• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 19
  • 7
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 99
  • 39
  • 23
  • 19
  • 18
  • 15
  • 14
  • 14
  • 14
  • 14
  • 14
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Energy Performance of Dynamic Windows in Different Climates / Energiprestanda för dynamiska fönster under olika klimatförhållanden

Reynisson, Hannes January 2015 (has links)
The European Union (EU) has expressed determination of reducing its energy consumption and the EU’s 2010 Energy Performance of Buildings Directive states that all new buildings must be nearly zero energy by the end of the year 2020. Dynamic or “smart” windows have been shown to be able to reduce HVAC energy consumption, lighting energy and peek cooling loads in hot climates in the US but it is difficult to find any work concerned with colder climates. This study is intended to capture the performance of dynamic windows in a variety of European climates to explore potential contributions to reaching the EU’s energy goals. The building energy simulations of this study have been conducted in IDA ICE for an office section with a large window. Three model variants are compared: without a window shading, with an external window blind and with a dynamic window. This comparison is repeated for six different locations; Kiruna, Reykjavik, Stockholm, Copenhagen, Paris and Madrid. The results of this study show that the dynamic window can reduce the total consumed energy for lighting, heating and cooling in the range of 10%-30% more than the external blind, depending on location. The reduction is 50%-75% when compared to the unshaded window. This level of performance can move Europe a step closer to zero energy buildings.
62

Predicting Electrochromic Smart Window Performance

Degerman Engfeldt, Johnny January 2012 (has links)
The building sector is one of the largest consumers of energy, where the cooling of buildings accounts for a large portion of the total energy consumption. Electrochromic (EC) smart windows have a great potential for increasing indoor comfort and saving large amounts of energy for buildings. An EC device can be viewed as a thin-film electrical battery whose charging state is manifested in optical absorption, i.e. the optical absorption increases with increased state-of-charge (SOC) and decreases with decreased state-of-charge. It is the EC technology's unique ability to control the absorption (transmittance) of solar energy and visible light in windows with small energy effort that can reduce buildings' cooling needs. Today, the EC technology is used to produce small windows and car rearview mirrors, and to reach the construction market it is crucial to be able to produce large area EC devices with satisfactory performance. A challenge with up-scaling is to design the EC device system with a rapid and uniform coloration (charging) and bleaching (discharging). In addition, up-scaling the EC technology is a large economic risk due to its expensive production equipment, thus making the choice of EC material and system extremely critical. Although this is a well-known issue, little work has been done to address and solve these problems. This thesis introduces a cost-efficient methodology, validated with experimental data, capable of predicting and optimizing EC device systems' performance in large area applications, such as EC smart windows. This methodology consists of an experimental set-up, experimental procedures and a twodimensional current distribution model. The experimental set-up, based on camera vision, is used in performing experimental procedures to develop and validate the model and methodology. The two-dimensional current distribution model takes secondary current distribution with charge transfer resistance, ohmic and time-dependent effects into account. Model simulations are done by numerically solving the model's differential equations using a finite element method. The methodology is validated with large area experiments. To show the advantage of using a well-functioning current distribution model as a design tool, some EC window size coloration and bleaching predictions are also included. These predictions show that the transparent conductor resistance greatly affects the performance of EC smart windows. / Byggnadssektorn är en av de största energiförbrukarna, där kylningen av byggnader står för en stor del av den totala energikonsumtionen. Elektrokroma (EC) smarta fönster har en stor potential för att öka inomhuskomforten och spara stora mängder energi för byggnader. Ett elektrokromt fönster kan ses som ett tunnfilmsbatteri vars laddningsnivå yttrar sig i dess optiska absorption, d.v.s. den optiska absorptionen ökar med ökad laddningsnivå och vice versa. Det är EC-teknologins unika egenskaper att kunna kontrollera absorptionen (transmittansen) av solenergi och synligt ljus i fönster med liten energiinsats som kan minska byggnaders kylningsbehov. EC-teknologin används idag till att producera små fönster och bilbackspeglar, men för att nå byggnadsmarknaden är det nödvändigt att kunna producera stora EC-anordningar med fullgod prestanda. En välkänd utmaning med uppskalning är att utforma EC-systemet med snabb och jämn infärgning (laddning) och urblekning (urladdning), vilket även innebär att uppskalning är en stor ekonomisk risk på grund av den dyra produktionsutrustningen. Trots att detta är välkända problem har lite arbete gjorts för att lösa dessa. Denna avhandling introducerar ett kostnadseffektivt tillvägagångssätt, validerat med experimentella data, kapabelt till att förutsäga och optimera ECsystems prestanda för anordningar med stor area, såsom elektrokroma smarta fönster. Detta tillvägagångssätt består av en experimentell uppställning, experiment och en tvådimensionell strömfördelningsmodell. Den experimentella uppställningen, baserad på kamerateknik, används i de experimentella tillvägagångssätten så att modellen kan utvecklas och valideras. Den tvådimensionella strömfördelningsmodellen inkluderar sekundär strömfördelning med laddningsöverföringsmotstånd, ohmska och tidsberoende effekter. Modellsimuleringarna görs genom att numeriskt lösa en modells differentialekvationer med hjälp av en finita-element-metod. Tillvägagångssättet är validerat med experiment gjorda på stora EC anordningar. För att visa fördelarna med att använda en väl fungerande strömfördelningsmodell som ett designverktyg, har några prediktioner av infärgning och urblekning av EC-fönster inkluderats. Dessa prediktioner visar att den transparenta strömtilledarresistansen har stor påverkan på EC-fönsters prestanda.
63

Developing Engineered Thin Films for Applications in Organic Electronic and Photonic Devices.

Nemani, Srinivasa Kartik January 2018 (has links)
No description available.
64

The Design and Synthesis of Corannulene-Based Nanomaterial

Hurst, Angela L. 19 April 2010 (has links)
No description available.
65

Applications of Layer-by-Layer Films in Electrochromic Devices and Bending Actuators

Jain, Vaibhav 25 September 2009 (has links)
This thesis presents work done to improve the switching speed and contrast performance of electrochromic devices. Layer-by-Layer (LbL) assembly was used to deposit thin electrochromic films of materials ranging from organic, inorganic, conducting polymers, etc. The focus was on developing new materials with high contrast and long lifecycles. A detailed switching-speed study of solid-state EC devices of already-developed (PEDOT (Poly(3,4-ethylenedioxythiophene)), polyviologen, inorganic) materials and some new materials (Prodot-Sultone) was performed. Work was done to achieve the optimum thickness and number of bilayers in LbL films resulting in high-contrast and fast switching. Device sizes were varied for comparison of the performance of the lab-made prototype device with the commercially available "small pixel" size displays. Symmetrical EC devices were fabricated and tested whenever conducting polymers are used as an EC material. This symmetrical configuration utilizes conducting polymers as an electroactive layer on each of two ITO-coated substrates; potential is applied to the two layers of similar conducting polymers and the device changes color from one redox state to another. This method, along with LbL film assembly, are the main factors in the improvement of switching speed results over already-published work in the literature. PEDOT results show that EC devices fabricated by LbL assembly with a switching speed of less than 30 ms make EC flat-panel displays possible by adjusting film thickness, device size, and type of material. The high contrast value (84%) for RuP suggests that its LbL films can be used for low-power consumption displays where contrast, not fastest switching, is the prime importance. In addition to the electrochromic work, this thesis also includes a section on the application of LbL assembly in fabricating electromechanical bending actuators. For bending actuators based on ionic polymer metal composites (IPMCs), a new class of conductive composite network (CNC) electrode was investigated, based on LbL self-assembled multilayers of conductive gold (Au) nanoparticles. The CNC of an electromechanical actuator fabricated with 100 bilayers of polyallylamine hydrochloride (PAH)/Au NPs exhibits high strain value of 6.8% with an actuation speed of 0.18 seconds for a 26 µm thick IPMC with 0.4 µm thick LbL CNCs under 4 volts. / Ph. D.
66

Enhanced electrochromic performance of nickel oxide-based ceramic precursor films

Sialvi, Muhammad Z. January 2013 (has links)
An electrochromic (EC) material is able to change colour under the influence of an electric potential. The development of energy efficient smart windows for architectural applications is at present the subject of intense research for both economic and environmental reasons. Thus there is now a considerable research effort to develop smart windows with natural colour switching properties, i.e. shades of grey. In this regard, a promising metal oxide with a brown-black anodic colouring state is NiO or hydrated nickel oxide (also called nickel hydroxide , Ni(OH)2). The present work outlines the preparation and optimisation of EC nickel oxide-based ceramic precursor films onto various conducting substrates towards smart window applications. The literature review chapter outlines the different methods used for generating ceramic materials, a review of electrochromism and history of nickel oxide-based EC materials are also provided. Thins films have been deposited by an electrochemical cathodic deposition and by aerosol assisted chemical vapour deposition (AACVD) technique. For hydrated NiO films prepared by electrochemical cathodic deposition, various deposition factors at small-scale area (30 x 7 mm) have been investigated in order to optimise the films properties towards EC applications. With deposition on fluorine-doped tin oxide (SnO2:F, FTO) on glass, use of nickel nitrate (0.01 mol dm-3) solution at an applied current of -0.2 mA (-0.1 mA cm-2) for 800 s was optimal for preparing uniform deposits with a porous interconnecting flake-like structure, which is generally regarded as favourable for the intercalation/deintercalation of hydroxide ions during redox cycling. The as-deposited hydrated NiO films showed excellent transmittance modulation (Δ%T = 83.2 at 432 nm), with average colouration efficiency (CE) of 29.6 cm2 C-1 and low response times. However, after 50 voltammetric cycles, the cycle life was found to fade by 17.2% from charge measurements, and 28.8 % from in-situ transmittance spectra measurements. In an attempt to prepare films with improved durability, AACVD has been used for the first time in the preparation of thin-film EC nickel(II) oxide (NiO). The as-deposited films were confirmed to be cubic NiO from analysis of powder X-ray diffraction data, with an optical band gap that decreased from 3.61 to 3.48 eV with an increase in film thickness (in the range 330 820 nm). The EC properties of the films were investigated as a function of film thickness, following 50, 100 and 500 conditioning oxidative voltammetric cycles in aqueous KOH (0.1 mol dm-3). Light modulation of the films increased with the number of conditioning cycles. EC response times were < 10 s and generally longer for the colouration than the bleaching process. The films showed excellent stability when tested for up to 10000 colour/bleach cycles. Using a calculation method based on the integration of experimental spectral power distributions derived from in-situ visible region spectra over the CIE 1931 colour-matching functions, the colour stimuli of the NiO-based films, and the changes that take place on reversibly switching between the bleached and coloured forms have been calculated. Films prepared by both deposition techniques gave positive a* and b* values to produce orange. However, in combination with low L* values, the films were perceived as brown-grey. Hydrated NiO prepared via electrochemical cathodic deposition suffers from two well-known limitations; firstly, it shows catalytic properties towards the oxygen evolution reaction (OER), which is a process very close to the Ni(II)/Ni(III) redox process. Secondly, hydrated NiO shows poor cycling durability in alkaline solution. The co-deposition of single or bimetallic additives is an effective way to overcome these problems. Electrochemical studies revealed that the combination of cobalt (10%) with lanthanum (5%) was found to be the optimal composition for preparing hydrated NiO films with improved film durability. Finally, the emphasis of this work was on scale-up of deposition. Therefore, optimised deposition conditions from small scale (3.0 x 0.7 cm) have been used to successfully deposit films on two different sized large-area (10 x 7.5 and 30 x 30 cm) conducting substrates.
67

Interactive RFID for Industrial and Healthcare Applications

Shen, Jue January 2015 (has links)
This thesis introduces the circuit and system design of interactive Radio-Frequency Identification (RFID) for Internet of Things (IoT) applications. IoT has the vision of connectivity for anything, at anytime and anywhere. One of the most important characteristics of IoT is the automatic and massive interaction of real physical world (things and human) with the virtual Internet world.RFID tags integrated with sensors have been considered as one suitable technology for realizing the interaction. However, while it is important to have RFID tags with sensors as the input interaction, it is also important to have RFID tags with displays as the output interaction.Display interfaces vary based on the information and application scenarios. On one side, remote and centralized display interface is more suitable for scenarios such as monitoring and localization. On the other side, tag level display interface is more suitable for scenarios such as object identification and online to offline propagation. For tag level display, though a substantial number of researches have focused on introducing sensing functionalities to low power Ultra-High Frequency (UHF) RFID tags, few works address UHF RFID tags with display interfaces. Power consumption and integration with display of rigid substrate are two main challenges.With the recent emerging of Electronic Paper Display (EPD) technologies, it becomes possible to overcome the two challenges. EPD resembles ordinary ink on paper by characteristics of substrate flexibility, pattern printability and material bi-stability. Average power consumption of display is significantly reduced due to bi-stability, the ability to hold color for certain periods without power supplies. Among different EPD types, Electrochromic (EC) display shows advantage of low driving voltage compatible to chip supply voltage.Therefore this thesis designs a low power UHF RFID tag integrated in 180 nm CMOS process with inkjet-printed EC polyimide display. For applications where refresh rate is ultra-low (such as electronic label in retailing and warehouse), the wireless display tag is passive and supplied by the energy harvested from UHF RF wave. For applications where refresh rate is not ultra-low (such as object identification label in mass customized manufacturing), the wireless display tag is semi-passive and supplied by soft battery. It works at low average power consumption and with out-of-battery alert. For remote and centralized display, the limitations of uplink (from tags to reader) capacity and massive-tag information feedback in IoT scenarios is the main challenge. Compared to conventional UHF RFID backscattering whose data rate is limited within hundreds of kb/s, Ultra-wideband (UWB) transmission have been verified with the performance of Mb/s data rate with several tens of pJ/pulse energy consumption.Therefore, a circuit prototype of UHF/UWB RFID tag replacing UHF backscattering with UWB transmitter is implemented. It also consists of Analog-to-Digital Converter (ADC) and Electrocardiogram (ECG) electrodes for healthcare applications of real-time remote monitoring of multiple patients ECG signals. The ECG electrodes are fabricated on paper substrate by inkjet printing to improve patient comfort. Key contribution of the thesis includes: 1) the power management scheme and circuit design of passive UHF/UWB RFID display tag. The tag sensitivity (the input RF power) is -10.5 dBm for EC display driving, comparable to the performance of conventional passive UHF RFID tags without display functions, and -18.5 dBm for UWB transmission, comparable to the state-of-the-art performance of passive UHF RFID tag. 2) communication flow and circuit design of UHF/UWB RFID tag with ECG sensing. The optimum system throughout is 400 tags/second with 1.5 KHz ECG sampling rate and 10 Mb/s UWB pulse rate. / <p>QC 20151012</p>
68

Optical Characterization and Optimization of Display Components : Some Applications to Liquid-Crystal-Based and Electrochromics-Based Devices

Valyukh, Iryna January 2009 (has links)
This dissertation is focused on theoretical and experimental studies of optical properties of materials and multilayer structures composing liquid crystal displays (LCDs) and electrochromic (EC) devices. By applying spectroscopic ellipsometry, we have determined the optical constants of thin films of electrochromic tungsten oxide (WOx) and nickel oxide (NiOy), the films’ thickness and roughness. These films, which were obtained at spattering conditions possess high transmittance that is important for achieving good visibility and high contrast in an EC device. Another application of the general spectroscopic ellipsometry relates to the study of a photo-alignment layer of a mixture of azo-dyes SD-1 and SDA-2. We have found the optical constants of this mixture before and after illuminating it by polarized UV light. The results obtained confirm the diffusion model to explain the formation of the photo-induced order in azo-dye films. We have developed new techniques for fast characterization of twisted nematic LC cells in transmissive and reflective modes. Our techniques are based on the characteristics functions that we have introduced for determination of parameters of non-uniform birefringent media. These characteristic functions are found by simple procedures and can be utilised for simultaneous determination of retardation, its wavelength dispersion, and twist angle, as well as for solving associated optimization problems. Cholesteric LCD that possesses some unique properties, such as bistability and good selective scattering, however, has a disadvantage – relatively high driving voltage (tens of volts). The way we propose to reduce the driving voltage consists of applying a stack of thin (~1µm) LC layers. We have studied the ability of a layer of a surface stabilized ferroelectric liquid crystal coupled with several retardation plates for birefringent color generation. We have demonstrated that in order to accomplish good color characteristics and high brightness of the display, one or two retardation plates are sufficient.
69

Charge Transport Modulation and Optical Absorption Switching in Organic Electronic Devices

Andersson, Peter January 2007 (has links)
Organic electronics has evolved into a well-established research field thanks to major progresses in material sciences during recent decades. More attention was paid to this research field when “the discovery and development of conductive polymers” was awarded the Nobel Prize in Chemistry in 2000. Electronic devices that rely on tailor-made material functionalities, the ability of solution processing and low-cost manufacturing on flexible substrates by traditional printing techniques are among the key features in organic electronics. The common theme while exploring organic electronics, and the focus of this thesis, is that (semi-)conducting polymers serve as active materials to define the principle of operation in devices. This thesis reviews two kinds of organic electronic devices. The first part describes electrochemical devices based on conducting polymers. Active matrix addressed displays that are printed on flexible substrates have been obtained by arranging electrochemical smart pixels, based on the combination of electrochemical transistors and electrochromic display cells, into cross-point matrices. The resulting polymer-based active-matrix displays are operated at low voltages and the same active material is used in the electrochemical transistors as well as in the electrochromic display cells, simply by employing the opto-electronic properties of the material. In addition to this first part, a switchable optical polarizer based on electrochromism in a stretch-aligned conducting polymer is described. The second part reports switchable charge traps in polymer diodes. Here, a device based on a solid-state blend of a conjugated polymer and a photochromic molecule has been demonstrated. The solid state blend, sandwiched between two electrodes, provide a polymer diode that allows reversible current modulation between two different charge transport mechanisms via externally triggered switching of the charge trap density.
70

Indicações sobre a utilização de filme eletrocrômicos Nb2O5 como proteção solar em edifícios / not available

Pinatti, Adriana Amadeu 27 April 1999 (has links)
A importância da compreensão da questão energética nos edifícios, com enfoque nos fenômenos energéticos pelos quais o vidro participa e o delineamento de uma aproximação de desempenho em energia e conforto de vidros recobertos com filme eletrocrômico de Nb2O5, formam a finalidade deste trabalho. Os invisíveis fenômenos energéticos em superfícies envidraçadas promovem descontrole de ambos iluminação e climatização de ambientes, associando janelas a impacto energético, cujas consequências tem causado desenvolvimento de especificações, normatização e legislação. A origem deste desequilíbrio nasce da desatenção dos projetistas (e da maioria dos homens), que deixam de observar o céu. O sol envia a Terra diariamente dez mil vezes mais energia que o consumo mundial. Tamanha intensidade disponível no meio ambiente, deparando-se com superfícies que permitem sua entrada em ambientes internos. Este trabalho integra conceitos básicos de energia,sol, conforto e comportamento térmico e óptico de parte dos materiais vítreos de mercados atual e futuro, com a pretensão de apresentar-se como orientação primária aos profissionais do ramo. Paralelamente obteve-se a curva de transmissão solar de filme eletrocrômico de Nb2O5 obtido via sol-gel sonocatalítico. Este processo foi desenvolvido por grupo de pesquisa desta universidade. Busca-se então associar os resultados obtidos com os conceitos apresentados, indicando efeitos a respeito de sua aplicação na arquitetura como vidro e protetor solar. / The aim of this work proposes an understanding about the energy impact promoted by buildings, focalizing the energetic phenomenon involving glazing bulks and indicating an energetic and comfort behavior of glasses recovered with Nb2O5 film. The energetic transfer through glasses promotes decontrol of environment illumination and temperature, associating windows to energetic impact, whose consequences have caused the development of specifications, standardization and legislation. The source of this energetic instability arises from designers inattention (also majority men), who forget to observe the sky. The Sun sends to Earth daily ten thousand times more energy than world consume. When such energy reaches surfaces that permit its entrance and hinder its exit, indoors illumination and heating are caused. This work groups basic concepts of energy, sun, comfort and thermal-optical behavior of glass materiaIs in nowadays and future markets, pretending offer a primary orientation to professional in this field. Allied to this, were obtained the solar transmission curves of the electrochromic film of Nb2O5, produced by Sol-Gel sonocatalytic process. Such process was developed by research group from this university. The results were associated with the concepts presented, indicating effects about its application as glass and solar protector in architecture.

Page generated in 0.0452 seconds