• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 96
  • 96
  • 31
  • 28
  • 24
  • 21
  • 17
  • 16
  • 14
  • 14
  • 11
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Identificação e análise da função de transferência do circuito equivalente de um sistema de medição por correntes parasitas

Tondo, Felipe Augusto January 2016 (has links)
Este trabalho apresenta o estudo de um sistema genérico de medição que utiliza o princípio das correntes de Foucault, comumente conhecidas como correntes parasitas. O modelo do sistema é representado como um circuito elétrico equivalente composto por R1 e L1, respectivamente caracterizando a resistência e a indutância do circuito primário, as quais são conhecidas por uma bobina de excitação. Já no secundário, R2 e L2, estão representando a perda ôhmica e a indutância da amostra no qual as correntes parasitas são induzidas, além de outros dois componentes, M indutância mútua dos indutores acoplados e k, coeficiente relacionado ao acoplamento magnético entre os circuitos primário e secundário. A análise tradicionalmente utilizada para este tipo de medição é a avaliação da reflexão da impedância equivalente do circuito secundário representando a amostra no circuito primário. O trabalho analisa as equações de malha do circuito equivalente no domínio da frequência e identifica os parâmetros do modelo. A partir da identificação do sistema realizada com os ensaios experimentais, foi possível descobrir a constante de tempo indutiva τL do sistema. A partir dessa constante, observou-se a variação acentuada da mesma em relação a variação da impedância equivalente. Ainda é apresentada uma estimativa dos valores de R2 e L2 realizada por meio da unificação das informações obtidas com a identificação, aliada com as informações de campo magnético obtidas a partir de um sensor do tipo GMR e pela simulação em um software de elementos finitos COMSOL Multiphysics. / This work presents the study of a generic measurement system that uses the prin- ciple of eddy currents. The system model is represented as an equivalent electric circuit composed of R1 and L1 respectively characterizing the resistance and induc- tance of primary circuit, which are known by an excitation coil. In the secondary, R2 and L2 are representing the ohmic loss and the inductance of the sample in which the eddy currents are induced, in addition two other components, the mutual induc- tance of the coupled inductors and k, coefficient related to the magnetic coupling between the primary and secondary circuits. The analysis traditionally used for this type of measurement is the reflection evaluation of the equivalent impedance of the secondary circuit representing the sample in the primary circuit. The work analyzes the mesh equations of the equivalent circuit in the frequency domain and identifies the parameters of the model. From the identification of the system performed with the experimental tests, it was possible to discover the inductive time constant τL of the system. From this constant, it was observed the sharp variation of the same in relation to the variation of equivalent impedance. An estimate values, R2 and L2 performed by unification of the information obtained with the identification, to- gether with the magnetic field information obtained from a GMR type sensor and by simulation in a finite element software COMSOL Multiphysics.
42

Utveckling av ultraljud- och virvelströmsbaserad mätprob samt tjockleksmätningsinstrument för kombinerade material

Lindorf, Mikael January 2020 (has links)
Det här arbetet har utförts hos Sandvik SMT OFP och handlar om vidareutvecklingen av en prototypenhet som kombinerar EC- och UT-prober. Båda dessa mättekniker tillhör den överhängande gruppen som kallas oförstörande provning och är menade att felsöka material utan att inverka negativt på dem. Prototypen är tänkt att användas för att mäta skikttjocklek på compound-rör. Dessa rör består av två skikt varav ett är feritiskt kolstål, och det andra rostfritt stål. Det yttre, icke-feritiska skiktets tjocklek mäts med hjälp av EC-proben. Dettagörs genom att kalibrera proben mot ett testobjekt med kända tjocklekar mellan två av vilka en linjärisering utförs. Därefter placeras proben mot mätobjektet varpå mätningen jämförs mot linjäriseringen. Den totala tjockleken mäts med UT-proben och med dessa två mätningar blir även tjockleken av det feritiska skiktet känt. I tidigare system har EC- och UT-prober suttit separata och därmed har det funnits en risk att mätpunkterna för de två proberna har blivit osynkroniserade. Förhoppningen är att den kombinerade proben ska kunna utföra de två mätningarna samtidigt, på samma punkt för att minimera denna typ av fel. Arbetet visar att isolering av kopplingspunkter på proben kan räcka för att stabilisera EC-mätningar i vatten. Det förefaller rimligt att med mer arbete kunna driftsätta en kombinerad EC- och UT-prob samt att ett nytt instrument för hantering av EC-delen skall kunna designas. / This thesis work was conducted at Sandvik SMT OFP and deals with the further development of a prototype unit that combines EC- and UT-probes. Both of these probes associated measurement techniques belong to the greater group known as non-destructive testing and are intended to detect flaws in materials without negatively affecting them. The prototype is intended to to be used for measuring the thickness of compound tubes. These tubes consist of two layers, one of which is made of ferrous carbon steel, and the other of stainless steel. The outer, non-ferrous layers thickness will be measured with the EC-probe. This is accomplished through calibration with a well defined test object with sections of known thicknesses, between two of which a linearization is made. After calibration, the probe is placed against the object that is to be measured and the result from the EC-probe is compared to the linearization. The total thickness is measured by the UT-probe and with these two measurements the thickness of the ferrouslayer is indirectly known aswell. In earlier systems EC- and UT-probes have been separated and thus there were issues with desynchronization of measurements between the two probes.The combined probe is expected to make both types of measurements simultainiously, at the same point in order to reduce the risk of this type of error. This project shows that isolation of connections between probe and wire could suffice to stabilize EC-measurements in water. It appears reasonable to believe that with more work, Sandvik SMT OFP could use a combined EC- and UT-probe in production, and that a new instrument for handling the EC-measurements could be designed.
43

Návrh pístní skupiny rychlého magnetoreologického tlumiče s využitím technologie selective laser melting / Design of fast magnetorheological damper piston group using selective laser melting technology

Vítek, Petr January 2018 (has links)
The diploma thesis deals with the development of the magnetic circuit of Magnetoreological (MR) dampers with a short time response. To achieve a short response time, a shape approach was chosen whereby the geometry of the magnetic circuit was chosen to significantly eliminate the occurrence of eddy currents. The influence of structures on magnetic properties was first examined on a simpler toroidal core and then the optimization was subjected to the magnetic circuit of the MR damper itself. Geometry optimization was done using FEM simulations. The resulting geometry was made of pure iron using Selective Laser Melting technology (SLM). In addition, a MR damper was completed and its properties on air and with MR fluid were measured, which were then compared with previously developed rapid MR dampers. It has been found that the newly designed magnetic circuit achieves similar time responses as all other compared fast MR dampers and reaches a higher dynamic range than most of the compared variants. The proposed magnetic circuit also has a significantly reduced weight.
44

Using the finite difference and the finite element method to solve an electric current diffusion problem

Heger, Walter. January 1987 (has links)
No description available.
45

Winding Resistance and Winding Power Loss of High-Frequency Power Inductors

Wojda, Rafal P. 28 August 2012 (has links)
No description available.
46

An Electromagnetic Method for Cancer Detection

McFerran, Jennifer 05 November 2009 (has links)
No description available.
47

A lumped element transformer model including core losses and winding impedances

Ribbenfjärd, David January 2007 (has links)
In order to design a power transformer it is important to understand its internal electromagnetic behaviour. That can be obtained by measurements on physical transformers, analytical expressions and computer simulations. One benefit with simulations is that the transformer can be studied before it is built physically and that the consequences of changing dimensions and parameters easily can be tested. In this thesis a time-domain transformer model is presented. The model includes core losses as magnetic static hysteresis, eddy current and excess eddy current losses. Moreover, the model comprises winding losses including eddy currents, capacitive effects and leakage flux. The core and windings are first modelled separately and then connected together in a total transformer model. This results in a detailed transformer model. One important result of the thesis is the possibility to simulate dynamic hysteresis including the eddy current shielding in the magnetic core material. This is achieved by using Cauer circuit combined with analytical expression for static and dynamic hysteresis. Thereby, all magnetic loss components in the material can be simulated accurately. This dynamic hysteresis model is verified through experiments showing very good agreement. / QC 20101116
48

High Frequency Transformer for Switching Mode Power Supplies

Wong, Fu Keung, n/a January 2004 (has links)
A power supply is an essential part of all electronic devices. A switching mode power supply is a light weight power solution for most modern electronic equipment. The high frequency transformer is the backbone of modern switched mode power supplies. The skin effect and proximity effects are major problems in high frequency transformer design, because of induced eddy currents. These effects can result in transformers being destroyed and losing their power transferring function at high frequencies. Therefore, eddy currents are unwanted currents in high frequency transformers. Leakage inductance and the unbalanced magnetic flux distribution are two further obstacles for the development of high frequency transformers. Winding structures of power transformers are also a critical part of transformer design and manufacture, especially for high frequency applications. A new planar transformer with a helical winding structure has been designed and can maintain the advantages of existing planar transformers and significantly reduce the eddy currents in the windings. The maximum eddy current density can be reduced to 27% of the density of the planar transformer with meander type winding structure and 33% of the density of the transformer with circular spiral winding structure at an operating frequency of 1MHz. The voltage ratio of the transformer with helical winding structure is effectively improved to 150% of the voltage ratio of the planar transformer with circular spiral coils. With the evenly distributed magnetic flux around the winding, the planar transformer with helical winding structure is excellent for high frequency switching mode power supplies in the 21st Century.
49

A multi-coil magnetostrictive actuator: design, analysis, and experiment

Wilson, Thomas Lawler 30 March 2009 (has links)
This dissertation investigates a new design for a magnetostrictive actuator that employs individually controlled coils distributed axially along the magnetostrictive rod. As a quantitative goal, the objective is to show that the multi-coil actuator can operate effectively at frequencies as high as 10,000 Hz with 900 N force and 50 microns of displacement. Conventional, single coil actuators with the same parameters for force and displacement develop significant attenuation in their response at frequencies above the first longitudinal vibration resonance at about 2750 Hz. The goal of the research is to investigate whether multiple coils can effectively increase the frequency range a least four times the range of conventional magnetostrictive actuators. This document derives a new mathematical model of the actuator that represents the spatial distributions of magnetic field and vibration, devises a control design that takes advantage of the multiple inputs to control the displacement of the actuator while consuming minimum electrical power, and describes a prototype multi-coil actuator and experimental system developed to test the idea. The simulations of the multi-coil actuator and control design demonstrate successful transient operation of the actuator over the targeted frequency range with feasible levels of input power and current. Experimental tests of the design, although limited by a computer sampling rate less than 10,000 Hz, are able to validate the predictions of the developed model of the actuator and reproduce the simulated control performance within the constraints of the experimental system.
50

Modelling and design of an eddy current coupling for slip-synchronous permanent magnet wind generators

Mouton, Zac 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Slip-synchronous permanent magnet generators (SS-PMG) is a recently proposed direct-grid connected direct-drive generator topology for wind power applications. It combines a permanent magnet synchronous generator and a slip permanent magnet generator through a common permanent magnet rotor. In this study the possibility of using an eddy current coupling as the slip permanent magnet generator is investigated. The eddy current coupling has the attractive advantage of completely removing cogging and load torque ripple, which are known problems in the SS-PMG. However, the analytical modelling of the eddy current coupling is complex. Three different topologies are considered for the eddy current coupling. A finite element model is presented for the eddy current coupling. It is shown that 2D finite element methods are inaccurate compared to 3D finite element methods when solving eddy currents in eddy current couplings. In order to test the accuracy of the finite element modelling of a large eddy current coupling a prototype slip rotor is designed to operate with an existing permanent magnet rotor. Two topologies are optimally designed and compared for the slip rotor, using 3D finite element transient simulations. One of the designed topologies is used for the construction of the prototype slip rotor. The manufactured eddy current coupling allows for comparison between the 3D finite element simulations and measured results, which shows an excellent correlation. Based on observations of the 3D finite element simulations an analytical approximation of the eddy current coupling is proposed for low slip frequencies. It is shown that the analytical model is very dependent on the accurate modelling of the eddy current paths in the slip rotor, something that is difficult to determine accurately. An approximation is made, again based on 3D finite element simulations, which allows the accurate modelling of the current paths for different axial lengths. The analytical model is used for rapid design optimisation of both the slip rotor and permanent magnet rotor of the eddy current coupling, for two different eddy current coupling topologies. The optimised eddy current coupling design with the best results is compared to existing slip permanent magnet generator technologies. The eddy current coupling is shown to have the potential to be a feasible alternative to existing slip permanent magnet generator topologies for application in slip-synchronous permanent magnet generators. It has excellent torque versus slip behaviour, and no cogging or load torque ripple. However, the manufacturing and assembly process of the proposed slip rotor has to be improved for the eddy current coupling to be a realistic competitor to the existing slip permanent magnet generator technologies. / AFRIKAANSE OPSOMMING: Die glip-sinkroon permanente magneet generator is ʼn direk-aangedrewe wind generator wat direk aan die krag netwerk gekoppel kan word. Dit kombineer ʼn permanente magneet sinkroon generator en ʼn permanente magneet glip generator deur middel van ʼn gemeenskaplike permanente magneet rotor. In hierdie studie word die moontlike gebruik van ʼn werwelstroom skakel as plaasvervanger vir die permanente magneet glip generator ondersoek. Die werwelstroom skakel het geen vertandings of las draaimoment rimpeling nie, wat bekende probleme vir die glip-sinkroon permanente magneet generator is. Die analitiese modellering van die werwelstroom skakel is egter nie eenvoudig nie. Daar word drie verskillende topologieë oorweeg vir die werwelstroom skakel. ʼn Eindige element model word ontwikkel vir die werwelstroom skakel. Dit word bevind dat 2D eindige element analise onvoldoende is vir die berekening van werwelstrome in die werwelstroom skakel, en gevolglik word 3D eindige element modelle gebruik in hierdie studie. Om die akkuraatheid van die eindige element model te beproef word ʼn prototipe glip rotor optimaal ontwerp deur middel van eindige element analise. Die glip rotor vorm saam met ʼn bestaande permanente magneet rotor ʼn werwelstroom skakel. Vir hierdie ontwerp word twee werwelstroom skakel topologieë gebruik, en met mekaar vergelyk. Die topologie wat beter presteer word gebruik vir die vervaardiging van die glip rotor. ʼn Vergelyking van die gemete waardes van die vervaardigde werwelstroom skakel en die resultate van die 3D eindige element simulasies dui daarop dat die 3D eindige element modellering ʼn baie goeie voorspelling van die werklikheid is. ʼn Analitiese model vir die werwelstroom skakel onder lae glip toestande is ontwikkel deur gebruik te maak van observasies uit die 3D eindige element simulasies. Die analitiese model is baie afhangklik van die modellering van die werwelstrome se stroompaaie, iets wat moeilik is om akkuraat te bepaal. ʼn Benadering word gemaak wat die akkurate modulering van die stroompaaie moontlik maak vir verskillende aksiale lengtes. Die analitiese model word dan gebruik vir vinnige optimering van die werwelstroom skakel se ontwerp vir twee verskillende werwelstroom skakel topologieë. Die geoptimeerde ontwerp wat die beste resultate toon word vergelyk met bestaande permanente magneet glip generators. Dit word gewys dat die werwelstroom skakel die potensiaal het om ʼn uitvoerbare alternatief tot die permanente magneet glip generator te wees, vir gebruik in glip-sinkroon permanente magneet generators. Die werwelstroom skakel toon baie goeie draaimoment teenoor glip gedrag, en het geen vertandings of las draaimoment rimpeling nie. Voordat die werwelstroom generator ʼn realistiese kompeteerder teenoor die bestaande glip-sinkroon tegnologie is, moet daar verbeterde vervaardigings maniere gevind word vir die voorgestelde glip rotor.

Page generated in 0.0653 seconds