• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 29
  • 22
  • 18
  • 17
  • 15
  • 12
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Estudos de durabilidade de conjuntos eletrodo-membrana-eletrodo (MEAs) produzidos por impressão à tela para uso em células a combustível do tipo PEM / Durability studies of membrane electrode assemblies (MEAs), produced through th sieve printing technique for use in proton exchange membrane fuel cells

ANDREA, VINICIUS 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:41:22Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:21Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
12

Estudos de durabilidade de conjuntos eletrodo-membrana-eletrodo (MEAs) produzidos por impressão à tela para uso em células a combustível do tipo PEM / Durability studies of membrane electrode assemblies (MEAs), produced through th sieve printing technique for use in proton exchange membrane fuel cells

ANDREA, VINICIUS 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:41:22Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:21Z (GMT). No. of bitstreams: 0 / Custo e durabilidade ainda são os maiores impeditivos para a entrada das células a combustível no mercado de dispositivos usados para produção de eletricidade. Assim, o objetivo deste trabalho foi avaliar a durabilidade dos conjuntos eletrodo-membrana-eletrodo (MEAs) produzidos no IPEN pelo método de impressão à tela para uso em células a combustível do tipo PEM. Para tanto, foi necessário desenvolver um protocolo adequado de teste de durabilidade de longa duração, visando obter estimativas da taxa de queda do potencial elétrico da célula a combustível ao longo do tempo e, assim, fazer inferência a respeito do tempo de vida deste dispositivo. Os MEAs testados durante este estudo foram preparados pelo método de impressão à tela com catalisador de Pt/C comercial e membrana Nafion® 115. O aprimoramento do protocolo de teste de durabilidade de longa duração se deu pela escolha dos procedimentos a serem executados e pelo ajuste de alguns parâmetros de operação da célula a combustível, tais como temperatura da célula, fluxo de H2 e fluxo de O2. Para a análise dos dados obtidos com os testes, foram aplicados métodos estatísticos de ajuste de modelos e curvas de polarização. Além disso, amostras da camada catalítica de um dos MEAs utilizados nos testes de durabilidade de longa duração foram analisadas por meio de microscopia eletrônica de transmissão (MET) para serem comparadas com amostras da camada catalítica de um MEA de controle. Para se avaliar o desempenho global da célula a combustível do tipo PEM em operações de longa duração, um dos grandes desafios foi fazer a separação entre as componentes de perda de desempenho que são reversíveis das irreversíveis. As estimativas obtidas para a taxa de queda do potencial elétrico da célula a combustível ao longo do tempo variaram num intervalo de 108,19 a 318,15 μV.h-1. Estes resultados podem ser considerados satisfatórios quando comparados com valores apresentados na literatura. Finalmente, as imagens obtidas por MET mostraram uma tendência de aumento no tamanho médio das partículas Pt em decorrência do tempo de operação dos MEAs, mas que não implicou numa queda significativa do desempenho das células a combustível do tipo PEM testadas. / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
13

The Effect of Catalyst Layer Cracks on the Mechanical Fatigue of Membrane Electrode Assemblies

Pestrak, Michael Thomas 12 November 2010 (has links)
Mechanical fatigue testing has shown that MEAs (membrane electrode assemblies) fail at lower stresses than PEMs (proton exchange membranes) at comparable times under load. The failure of MEAs at lower stresses is influenced by the presence of mud cracks in the catalyst layers acting as stress concentrators. Fatigue testing of MEAs has shown that smaller-scale cracking occurs in the membrane within these mud cracks, leading to leaking during mechanical fatigue testing and the failure of the membrane. In addition, this testing of MEAs has further established that the cyclic pressurization pattern, which affects the viscoelastic behavior of the membranes, has a significant effect on the relative lifetime of the MEA. To investigate this behavior, pressure-loaded blister tests were performed at 90 °C to determine the biaxial fatigue strength of Gore-Primea® Series 57 MEAs. In these volume-controlled tests, the leak rate was measured as a function of fatigue cycles. Failure was defined as occurring when the leak rate exceeded a specified threshold. Post-mortem characterization FESEM (field emission scanning electron microscopy) was conducted to provide visual documentation of leaking failure sites. To elucidate the viscoelastic behavior of the MEA based on these results, testing was conducted using a DMA to determine the stress relaxation behavior of the membrane. This data was then used in a FEA program (ABAQUS) to determine its effect on the mechanical behavior of the MEAs. A linear damage accumulation model used the ABAQUS results to predict lifetimes of the membrane in the MEAs. The models showed that under volume-controlled loading, the stress decays with time and the stress dropped towards the edges of the blisters. The lifetimes of the MEAs varied depending on the cycling pattern applied. This is important for understanding failure mechanisms of MEAs under fatigue loading, and will help the fuel cell industry in designing membranes that better withstand imposed hygrothermal stresses experienced during typical operating conditions. / Master of Science
14

Desenvolvimento de conjuntos eletrodo-membrana-eletrodo para células a combustível a membrana trocadora de prótons (PEMFC) por impressão à tela / Development of electrode-membrane-electrode assemblies for proton exchange membrane fuel cells (PEMFC) by sieve printing

ANDRADE, ALEXANDRE B. de 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:55:01Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:05:59Z (GMT). No. of bitstreams: 0 / O processo de Impressão à Tela foi desenvolvido neste trabalho para ser aplicável à deposição de camadas catalíticas em eletrólitos utilizados em PEMFC. Inicialmente foram construídos conjuntos eletrodos-membrana (MEAs) de 25 cm2 de área ativa e comparados com outros produzidos pelo método de Aspersão. Os dois métodos produziram MEAs que apresentaram densidades de corrente acima de 600 mA.cm-2 a 600 mV. Foi conduzido um estudo para o aumento de escala do MEA para 144 cm2 de área ativa. Para este fim, foi projetada uma célula para abrigar os MEAs destas dimensões. Neste projeto, o perfil dos canais de distribuição de gás foi desenvolvido através da ferramenta de fluido dinâmica computacional Comsol Multiphysics, sendo que, para o projeto das placas componentes da célula foi utilizado o AutoCAD. Os MEAs de 144 cm2 confeccionados por Aspersão e por Impressão à Tela foram confrontados com MEAs comerciais de iguais dimensões. Estes apresentaram melhor desempenho a 600 mV, entretanto são mais custosos que a solução desenvolvida neste estudo. O novo método apresentou-se adequado para a confecção de MEAs de baixo custo de diferentes geometrias e para a produção de lotes a serem utilizados em pequenos módulos de potência. / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
15

Synthèse, caractérisation et mise en forme d'électrodes nanocomposites platine / carbure de tungstène pour les piles à combustibles à membrane haute température / nanocomposite electrodes for proton exchange membrane fuel cell at high temperature

Bernard D'arbigny, Julien 24 September 2012 (has links)
Ces travaux de thèse s'inscrivent dans le contexte des efforts de recherches menés pour proposer des matériaux susceptibles de lever les verrous technologiques au développement des piles à combustible à membrane. L'un de ces enjeux est l'augmentation de la température de fonctionnement (150 - 250 °C) afin d'améliorer les cinétiques réactionnelles permettant une diminution de la quantité de catalyseur ainsi qu'une simplification de la gestion de l'eau, une réduction du système de refroidissement et une meilleure résistance à l'empoisonnement au monoxyde de carbone du platine. La motivation de cette étude a été de substituer au carbone un matériau support de catalyseur avec une plus grande résistance électrochimique.Notre choix s'est porté sur le carbure de tungstène qui, en plus d'une conductivité électronique élevée, présente une activité catalytique pour l'oxydation de l'hydrogène et la réduction de l'oxygène en milieu acide. La mise au point d'une méthode de synthèse innovante par voie hydrothermale a permis l'élaboration de microsphères de carbure de tungstène (MCT) de surface spécifique élevée (68 m2.g-1 avec 4 % de carbone résiduel) et d'architecture inusuelle. Des nanoparticules de platine de taille contrôlée ont été préparées par méthode polyol afin d'être déposées en surface des MCT. Après caractérisations électrochimiques ex-situ couplées à des analyses de surface (XPS) de ces catalyseurs Pt/WC, la mise en forme d'électrodes par enduction et transfert sur la membrane a permis la réalisation d'assemblages membrane - électrode et leurs caractérisations en pile à combustible. Des membranes polybenzimidazole dopé acide phosphorique (PBI-H3PO4) ont été utilisées pour remplacer les membranes Nafion afin d'augmenter la température de fonctionnement. / The objective of this work was to develop alternative suitable materials to increase operating temperature of a Proton Exchange Membrane Fuel Cell. The increase of the operating temperature (150 - 250 °C) is attractive for cost reduction and reliability in terms of reaction kinetics, catalyst tolerance, heat rejection and water management. Our work was focused on tungsten carbide which has an high electrical conductivity and exhibits a significant catalytic activity for hydrogen oxidation and oxygen reduction in acidic environment. We have reported a novel approach to produce tungsten carbide microspheres (TCM) with an high surface area (68 m2.g-1 including only 4 % of residual carbon) and an unusual architecture. Platinum nanoparticles were prepared by polyol method and were then deposited on TCM. Physical, chemical as well as electrochemical characterisations of WC supported platinum nanoparticles Pt/WC are described and discussed in comparison with a platinum electrocatalyst on a commercial carbon support (Vulcan XC-72R). Membrane Electrode Assembly was then prepared by coating - decal process, and characterised by single cell test and compared to conventional Pt/C assembly. Phosphoric acid doped polybenzimidazole PBI(H3PO4) was used as electrolyte to replace Nafion membrane in order to carry out fuel cell testing at higher temperature.
16

Design and development of a direct methanol fuel cell for telecommunications

Joubert, Hardus 06 1900 (has links)
The demand for higher efficiency and cleaner power sources increases daily. The Direct Methanol Fuel Cells (DMFC) is one of those power sources that produces reliable electrical energy at high efficiencies and very low pollution levels. Remote telecommunication sites need power sources that can deliver reliable power. This dissertation informs the reader about the working principles of the DMFC and the materials it consists of. A good amount of theoretical background is also given on the DMFC, especially on the Membrane Electrode Assembly (MEA). Different membranes as well as their properties are discussed. Results from other researchers on DMFCs are also captured. A DMFC stack including a test rig, was built. The DMFC stack consisted of five single DMFC cells. Each cell contained an MEA, Gas Diffusion Layers (GDLS), highly corrosive resistant metal support grids, bipolar flow field plates and end plates. The DMFC stack was operated and tested in a test rig. The test rig held the air blower which supplied the cathode with the required oxidant (air), and the methanol solution tank plus its liquid pump. The liquid pump circulated the methanol solution through the anode side of the stack. It was observed that the DMFC is very susceptible to corrosion, especially if the methanol solution becomes conductive owing to solubility of C02 in it. Methanol itself is a corrosive substance. However the results obtained from the experiments clearly indicate that the DMFC can be implemented as an electrical power source for telecommunications.
17

Pt Nanophase supported catalysts and electrode systems for water electrolysis.

Petrik, Leslie Felicia. January 2008 (has links)
<p>In this study novel composite electrodes were developed, in which the catalytic components were deposited in nanoparticulate form. The efficiency of the nanophase catalysts and membrane electrodes were tested in an important electrocatalytic process, namely hydrogen production by water electrolysis, for renewable energy systems. The activity of electrocatalytic nanostructured electrodes for hydrogen production by water electrolysis were compared with that of more conventional electrodes. Development of the methodology of preparing nanophase materials in a rapid, efficient and simple manner was investigated for potential application at industrial scale. Comparisons with industry standards were performed and electrodes with incorporated nanophases were characterized and evaluated for activity and durability.</p>
18

Membrane Electrode Assemblies Based on Hydrocarbon Ionomers and New Catalyst Supports for PEM Fuel Cells

von Kraemer, Sophie January 2008 (has links)
The proton exchange membrane fuel cell (PEMFC) is a potential electrochemicalpower device for vehicles, auxiliary power units and small-scale power plants. In themembrane electrode assembly (MEA), which is the core of the PEMFC single cell,oxygen in air and hydrogen electrochemically react on separate sides of a membraneand electrical energy is generated. The main challenges of the technology are associatedwith cost and lifetime. To meet these demands, firstly, the component expensesought to be reduced. Secondly, enabling system operation at elevated temperatures,i.e. up to 120 °C, would decrease the complexity of the system and subsequentlyresult in decreased system cost. These aspects and the demand for sufficientlifetime are the strong motives for development of new materials in the field.In this thesis, MEAs based on alternative materials are investigatedwith focus on hydrocarbon proton-conducting polymers, i.e. ionomers, and newcatalyst supports. The materials are evaluated by electrochemical methods, such ascyclic voltammetry, polarisation and impedance measurements; morphological studiesare also undertaken. The choice of ionomers, used in the porous electrodes andmembrane, is crucial in the development of high-performing stable MEAs for dynamicoperating conditions. The MEAs are optimised in terms of electrode compositionand preparation, as these parameters influence the electrode structure andthus the MEA performance. The successfully developed MEAs, based on the hydrocarbonionomer sulfonated polysulfone (sPSU), show promising fuel cell performancein a wide temperature range. Yet, these membranes induce mass-transportlimitations in the electrodes, resulting in deteriorated MEA performance. Further,the structure of the hydrated membranes is examined by nuclear magnetic resonancecryoporometry, revealing a relation between water domain size distributionand mechanical stability of the sPSU membranes. The sPSU electrodes possessproperties similar to those of the Nafion electrode, resulting in high fuel cell performancewhen combined with a high-performing membrane. Also, new catalystsupports are investigated; composite electrodes, in which deposition of platinum(Pt) onto titanium dioxide reduces the direct contact between Pt and carbon, showpromising performance and ex-situ stability. Use of graphitised carbon as catalystsupport improves the electrode stability as revealed by a fuel cell degradation study.The thesis reveals the importance of a precise MEA developmentstrategy, involving a broad methodology for investigating new materials both as integratedMEAs and as separate components. As the MEA components and processesinteract, a holistic approach is required to enable successful design of newMEAs and ultimately development of high-performing low-cost PEMFC systems. / QC 20100922
19

Preparation And Performance Of Membrane Electrode Assemblies With Nafion And Alternative Polymer Electrolyte Membranes

Sengul, Erce 01 September 2007 (has links) (PDF)
Hydrogen and oxygen or air polymer electrolyte membrane fuel cell is one of the most promising electrical energy conversion devices for a sustainable future due to its high efficiency and zero emission. Membrane electrode assembly (MEA), in which electrochemical reactions occur, is stated to be the heart of the fuel cell. The aim of this study was to develop methods for preparation of MEA with alternative polymer electrolyte membranes and compare their performances with the conventional Nafion&reg / membrane. The alternative membranes were sulphonated polyether-etherketone (SPEEK), composite, blend with sulphonated polyethersulphone (SPES), and polybenzimidazole (PBI). Several powder type MEA preparation techniques were employed by using Nafion&reg / membrane. These were GDL Spraying, Membrane Spraying, and Decal methods. GDL Spraying and Decal were determined as the most efficient and proper MEA preparation methods. These methods were tried to improve further by changing catalyst loading, introducing pore forming agents, and treating membrane and GDL. The highest performance, which was 0.53 W/cm2, for Nafion&reg / membrane was obtained at 70 0C cell temperature. In comparison, it was about 0.68 W/cm2 for a commercial MEA at the same temperature. MEA prepared with SPEEK membrane resulted in lower performance. Moreover, it was found that SPEEK membrane was not suitable for high temperature operation. It was stable up to 80 0C under the cell operating conditions. However, with the blend of 10 wt% SPES to SPEEK, the operating temperature was raised up to 90 0C without any membrane deformation. The highest power outputs were 0.29 W/cm2 (at 70 0C) and 0.27 W/cm2 (at 80 0C) for SPEEK and SPEEK-PES blend membrane based MEAs. The highest temperature, which was 150 0C, was attained with PBI based MEA during fuel cell tests.
20

Development Of 100w Portable Fuel Cell System Working With Sodium Borohydride

Erkan, Serdar 01 September 2011 (has links) (PDF)
Fuel cells are electricity generators which convert chemical energy of hydrogen directly to electricity by means of electrochemical oxidation and reduction reactions. A single proton exchange membrane (PEM) fuel cell can only generate electricity with a potential between 0.5V and 1V. The useful potential can be achieved by stacking cells in series to form a PEM fuel cell stack. There is a potential to utilize 100W class fuel cells. Fuelling is the major problem of the portable fuel cells. The aim of this thesis is to design and manufacture a PEM fuel cell stack which can be used for portable applications. The PEM fuel cell stack is planned to be incorporated to a NaBH4 hydrolysis reactor for H2 supply. Within the scope of this thesis a new coating technique called &ldquo / ultrasonic spray coating technique&rdquo / is developed for membrane electrode assembly (MEA) manufacturing. New metal and graphite bipolar plates are designed and manufactured by CNC technique. A fuel cell controller hardware is developed for fuel supply and system control. The power densities reached with the new method are 0.53, 0.74, 0.77, and 0.88 W/cm2 for 20%, 40%, 50%, 70% Pt/C catalyst by keeping 0.4mg Pt/cm2 platinum loading constant, respectively. The power density increase is 267% compared to &ldquo / spraying of catalyst ink with air pressure atomizing spray gun&rdquo / . All parts of the PEM fuel cell stack designed were produced, assembled, and tested. The current density reached is 12.9A at 12 V stack potential and the corresponding electrical power of the stack is 155W.

Page generated in 0.0785 seconds