• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 195
  • 59
  • 33
  • 14
  • 10
  • 8
  • 4
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 418
  • 418
  • 67
  • 48
  • 47
  • 45
  • 40
  • 38
  • 37
  • 36
  • 36
  • 35
  • 31
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Separating earthworms from organic media using an electric field

Chaoui, Hala I. 02 December 2005 (has links)
No description available.
182

Effect Of Frequency On Polyphenoloxidase Activity During Moderate Electric Field Treatment

de la Torre, Jerry James Murillo 18 February 2009 (has links)
No description available.
183

Electromagnetic Effect on the Rheology of Liquid Suspension

Tawhid-Al-Islam, Kazi M January 2018 (has links)
Innovative methods to control the viscosity and turbulence in the flow of liquid suspension can be engineered by way of incorporating the concepts of electric and magnetic field into the rheology of complex fluids. Rheology of liquid Chocolate is a very crucial factor in determining the cost of manufacturing process as well as formulating varieties of end consumer products, for example, containing less fat. We have invented a method to lower the viscosity of liquid chocolate flow with the application of electric field. In the lab, we have found that viscosity of chocolate samples is reduced by 40~50% with our method. Thus, fat content in those samples can be reduced by 10% or more. Therefore, we expect to see much healthier and tastier chocolate product in the market once this technology gets implemented in commercial manufacturing. High viscosity and turbulence in blood flow greatly increase the risk of cardiac diseases. Hence, discovering new method to address turbulence suppression and viscosity reduction is critically important. In our study, we have found that in the in-vitro experiment, if blood is subjected to flow through a channel placed inside a strong magnetic field, its viscosity reduces by 10~20%. Based on these findings, a Megneto-Rheology (MR) therapeutic device has been developed to examine the effect on the blood pressure in human subjects. Preliminary clinical trials show that application of this MR therapy reduces blood pressure by 10% or more. In this thesis, above mentioned inventions for the flow of Blood and liquid Chocolate will be thoroughly discussed. / Physics / Accompanied by two .mpeg4 files.
184

Energy Transfer Theory Between ER3+ Ion and Silicon Nanocrystal in Optical Cavity and Electric Field

Guo, Qingyi 10 1900 (has links)
<p> The need for higher bandwidth and people's desire to be "always connected" have spurred a new era of silicon photonics. The traditional integrated electrical transmission lines have been an obstacle preventing ultra high speed communication. Using monolithic chips of integrated optoelectronic circuits from silicon provides an economic way to realize Tetra Byte/Second bandwidth in a variety of areas such as "fiber to the home" and the buses linking chips inside computer.</p> <p> The heart of such optoelectronics-silicon laser-is still in pursuit. One of the most promising approaches is the erbium doped silicon nanocrystals embedded in silica system. External photon or hot electrons injection excites the silicon nanocrystals, which then transfer their energies to nearby erbium ions to emit light at 1.55 μm wavelength range.</p> <p> In this thesis, we investigate the effects of cavity and electric field on energy transfer from Si nanocrystals (Si-nc's) to Er ions, and simulate material gain in such systems. Our results show that microcavity can enhance the Forster energy transfer and material gain, reducing the requirements for Si-nc pumping. The electric field will hinder the radiation decay of Si-nc, but we have to further explore the tunneling mechanism before concluding the overall effect of electric field. Some future work needs to be done, which will shine some light on the design of the silicon laser.</p> / Thesis / Master of Applied Science (MASc)
185

The Effects of Return Current on Hard X-Ray Photon and Electron Spectra in Solar Flares

Zharkova, Valentina V., Gordovskyy, Mykola 18 May 2009 (has links)
No / The effect of a self-induced electric field is investigated analytically and numerically on differential and mean electron spectra produced by beam electrons during their precipitation into a flaring atmosphere as well as on the emitted hard X-ray (HXR) photon spectra. The induced electric field is found to be a constant in upper atmospheric layers and to fall sharply in the deeper atmosphere from some "turning point" occurring either in the corona (for intense and softer beams) or in the chromosphere (for weaker and harder beams). The stronger and softer the beam, the higher the electric field before the turning point and the steeper its decrease after it. Analytical solutions are presented for the electric fields, which are constant or decreasing with depth, and the characteristic "electric" stopping depths are compared with the "collisional" ones. A constant electric field is found to decelerate precipitating electrons and to significantly reduce their number in the upper atmospheric depth, resulting in their differential spectra flattening at lower energies (<100 keV). While a decreasing electric field slows down the electron deceleration, allowing them to precipitate into deeper atmospheric layers than for a constant electric field, the joint effect of electric and collisional energy losses increases the energy losses by lower energy electrons compared to pure collisions and results in maxima at energies of 40-80 keV in the differential electron spectra. This, in turn, leads to the maxima in the mean source electron spectra and to the "double power law" HXR photon spectra (with flattening at lower energies) similar to those reported from the RHESSI observations. The more intense and soft the beams are, the stronger is the lower energy flattening and the higher is the "break" energy where the flattening occurs.
186

Driving Influences of Ionospheric Electrodynamics at Mid- and High-Latitudes

Maimaiti, Maimaitirebike 15 January 2020 (has links)
The ionosphere carries a substantial portion of the electrical current flowing in Earth's space environment. Currents and electric fields in the ionosphere are generated through (1) the interaction of the solar wind with the magnetosphere, i.e. magnetic reconnection and (2) the collision of neutral molecules with ions leading to charged particle motions across the geomagnetic field, i.e. neutral wind dynamo. In this study we applied statistical and deep learning techniques to various datasets to investigate the driving influences of ionospheric electrodynamics at mid- and high-latitudes. In Chapter 2, we analyzed an interval on 12 September 2014 which provided a rare opportunity to examine dynamic variations in the dayside convection throat measured by the RISR-N radar as the IMF transitioned from strong By+ to strong Bz+. We found that the high-latitude plasma convection can have dual flow responses with different lag times to strong dynamic IMF conditions that involve IMF By rotation. We proposed a dual reconnection scenario, one poleward of the cusp and the other at the magnetopause nose, to explain the observed flow behavior. In Chapters 3 and 4, we investigated the driving influences of nightside subauroral convection. We developed new statistical models of nightside subauroral (52 - 60 degree) convection under quiet (Kp <= 2+) to moderately disturbed (Kp = 3) conditions using data from six mid-latitude SuperDARN radars across the continential United States. Our analysis suggests that the quiet-time subauroral flows are due to the combined effects of solar wind-magnetosphere coupling leading to penetration electric field and neutral wind dynamo with the ionospheric conductivity modulating their relative dominance. In Chapter 5, we examined the external drivers of magnetic substorms using machine learning. We presented the first deep learning based approach to directly predict the onset of a magnetic substorm. The model has been trained and tested on a comprehensive list of onsets compiled between 1997 and 2017 and achieves 72 +/- 2% precision and 77 +/- 4% recall rates. Our analysis revealed that the external factors, such as the solar wind and IMF, alone are not sufficient to forecast all substorms, and preconditioning of the magnetotail may be an important factor. / Doctor of Philosophy / The Earth's ionosphere, ranging from about 60 km to 1000 km in altitude, is an electrically conducting region of the upper atmosphere that exists primarily due to ionization by solar ultraviolet radiation. The Earth's magnetosphere is the region of space surrounding the Earth that is dominated by the Earth's magnetic field. The magnetosphere and ionosphere are tightly coupled to each other through the magnetic field lines which act as highly conductive wires. The sun constantly releases a stream of plasma (i.e., gases of ions and free electrons) known as the solar wind, which carries the solar magnetic field known as the interplanetary magnetic field (IMF). The solar wind interacts with the Earth's magnetosphere and ionosphere through a process called magnetic reconnection, which drives currents and electric fields in the coupled magnetosphere and ionosphere. The ionosphere carries a substantial portion of the electrical currents flowing in the Earth's space environment. The interaction of the ionospheric currents and electric fields with plasma and neutral particles is called ionospheric electrodynamics. In this study we utilized statistical and machine learning techniques to study ionospheric electrodynamics in three distinct regions. First, we studied the influence of duskward IMF on plasma convection in the polar region using measurements from the Resolute Bay Incoherent Scatter Radar – North (RISR-N). Specifically, we analyzed an interval on Sep. 12, 2014 when the RISR-N radar made measurements in the high latitude noon sector while the IMF turned from duskward to strongly northward. We found that the high latitude plasma convection can have flow responses with different lag times during strong IMF conditions that involve IMF By rotation. Such phenomena are rarely observed and are not predicted by the antiparallel or the component reconnection models applied to quasi‐static conditions. We propose a dual reconnection scenario, with reconnection occurring poleward of the cusp and also at the dayside subsolar point on the magnetopause, to explain the rarely observed flow behavior. Next, we used measurements from six mid-latitude Super Dual Auroral Radar Network (SuperDARN) radars distributed across the continental United States to investigate the driving influences of plasma convection in the subauroral region, which is equatorward of the region where aurora is normally observed. Previous studies have suggested that plasma motions in the subaruroral region were mainly due to the neutral winds blowing the ions, i.e. the neutral wind dynamo. However, our analysis suggests that subauroral plasma flows are due to the combined effects of solar wind-magnetosphere coupling and neutral wind dynamo with the ionospheric conductivity modulating their relative importance. Finally, we utilized the latest machine learning techniques to examine the external drivers (i.e., solar wind and IMF) of magnetic substorms, which is a physical phenomenon that occurs in the auroral region and causes explosive brightening of the aurora. We developed the first machine learning model that forecasts the onset of a magnetic substorm over the next one hour. The model has been trained and tested on a comprehensive list of onsets compiled between 1997 and 2017 and correctly identify substorm onset ~75% of the time. In contrast, an earlier prediction algorithm correctly identified only ~21% of the substorm onsets in the same dataset. Our analysis revealed that external factors alone are not sufficient to forecast all substorms, and preconditioning of the nightside magnetosphere may be an important factor.
187

Investigation of Pulse electric field effect on HeLa cells alignment properties on extracellular matrix protein patterned surface

Jamil, M. Mahadi Abdul, Zaltum, M.A.M., Rahman, N.A.A., Ambar, R., Denyer, Morgan C.T., Javed, F., Sefat, Farshid, Mozafari, M., Youseffi, Mansour 2018 June 1927 (has links)
Yes / Cell behavior in terms of adhesion, orientation and guidance, on extracellular matrix (ECM) molecules including collagen, fibronectin and laminin can be examined using micro contact printing (MCP). These cell adhesion proteins can direct cellular adhesion, migration, differentiation and network formation in-vitro. This study investigates the effect of microcontact printed ECM protein, namely fibronectin, on alignment and morphology of HeLa cells cultured in-vitro. Fibronectin was stamped on plain glass cover slips to create patterns of 25μm, 50μm and 100μm width. However, HeLa cells seeded on 50μm induced the best alignment on fibronectin pattern (7.66° ±1.55SD). As a consequence of this, 50μm wide fibronectin pattern was used to see how fibronectin induced cell guidance of HeLa cells was influenced by 100μs and single pulse electric fields (PEF) of 1kV/cm. The results indicates that cells aligned more under pulse electric field exposure (2.33° ±1.52SD) on fibronectin pattern substrate. Thus, PEF usage on biological cells would appear to enhance cell surface attachment and cell guidance. Understanding this further may have applications in enhancing tissue graft generation and potentially wound repair. / Ministry of Higher Education Malaysia and UTHM Tier 1 Research Grant (U865)
188

Reaction Control and Structure/Property Exploration in Mixed-anion Perovskite Thin Films through External Fields / 外場を利用したペロブスカイト型複合アニオン化合物薄膜の反応制御と構造・物性探索

Namba, Morito 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第25303号 / 工博第5262号 / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 陰山 洋, 教授 作花 哲夫, 教授 田中 勝久 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
189

Advancements in Irreversible Electroporation for the Treatment of Cancer

Arena, Christopher Brian 03 May 2013 (has links)
Irreversible electroporation has recently emerged as an effective focal ablation technique. When performed clinically, the procedure involves placing electrodes into, or around, a target tissue and applying a series of short, but intense, pulsed electric fields. Oftentimes, patient specific treatment plans are employed to guide procedures by merging medical imaging with algorithms for determining the electric field distribution in the tissue. The electric field dictates treatment outcomes by increasing a cell's transmembrane potential to levels where it becomes energetically favorable for the membrane to shift to a state of enhanced permeability. If the membrane remains permeabilized long enough to disrupt homeostasis, cells eventually die. By utilizing this phenomenon, irreversible electroporation has had success in killing cancer cells and treating localized tumors. Additionally, if the pulse parameters are chosen to limit Joule heating, irreversible electroporation can be performed safely on surgically inoperable tumors located next to major blood vessels and nerves. As with all technologies, there is room for improvement. One drawback associated with therapeutic irreversible electroporation is that patients must be temporarily paralyzed and maintained under general anesthesia to prevent intense muscle contractions occurring in response to pulsing. The muscle contractions may be painful and can dislodge the electrodes. To overcome this limitation, we have developed a system capable of achieving non-thermal irreversible electroporation without causing muscle contractions. This progress is the main focus of this dissertation. We describe the theoretical basis for how this new system utilizes alterations in pulse polarity and duration to induce electroporation with little associated excitation of muscle and nerves. Additionally, the system is shown to have the theoretical potential to improve lesion predictability, especially in regions containing multiple tissue types. We perform experiments on three-dimensional in vitro tumor constructs and in vivo on healthy rat brain tissue and implanted tumors in mice. The tumor constructs offer a new way to rapidly characterize the cellular response and optimize pulse parameters, and the tests conducted on live tissue confirm the ability of this new ablation system to be used without general anesthesia and a neuromuscular blockade. Situations can arise in which it is challenging to design an electroporation protocol that simultaneously covers the targeted tissue with a sufficient electric field and avoids unwanted thermal effects. For instance, thermal damage can occur unintentionally if the applied voltage or number of pulses are raised to ablate a large volume in a single treatment. Additionally, the new system for inducing ablation without muscle contractions actually requires an elevated electric field. To ensure that these procedures can continue to be performed safely next to major blood vessels and nerves, we have developed new electrode devices that absorb heat out of the tissue during treatment. These devices incorporate phase change materials that, in the past, have been reserved for industrial applications. We describe an experimentally validated numerical model of tissue electroporation with phase change electrodes that illustrates their ability to reduce the probability for thermal damage. Additionally, a parametric study is conducted on various electrode properties to narrow in on the ideal design. / Ph. D.
190

Dynamics of Bubbles and Drops in the Presence of an Electric Field

Shyam Sunder, * January 2015 (has links) (PDF)
The present thesis deals with two-phase electrohydrodynamic simulations of bubble and droplet dynamics under externally applied electric fields. We used the Coupled Level-Set and Volume-of-fluid method (CLSVOF) and two different electrohydrody-namic formulations to study the process of bubble and drop formation from orifices and needles, the interactions of two conducting drops immersed in a dielectric medium, and the oscillations of sessile drops under two different ways of applying external elec-tric field. For the process of bubble formation in dielectric liquids due to the injection of air from submerged orifices and needles, we show that a non-uniform electric field pro-duces smaller bubbles while a uniform electric field changes only the bubble shape. We further explain the reason behind the bubble volume reduction under a non-uniform electric field. We show that the distribution of the electric stresses on the bubble inter-face is such that very high electric stresses act on the bubble base due to a non-uniform electric field. This causes a premature neck formation and bubble detachment lead-ing to the formation of smaller bubbles. We also observe that the non-uniform elec-tric stresses pull the bubble interface contact line inside the needle. With oscillatory electric fields, we show that a further reduction in bubble sizes is possible, but only at certain electric field oscillation frequencies. At other frequencies, bubbles bigger than those under a constant electric field of strength equal to the amplitude of the AC electric field, are produced. We further study the bubble oscillation modes under an oscillatory electric field. We implemented a Volume-of-fluid method based charge advection scheme which is charge conservative and non-diffusive. With the help of this scheme, we were able to simulate the electrohydrodynamic interactions of conducting-dielectric fluid pairs. For two conducting drops inside a dielectric fluid, we observe that they fail to coalesce when the strength of the applied electric field is beyond a critical value. We observe that the non-coalescence between the two drops occur due to the charge transfer upon drop-drop contact. The electric forces which initially bring the two drops closer, switch direction upon charge transfer and pull the drops away from each other. The factors governing the non-coalescence are the electric conductivity of the drop’s liquid which governs the time scale of charge transfer relative to the capillary time scale and the magnitude of the electric forces relative to the capillary and the viscous forces. Similar observations are recorded for the interactions of a charged conducting drop with an interface between a dielectric fluid and a conducting fluid which is the same as the drop’s liquid. For the case of a pendant conducting drop attached to a capillary and without any influx of liquid from the capillary, we observed that the drop undergoes oscillations at lower values of electric potential when subjected to a step change in the applied electric potential. At higher values of electric potential, we observed the phenomenon of cone-jet formation which results due to the accumulation of the electric charges and thus the electric forces at the drop tip. For the formation of a pendant conducting drops from a charged capillary due to liquid injection, we observed that the drops are elongated in presence of an electric field. This happens because the free charge which appears at the drop tip is attracted towards the grounded electrode. This also leads to the formation of elongated liquid threads which connect the drop to the capillary during drop detachment. We plotted the variation of total electric charge inside the drops with respect to time and found the charge increases steeply as the drop becomes elongated and moves towards the grounded electrode. For sessile drop oscillations under an alternating electric field, two different modes of operations are studied. In the so called ‘Contact mode’ case, the droplet is placed on a dielectric coated grounded electrode and the charged needle electrode remains in direct contact with the drop as it oscillates. In the ‘Non-contact mode’ case, the drop is placed directly on the grounded electrode and electric potential is applied to a needle electrode which now remains far from the drop. We show that the drop oscillations in the contact mode are caused by concentration of electric forces near the three phase contact line where the electric charge accumulates because of the repulsion from the needle. For the non-contact mode, we observe that the electric charge is attracted by the needle towards the drop apex resulting in a concentration of the electric forces in that region. So the drop oscillates due to the electric forces acting on a region near the drop tip. We also present the variation of the total electric charge inside the drop with respect to time for the two cases studied.

Page generated in 0.061 seconds