelling, we introduce two architectural styles for developing systems with component-based MDSD (CB-MDSD).
For CB-MDSD, we require a universal composition technique that can handle models defined in arbitrary modelling languages. A technique that can handle arbitrary textual languages is universal invasive software composition for code fragment composition. We extend this technique to universal invasive software composition for graph fragments (U-ISC/Graph) which can handle arbitrary models, including graphical and textual ones, as components. Such components are called graph fragments, because we treat each model as a typed graph and support reuse of partial models.
To put the composition technique into practice, we developed the tool Reuseware that implements U-ISC/Graph. The tool is based on the Eclipse Modelling Framework and can therefore be integrated into existing MDSD development environments based on the framework.
To evaluate the applicability of CB-MDSD, we realised for each of our two architectural styles a model-driven architecture with Reuseware. The first style, which we name ModelSoC, is based on the component-based development paradigm of multi-dimensional separation of concerns. The architecture we realised with that style shows how a system that involves multiple modelling languages can be developed with CB-MDSD. The second style, which we name ModelHiC, is based on hierarchical composition. With this style, we developed abstraction and reuse support for a large modelling language for telecommunication networks that implements the Common Information Model industry standard.
|
Page generated in 0.0536 seconds