291 |
Development of Fused Porphyrins with Unpaired Electrons and/or Chirality / 不対電子や掌性を有する縮環ポルフィリンの創出Kato, Kenichi 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22272号 / 理博第4586号 / 新制||理||1658(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 大須賀 篤弘, 教授 依光 英樹, 教授 時任 宣博 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
292 |
Energy Surface Explorations of Clusters, Transition-Metal Complexes, and Self-Assembled Systems / クラスター, 遷移金属錯体, 自己集合系のエネルギー曲面の探索Yoshida, Yuichiro 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23220号 / 工博第4864号 / 新制||工||1759(附属図書館) / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 佐藤 啓文, 教授 佐藤 徹, 教授 田中 勝久 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
293 |
PAOFLOW-Aided Computational Materials DesignWang, Haihang 12 1900 (has links)
Functional materials are essential to human welfare and to provide foundations for emerging industries. As an alternative route to experimental materials discovery, computational materials designs are playing an increasingly significant role in the whole discovery process. In this work, we use an in-house developed python utility: PAOFLOW, which generates finite basis Hamiltonians from the projection of first principles plane-wave pseudopotential wavefunctions on pseudo atomic orbitals(PAO) for post-process calculation on various properties such as the band structures, density of states, complex dielectric constants, diffusive and anomalous spin and charge transport coefficients. In particular, we calculated the dielectric function of Sr-, Pb-, and Bi-substituted BaSnO3 over wide concentration ranges. Together with some high-throughput experimental study, our result indicates the importance of considering the mixed-valence nature and clustering effects upon substitution of BaSnO3 with Pb and Bi. We also studied two prototype ferroelectric rashba semiconductors, GeTe and SnTe, and found the spin Hall conductivity(SHC) can be large either in ferroelectric or paraelectric structure phase. Upon doping, the polar displacements in GeTe can be sustained up to a critical hole concentration while the tiny distortions in SnTe vanish at a minimal level of doping. Moreover, we investigated the sensitivity of two dimensional group-IV monochalcogenides to external strain and doping, which reveal for the first time giant intrinsic SHC in these materials, providing a new route for the design of highly tunable spintronics devices based on two-dimensional materials.
|
294 |
Ab-initio výpočty stability struktur sloučenin niklu a dusíku / Ab-initio calculation of structures´ stability of Ni-N compoundsŠárfy, Pavlína January 2008 (has links)
The present thesis is devoted to ab initio study of electronic structure of nickel nitrides NiN, Ni2N, Ni3N and Ni4N. The results are used to predict the most stable structures for each composition. The total energies and the electronic structures are calculated by means of the pseudopotential method implemented in the Abinit code and by full-potential linearized augmented plane wave (FLAPW) method incorporated in the Wien2K code. For the exchange-correlation energy, both the local density approximation (LDA) and generalized approximation (GGA) are employed. We predicted the face centered cubic structure B3 as the most stable modification of NiN, the primitive tetragonal structure C4 as the most stable modification of Ni2N, the hexagonal structure as the most stable modification of Ni3N (in agreement with experimental data) and the primitive cubic structure as the most stable modification of Ni4N.
|
295 |
Hyperjemné interakce a elektronová struktura magnetitu / Hyperfine interactions and electronic structure of magnetiteŘezníček, Richard January 2015 (has links)
The present work focuses on analyses of the experimental 57 Fe nuclear magnetic resonance data and the results of ab initio calculations in order to achieve deeper insight into the hyperfine and electronic structure of magnetite both below and above the Verwey phase transition. Parameters of hyperfine interactions and electronic structure data of the Cc phase of magnetite were extracted from the results of ab initio calculations based on the recently reported crystal structure. Published experimental dependences of the 57 Fe nuclear magnetic resonance frequencies on the external magnetic field direction were quantitatively reanalyzed, yielding hyperfine anisotropy data, which were compared to the analogous hyperfine field parameters from the ab initio calculations. The findings were interpreted in the context of up-to-date charge ordering models for magnetite. Attention was also paid to the impact of various cationic substitutions and defects on the electronic structure and hyperfine interactions in magnetite manifested in the 57 Fe nuclear magnetic resonance spectra: below the Verwey transition, signal intensity shifts in the spectra were analyzed; above the Verwey transition, the mean field model was adapted for an analysis of temperature dependence of satellite signal frequencies, while the anomalous...
|
296 |
Electronic structure studies and method development for complex materialsÖstlin, Andreas January 2013 (has links)
Over the years electronic structure theory has proven to be a powerful method with which one can probe the behaviour of materials, making it possible to predict properties that are difficult to measure experimentally. The numerical tools needed for these methods are always in need of development, since the desire to calculate more complex materials pushes this field forward. This thesis contains work on both this implementational and developmental aspects. In the first part we investigate the structural properties of the 6d transition metals using the exact muffin-tin orbitals method. It is found that these elements behave similarly to their lighter counterparts, except for a few deviations. In these cases we argue that it is relativistic effects that cause this anomalous behaviour. In the second part we assess the Padé approximant, which is used in several methods where one wants to include many-body effects into the electronic structure. We point out difficulties that can occur when using this approximant, and propose and evaluate methods for their solution. / <p>QC 20130219</p>
|
297 |
Band Theory and Beyond: Applications of Quantum Algorithms for Quantum ChemistrySherbert, Kyle Matthew 05 1900 (has links)
In the past two decades, myriad algorithms to elucidate the characteristics and dynamics of molecular systems have been developed for quantum computers. In this dissertation, we explore how these algorithms can be adapted to other fields, both to closely related subjects such as materials science, and more surprising subjects such as information theory. Special emphasis is placed on the Variational Quantum Eigensolver algorithm adapted to solve band structures of a periodic system; three distinct implementations are developed, each with its own advantages and disadvantages. We also see how unitary quantum circuits designed to model individual electron excitations within a molecule can be modified to prepare a quantum states strictly orthogonal to a space of known states, an important component to solve problems in thermodynamics and spectroscopy. Finally, we see how the core behavior in several quantum algorithms originally developed for quantum chemistry can be adapted to implement compressive sensing, a protocol in information theory for extrapolating large amounts of information from relatively few measurements. This body of work demonstrates that quantum algorithms developed to study molecules have immense interdisciplinary uses in fields as varied as materials science and information theory.
|
298 |
Structures, Stabilities and Electronic Properties of Endo- and Exohedral Dodecahedral Silsesquioxane (T <sub>12</sub>-POSS) Nanosized Complexes with Atomic and Ionic SpeciesHossain, Delwar, Hagelberg, Frank, Saebo, Svein, Pittman, Charles U. 04 May 2010 (has links)
The structures of endohedral complexes of the polyhedral oligomeric silsesquioxane (POSS) cage molecule (HSiO 3/2) 12, with both D 2d and D 6h starting cage symmetries, containing the atomic or ionic species: Li 0, Li +, Li -, Na 0, Na +, Na -, K 0, K +, K -, F -, Cl -, Br -, He, Ne, Ar were optimized by density functional theory using B3LYP and the 6-311G(d,p) and 6-311 ++G(2d,2p) basis sets. The exohedral Li +, Na +, K +, K -, F -, Cl -, Br -, He, Ne, Ar complexes, were also optimized. The properties of these complexes depend on the nature of the species encapsulated in, or bound to, the (HSiO 3/2) 12 cage. Noble gas (He, Ne and Ar) encapsulation in (HSiO 3/2) 12 has almost no effect on the cage geometry. Alkali metal cation encapsulation, in contrast, exhibits attractive interactions with cage oxygen atoms, leading to cage shrinkage. Halide ion encapsulation expands the cage. The endohedral X@(HSiO 3/2) 12 (X = Li +, Na +, K +, F -, Cl -, Br -, He and Ne) complexes form exothermically from the isolated species. The very low ionization potentials of endohedral Li 0, Na 0, K 0 complexes suggest that they behave like "superalkalis". Several endohedral complexes with small guests appear to be viable synthetic targets. The D 2d symmetry of the empty cage was the minimum energy structure in accord with experiment. An exohedral fluoride penetrates the D 6h cage to form the endohedral complex without a barrier.
|
299 |
Electronic structure studies of metal-organic and intermetallic compoundsTakács, Albert Flavius 23 January 2006 (has links)
Many technological aspects of everyday life are based on practical applications of the magnetic properties of the materials. Miniaturization is a key technological aspect; electronic circuits and storage devices are nowadays steadily decreasing in size and will eventually reach molecular dimensions. The understanding and predictions of the properties of matter at atomic levels represents one of the great achievements of the last years in science. In the present thesis, the aim is to present a complete study of the electronic structure of selected materials, by means of experimental and theoretical methods. The class of materials which are presented in this thesis, are belonging to the magnetic molecules and intermetallic compounds. The electronic structure of the single molecule system named ferric star molecule has been studied. From the resonant X-ray emission study the trend observed for the FeFe3 star gives a signature for the high-spin structure, or more precisely of strong magnetic systems like FeO or Heusler alloys. For the case of intermetallic alloys and compounds, the Mn 2p core-level presents a visible split structure, which is arising from the exchange interactions between the core-hole and the unpaired 3d electrons. The interpretation of this splitting can be regarded as an evidence of local magnetic moments belonging to the Mn site.
|
300 |
Réduction catalytique du dioxygène et des protons par des complexes dinucléaires de Fe(II) / Catalytic reduction of dioxygen and protons by dinuclear Fe (II) complexesWang, Lianke 05 October 2018 (has links)
Cette thèse a présenté la conception et la synthèse de plusieurs complexes de fer bioinspiré portant des groupes thiolate. Leurs propriétés structurelles, électroniques, magnétiques et leur relation ont également été étudiées en utilisant différentes méthodes spectroscopiques en combinaison avec des méthodes computationnelles.Ce manuscrit portait principalement sur leurs propriétés catalytiques ou électrocatalytiques vis-à-vis de la réduction de l'O2. Un complexe non-hème diiron (II) avec un groupe thiol unique a été synthétisé et caractérisé. Le groupe thiol peut être déprotoné par une base pour dériver un complexe de thiolate de fer (II) neutre. Les deux complexes ont montré une forte réactivité vis-à-vis de l'O2 pour donner des complexes diron (III) pontés μ-hydroxo et μ-oxo. Le complexe de fer avec thiol est un catalyseur ORR efficace avec une sélectivité de 100% pour la production de H2O2 en présence d'un agent réducteur à un électron et de protons. Lorsque la catalyse est électrochimiquement entraînée, H2O est le produit principal pendant l'électrocatalyse (~ 14-20% de H2O2). Sur la base du fait que le peroxyde d'hydrogène est généré dans les deux cas (quantitativement ou en 20% en catalyse chimique et électrochimique, respectivement), on peut proposer qu'un intermédiaire commun, le complexe fer-peroxo calculé, soit généré pendant la catalyse . Le mécanisme a été étudié expérimentalement et théoriquement, révélant que le contrôle de la sélectivité provient de l'efficacité du système donneur d'électrons (réduction du potentiel chimique ou appliqué).Un autre complexe asymétrique de diiron (II) avec une unité FeCOCp a également été synthétisé et bien caractérisé dans ses deux formes dans MeCN. Ce complexe de diiron (II) asymétrique est un électrocatalyseur actif pour la production de H2 dans un mécanisme E (ECEC) avec une étape d'activation. Les intermédiaires possibles dans le cycle catalytique ont été générés et caractérisés par différentes spectroscopies. Il convient de noter que le fragment bipyridine dans le ligand agit comme un réservoir d'électrons dans le cycle catalytique.De plus, le premier système d'interconversion thiolate / disulfure à base de fer a été présenté dans ce manuscrit, qui a enrichi la famille de l'interconversion favorisée par le métal entre le thiolate et le disulfure. Intéressant, le système à base de fer a montré non seulement l'interconversion induite par l'hailde, mais aussi les propriétés dépendantes du solvant.Enfin, les complexes mononucléaires de fer (III) -thiolate présentaient un état fondamental de spin intermédiaire intéressant. Les mesures de susceptibilité, les spectres RPE de la poudre cw X et QR et les spectres de Mössbauer en poudre à champ nul ont montré que tous les complexes présentaient une anisotropie magnétique distincte. L'approche théorique a démontré que le principal facteur responsable de l'anisotropie magnétique est le couplage spin-orbite (SOC). / This thesis presented the design and synthesis of several bioinspired iron complexes bearing thiolate groups. Their structural, electronic, magnetic properties and their relationship also have been investigated by using different spectroscopic methods in combination with computational ones.This manuscript mainly focused on their catalytic or electrocatalytic propreties towards the reduction of O2. A non-heme diiron(II) complex with an unique thiol group has been synthesized and characterized. The thiol group can be deprotonated by base to derivate a neutral iron(II) thiolate complex. Both complexes displayed highly reactivity towards O2 to yield μ-hydroxo and μ-oxo bridged diron(III) complexes. Iron complex with thiol is an efficient ORR catalyst with 100% selectivity for H2O2 production in the presence of one-electron reducing agent and protons. When the catalysis is electrochemically-driven, H2O is the main product during electrocatalysis (~14-20% of H2O2). Based on the fact that hydrogen peroxide is generated in both cases (quantitatively or in a 20% amount in chemical and electrochemical catalysis, respectively), it can be proposed that a common intermediate, i.e. the calculated iron-peroxo complex, is generated during catalysis. The mechanism has been experimentally and theoretically investigated revealing that the control of the selectivity arises from the efficiency of the electron donor system (reducing chemical or applied potential).Another asymmetric diiron(II) complex with an FeCOCp unit has also been synthesized and well characterized in its two forms in MeCN. This asymmetric diiron (II) complex is active electrocatalyst for H2 production in an E(ECEC) mechanism with an activation step. The possible intermediates in the catalytic cycle have been generated and characterized by different spectroscopies. It should be noted that the bipyridine moiety in ligand acts as electron reservoir in the catalytic cycle.In addition, the first iron-based thiolate/disulfide interconversion system has been presented in this manuscript, which enriched the family of the metal-promoted interconversion between thiolate and disulfide. Interesingly, the iron-based system not only showed hailde-induced interconversion, but also the solvent-dependent properties.Finally, mononuclear iron(III)-thiolate complexes had interesting intermediate spin ground state. Susceptibility measurements, powder cw X- and Q-band EPR spectra, and zero-field powder Mössbauer spectra showed that all complexes display distinct magnetic anisotropy. Theoretical approach demonstrated that the main factor driving the magnetic anisotropy is the spin-orbit coupling (SOC).
|
Page generated in 0.0959 seconds