• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 298
  • 128
  • 34
  • 31
  • 11
  • 10
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 641
  • 641
  • 151
  • 127
  • 117
  • 113
  • 109
  • 94
  • 90
  • 81
  • 76
  • 73
  • 60
  • 60
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
521

Estudo de reatividade de materiais orgânicos : síntese de melanina e sensores químicos baseados em nanoflakes de carbono. /

Alves, Gabriel Gomes Baltazar January 2020 (has links)
Orientador: Augusto Batagin Neto / Resumo: Compostos baseados em carbono têm se mostrado materiais de grande interesse tecnológico, principalmente devido à sua alta flexibilidade de síntese, baixo custo relativo e propriedades únicas. Graças a isto, tem-se observado um número crescente de trabalhos teóricos e experimentais acerca da compreensão de características básicas destes sistemas e a proposição de novos compostos com propriedades otimizadas para aplicações específicas. No presente trabalho são apresentados estudos teóricos acerca de dois temas relacionados à reatividade e propriedades estruturais de materiais orgânicos e baseados em carbono: i) estudo e análise de reatividade de subunidades de melanina; e ii) estudo estrutural e de reatividade de nanoflocos (ou nanoflakes em inglês) de carbono para aplicações em sensores químicos. Melaninas são pigmentos naturais com propriedades biológicas e eletrônicas que as tornam promissoras para aplicações bio-eletrônicas. Contudo não há ainda entendimento pleno acerca de sua estrutura macromolecular e conexão entre suas unidades básicas. Neste estudo cálculos de estrutura eletrônica, combinados com análise de reatividade, foram realizados para melhor compreender os processos de oligomerização. Os resultados obtidos permitem propor as estruturas diméricas mais prováveis e identificar reações que ocorrem no processo de síntese de melanina. Pode-se também estabelecer uma ordem de dominância de reatividade entre as subunidades e identificar núcleos de polimerização, o que po... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Carbon-based materials have been considered compounds of great technological interest, manly due to their flexibility of synthesis, relative low cost and unique opto-electronic properties. A crescent number of theoretical and experimental studies has been reported regarding the comprehension of basic features of these materials and the proposition of new compounds with optimized properties. This thesis presents studies about the reactivity and structural properties of carbon based and organic materials according to two themes: i) reactivity study and oligomerization analysis of melanin; and ii) reactivity and structural analysis of carbon nanoflakes and their application as chemical sensors. Melanins are natural pigments with biological and electrical properties that turn them promising compounds for bioelectronic applications. However, despite of their promising properties, up to date the macromolecular structure of melanin and the connection between its basic units have not been understood in detail. In this study, electronic structure calculations, combined with reactivity analysis were conducted to better understand the oligomerization process of this compound. The obtained results allow us to propose the most probable dimeric structures and identify relevant reactions that occur during melanin oligomerization process. Furthermore, it was possible to observe a dominance order in the reactivity of the subunits and identify possible nucleation centers of melanin polymerizat... (Complete abstract click electronic access below) / Mestre
522

Formation and Characterization of Reduced Metal Complexes in the Gas Phase / Formation et caractérisation de complexes métalliques réduits en phase gazeuse

Katari, Madanakrishna 24 November 2016 (has links)
La caractérisation complète d’intermédiaires réactionnels intervenants dans des procédés de catalyse homogène est une tâche ardue en raison de leur réactivité et de leur faible concentration. Ceci est particulièrement vrai pour les espèces radicalaires telles que les complexes organométalliques réduits, qui sont des intermédiaires en photocatalyse ou lorsque ces complexes possèdent des ligands non-innocents. Par conséquent, leur structure électronique est encore mal comprise, sachant que l'électron ajouté peut être situé sur différents sites de la molécule.Dans ce contexte, nous avons développé une méthode d'analyse pour étudier en phase gazeuse des complexes organométalliques radicalaires. Des complexes organométalliques multichargés du zinc et du ruthénium avec des ligands bidentes de type bipyridine ou tridente de type bis(imino)pyridine ont d’abord été obtenus et isolés en phase gazeuse. Ils sont ensuite réduits avec les méthodes d’activation par un électron spécifiques à la spectrométrie de masse, la dissociation par capture ou transfert d’électron (ECD/ETD), permettant de former des espèces métalliques radicalaires monochargées. Celles-ci sont enfin isolés et leur spectre infrarouge est obtenu à l’aide de la spectroscopie d’action basée sur la dissociation induite par l’absorption de plusieurs photons dans l’infrarouge (IRMPD). Les méthodes DFT fournissent un complément pour modéliser la structure électronique et le spectre IR de ces espèces.Les challenges à relever pour développer ce nouvel outil d'analyse étaient de deux ordres. Tout d'abord, nous devions être en mesure d'obtenir les complexes souhaités en phase gazeuse. Ceci nous a conduit à examiner de multiples paramètres, tels que la nature des ligands ou l’énergie interne déposée lors de l’étape de réduction. Le deuxième défi portait sur l'utilisation des méthodes de modélisation. Nous avons montré l’absence de fiabilité des méthodes standards de modélisation pour décrire à la fois la structure électronique et le spectre infrarouge des complexes réduits. Les données expérimentales obtenues durant ce travail ont donc été utilisées comme références pour identifier les fonctionnelles DFT les plus appropriées pour l’étude de ces complexes radicalaires. / The complete characterization of reaction intermediates in homogeneous catalytic processes is often a difficult task owing to their reactivity and low concentration. This is particularly true for radical species such as reduced organometallic complexes, which are intermediates in photocatalysis, or when these complexes included non-innocent ligands. Consequently, their electronic structure in the ground state is still poorly understood, knowing that the added electron can be located on different sites of the molecule.In this contect, we developed an analytical method to study radical organometallic complexes in the gas phase. We started with formation of suitable multi-charged zinc organometallic complexes in the gas phase from mixture of zinc metal cation and bipyridine-type bidentate or bis(imino)pyridine tridentate ligands. Multicharged ruthenium complexes with similar ligands have also been studied. Under ideal circumstances these complexes were isolated and reduced in the gas phase to form monocationic metal species. Electron activated methods such as electron capture dissociation (ECD) and electron transferred dissociation (ETD) techniques, available in FT-ICR mass spectrometers, have been used to that end. The resulting Zn and Ru radical cation complexes are then isolated in the gas phase and probed via infrared multi photon dissociation (IRMPD) action spectroscopy. In support, DFT theoretical calculations were performed to model their electronic structure and IR spectra.Two main issues were faced during the development of this new analytical tool. First, we had to be able to obtain the desired complexes in the gas phase. This has lead to monitor various parameters, such as the nature of the ligands or the internal energy provided by the reduction step. The second challenge dealt with the use of modeling methods. We have shown that standard modelling tools lack the accuracy to predict both electronic structure and spectral signatures of reduced complexes. The experimental data gathered in this work have therefore been used as benchmarks for the identification of DFT functionals that are most appropriate for the study of these radical complexes.
523

Many-electron effects in transition metal and rare earth compounds : Electronic structure, magnetic properties and point defects from first principles / Physique à N corps des électrons dans les composés de métaux de transition et de terres rares : Structure électronique, propriétés magnétiques et défauts cristallins ponctuels à partir des premiers principes

Delange, Pascal 29 September 2017 (has links)
Le sujet de cette thèse est la théorie à partir des premiers principes de la structure électronique de matériaux présentant de fortes corrélations électroniques. D’importants progrès ont été faits dans ce domaine grâce aux implémentations modernes de Théorie de la Fonctionelle de Densité (DFT). Néanmoins, la méthode DFT a certaines limitations. D’une part, elle est faite pour décrire les propriétés de l’état fondamental mais pas des états excités des matériaux, bien que ces derniers soient également importants. D’autre part, les approximations de la fonctionnelle employées en pratique réduisent la validité de la DFT, conceptuellement exacte : en particulier elles décrivent mal les matériaux aux effets de corrélations les plus importants.Depuis les années 1990, différentes théoriques quantiques à N corps ont été utilisées pour améliorer ou compléter les simulations à base de DFT. Une des plus importantes est la Théorie du Champ Moyen Dynamique (DMFT), dans laquelle un modèle sur réseau est relié de manière auto-cohérente à un modèle plus simple d’impureté, ce qui donne de bons résultats à condition que les corrélations soient principalement locales. Nous présentons brièvement ces théories dans la première partie de cette thèse. Les progrès récents de la DMFT visent, entre autres, à mieux décrire les effets non-locaux, à comprendre les propriétés hors équilibre et à décrire de vrais matériaux plutôt que des modèles.Afin d’utiliser la DMFT pour décrire de vrais matériaux, il faut partir d’un calcul de structure électronique traitant tous les électrons au même niveau, puis appliquer une correction traitant les effets à N corps sur un sous-espace de basse énergie d’orbitales autour niveau de Fermi. La définition cohérente d’un tel sous-espace nécessite de tenir compte de la dynamique des électrons en-dehors de cet espace. Ces derniers, par exemple, réduisent la répulsion de Coulomb entre électrons dans le sous-espace. Néanmoins, combiner la DFT et la DMFT n’est pas aisé car les deux n’agissent pas sur la même observable. Dans la deuxième partie de cette thèse, nous étudions les modèles de basses énergies, comme la technique échange écranté + DMFT récemment proposée. Nous analysons l’importance de l’échange non-local et des interactions de Coulomb retardées, et illustrons cette théorie en l’appliquant aux états semi-cœur dans les métaux d10 Zn et Cd.Dans la dernière partie, nous utilisons ces méthodes pour étudier trois matériaux corrélés importants d’un point de vue technologique. Dans un premier temps, nous nous intéressons à la physique des mono-lacunes dans la phase paramagnétique du fer. De façon surprenante pour un défaut aussi simple, son énergie de formation n’a toujours pas été obtenue de manière cohérente par la théorie et l’expérience. Nous démontrons que cela est dû à de subtils effets de corrélations autour de la lacune dans la phase paramagnétique à haute température : cette phase est plus fortement corrélée que la phase ferromagnétique, où des calculs de DFT ont été faits.Dans un deuxième temps, nous étudions la transition métal-isolant dans la phase métastable VO2 B. Nous montrons que cette transition ressemble à celle entre la phase conventionnelle rutile et la phase M2 de VO2, mettant en jeu à la fois des liaisons covalentes dans les dimères et une transition de Mott sur les atomes V restants. Nous étudions également l’effet de lacunes d’oxygène sur la structure électronique de VO2.Enfin, nous proposons une technique au-delà de la DFT pour calculer le champ cristallin dans les oxydes et alliages de terres rares. Bien que l’amplitude de ce champ soit faible pour les orbitales localisées 4f des lanthanides, il est crucial pour leur caractère d’aimant permanent. En modifiant l’approximation Hubbard I pour résoudre les équations de DMFT, nous évitons une erreur d’auto-interaction faible en valeur absolue mais physiquement importante, démontrant l’importance de modèles de basse énergie correctement définis. / The topic of this thesis is the first-principles theory of the electronic structure of materials with strong electronic correlations. Tremendous progress has been made in this field thanks to modern implementations of Density Functional Theory (DFT). However, the DFT framework has some limits. First, it is designed to predict ground state but not excited state properties of materials, even though the latter may be just as important for many applications. Second, the approximate functionals used in actual calculations have more limited validity than conceptually exact DFT: in particular, they are not able to describe those materials where many-electron effects are most important.Since the 1990's, different many-body theories have been used to improve or complement DFT calculations of materials. One of the most significant non-perturbative methods is Dynamical Mean-Field Theory (DMFT), where a lattice model is self-consistently mapped onto an impurity model, producing good results if correlations are mostly local. We briefly review these methods in the first part of this thesis. Recent developments on DMFT and its extensions were aimed at better describing non-local effects, understanding out-of-equilibrium properties or describing real materials rather than model systems, among others. Here, we focus on the latter aspect.In order to describe real materials with DMFT, one typically needs to start with an electronic structure calculation that treats all the electrons of the system on the same footing, and apply a many-body correction on a well-chosen subspace of orbitals near the Fermi level. Defining such a low-energy subspace consistently requires to integrate out the motion of the electrons outside this subspace. Taking this into account correctly is crucial: it is, for instance, the screening by electrons outside the subspace strongly reduces the Coulomb interaction between electrons within the subspace. Yet it is a complex task, not least because DFT and DMFT are working on different observables. In the second part of this thesis, we discuss low-energy models in the context of the recently proposed Screened Exchange + DMFT scheme. In particular, we study the importance of non-local exchange and dynamically-screened Coulomb interactions. We illustrate this by discussing semi-core states in the d10 metals Zn and Cd.In the third and last part, we use the methods described above to study the electronic structure of three fundamentally and technologically important correlated materials. First, we discuss the physics of point defects in the paramagnetic phase of bcc Fe, more precisely the simplest of them: the monovacancy. Surprisingly for such a simple point defect, its formation energy had not yet been reported consistently from calculations and experiments. We show that this is due to subtle but nevertheless important correlation effects around the vacancy in the high-temperature paramagnetic phase, which is significantly more strongly correlated than the ferromagnetic phase where DFT calculations had been done.Second, we study the metal-insulator phase transition in the metastable VO2 B phase. We show that this transition is similar to that between the conventional rutile and M2 VO2 phases, involving both bonding physics in the dimer and an atom-selective Mott transition on the remaining V atoms. Motivated by recent calculations on SrVO3, we study the possible effect of oxygen vacancies on the electronic structure of VO2.Finally, we propose a scheme beyond DFT for calculating the crystal field splittings in rare earth intermetallics or oxides. While the magnitude of this splitting for the localized 4f shell of lanthanides does not typically exceed a few hundred Kelvin, it is crucial for their hard-magnetic properties. Using a modified Hubbard I approximation as DMFT solver, we avoid a nominally small but important self-interaction error, stressing again the importance of carefully tailored low-energy models.
524

The Role of Interface in Crystal Growth, Energy Harvesting and Storage Applications

Ramesh, Dinesh 12 1900 (has links)
A flexible nanofibrous PVDF-BaTiO3 composite material is prepared for impact sensing and biomechanical energy harvesting applications. Dielectric polyvinylidene fluoride (PVDF) and barium titanate (BaTiO3)-PVDF nanofibrous composites were made using the electrospinning process based on a design of experiments approach. The ultrasonication process was optimized using a 2k factorial DoE approach to disperse BaTiO3 particles in PVDF solution in DMF. Scanning electron microscopy was used to characterize the microstructure of the fabricated mesh. The FT-IR and Raman analysis were carried out to investigate the crystal structure of the prepared mesh. Surface morphology contribution to the adhesive property of the composite was explained through contact angle measurements. The capacitance of the prepared PVDF- BaTiO3 nanofibrous mesh was a more than 40% increase over the pure PVDF nanofibers. A comparative study of dielectric relaxation, thermodynamics properties and impact analysis of electrospun polyvinylidene fluoride (PVDF) and 3% BaTiO3-PVDF nanofibrous composite are presented. The frequency dependent dielectric properties revealed micro structural features of the composite material. The dielectric relaxation behavior is further supported by complex impedance analysis and Nyquist plots. The temperature dependence of electric modulus shows Arrhenius type behavior. The observed non-Debye dielectric relaxation in electric loss modulus follows a thermally activated process which can be attributed to a small polaron hopping effect. The particle induced crystallization is supported with thermodynamic properties from differential scanning calorimetric (DSC) measurements. The observed increase in piezoelectric response by impact analysis was attributed to the interfacial interaction between PVDF and BaTiO3. The interfacial polarization between PVDF and BaTiO3 was studied using density functional theory calculations and atomic charge density analysis. The results obtained indicates that electrospinning offers a potential way to produce nanofibers with desired crystalline nature which was not observed in molded samples. In addition, BaTiO3 can be used to increase the capacitance, desired surface characteristics of the PVDF nanofibers which can find potential application as flexible piezoelectric sensor mimicking biological skin for use in impact sensing and energy harvesting applications.
525

Kvantově mechanické studium stability fází v kovových systémech / QUANTUM MECHANICAL STUDY OF PHASE STABILITY IN METALLIC SYSTEMS

Káňa, Tomáš January 2009 (has links)
This work presents a theoretical study of stability of phases in selected metallic systems. We propose a model of structural transformations in transition metal disilicides MoSi2, CrSi2, VSi2 and TiSi2 and in Pd thin films grown on cubic substrates W(001) and Nb(001). The obtained results yield the total energy proles for the structural transformations studied, the activation energies needed for each individual transformation and an estimate of the temperature at which the structure can transform. The total energies are calculated by full-potential linearized augmented plane waves (FLAPW) method incorporated in the WIEN2k code. Both generalized gradient approximation (GGA) and local density approximation (LDA) are employed for the exchange-correlation term. It turns out that temperatures corresponding to the activation energies of structural transformations in transition metal disilicides exceed their melting temperatures. Comparing the resulting total energy proles to those obtained by the semiempirical Bond Order interatomic potentials (BOP) substantially helps to adjust the fitting parameters of the BOPs. The estimated temperature of 168 K needed to transform the hcp structure of an innite Pd crystal into the dhcp structure explains the behavior of the Pd thin lm on W(001) and Nb(001) substrates. Pd lms deposited on W(001) substrate and thicker than about 100 monolayers undergo this transformation already at room temperature. Thinner lms need to be annealed at 400 K rst, due to their stronger interaction with the substrate. The difference between the computed result and a real temperature at which the hcp Pd lm transforms its structure to the dhcp can be explained by both the interaction between the lm and the substrate and by the inuence of the domain topology of the lm. Analyzing different models of transformation of the initial hcp Pd structure to the ground state fcc structure, we identied the optimum model that respects the domain topology of the Pd lm.
526

Intrinsic Properties of "Case" and Potential Biomedical Applications

Ren, Zhe 23 May 2019 (has links)
No description available.
527

<strong>DEVELOPMENT OF INSTRUMENTATION AND ALGORITHMS FOR CHEMICAL STRUCTURE AND KINETICS ANALYSIS IN CHEMICAL IMAGING </strong>

Jiayue Rong (16360959) 20 June 2023 (has links)
<p>    </p> <p>Development on instrumentation and algorithms for chemical structure and chemical kinetics are discussed in this thesis. In Chapter 2 and 3, a consensus equilibrium formalism is introduced for the integration of multiple quantum chemical calculations of molecular and electronic structure. In multi-agent consensus equilibrium (MACE), iterative updates in structure optimization are intertwined with the net output, representing an equilibrium balance between multiple computational agents. MACE structure calculations from the integration of multiple low-level electronic structure calculations were compared favorably for small molecules, with results evaluated through comparison with higher level structure (CCSD). Notably, MACE results differed substantially from the average of the independent computational agent outputs, with MACE yielding improved agreement with higher-level CCSD calculations. The primary focus is on the development of the mathematical framework for implementing MACE for molecular and electronic structure determination, these initial preliminary results suggest potential promise for the use of MACE to improve the accuracy of low-level electronic structure calculations through the integration of multiple parallel methods. In Chapter 4 and 5, Fourier- transform fluorescence recovery after photobleaching (FT-FRAP) coupled with periodically comb pattern was demonstrated to monitor the controlled-release mechanisms of microparticles. By monitoring the time-lapse recovery patterns, spatial mobility were decoded in FT domain. Due to the nature of mobility encoded in FT domain, substantial improvements were demonstrated in terms of enhanced signal-to-noise, simplified mathematics, low requirements of sampling, and multiphoton compatibility to probe inside samples. FT-FRAP was able to discriminate and quantify the internal diffusion and exchange to higher mobility in fitting the recovery kinetics within microparticles. Theoretical modeling of exchange and diffusion- controlled release revealed that both RS and RL microparticles exhibited similar exchange decay, with RL having a much higher diffusion decay. The microscopically higher diffusion of RL microparticles is consistent with the dissolution performance of RL microparticles macroscopically. The distinction of controlled release mechanisms provided by FT-FRAP is important to understand and further optimize the design of controlled release systems for GI tract. </p>
528

A Non-Linear Eigensolver-Based Alternative to Traditional Self-Consistent Electronic Structure Calculation Methods

Gavin, Brendan E 01 January 2013 (has links) (PDF)
This thesis presents a means of enhancing the iterative calculation techniques used in electronic structure calculations, particularly Kohn-Sham DFT. Based on the subspace iteration method of the FEAST eigenvalue solving algorithm, this nonlinear FEAST algorithm (NLFEAST) improves the convergence rate of traditional iterative methods and dramatically improves their robustness. A description of the algorithm is given, along with the results of numerical experiments that demonstrate its effectiveness and offer insight into the factors that determine how well it performs.
529

Classical and Quantum Optimization for Scientific Computation

Shree Hari Sureshbabu (16640823) 25 July 2023 (has links)
<p>Optimization and Machine learning (ML) have emerged as two positively disruptive methodologies and have thus resulted in unprecedented applications in several domains of technology. In recent years, ML has forayed into physical sciences and provided promising outcomes thanks to its ability in representing and generalizing complex functions to reveal underlying relations among variables describing a system. By casting ML as an optimization task, we first focus on its application in solving quantum many-body problems. Leveraging the power of quantum computation, we develop hybrid quantum machine learning protocols and implement benchmark tests to calculate the band structures of two-dimensional materials. We also show how this method can be used to estimate the critical point for a quantum phase transition. One  hurdle in such techniques is related to parameter optimization, wherein to obtain the desired result, the parameters have to be optimized, which can be computationally intensive. For a particular class of problem and a choice of algorithm, we deduce a simple parameter setting rule. This rule is projected as a heuristic and is validated numerically for several problem instances. Finally, by venturing into thermal photonics, a framework that takes advantage of the spectral and spatial information of hyperspectral thermal images to establish a completely passive machine perception, titled HADAR is presented. A conventional deep neural network is developed that utilizes the governing equation of HADAR and its performance in semantic segmentation is demonstrated. Altogether, this report establishes the need for creative algorithms that exploit modern hardware to solve complex problems that were previously deemed unsolvable.</p>
530

Accurate and Efficient Quantum Chemistry Calculations for Noncovalent Interactions in Many-Body Systems

Lao, Ka Un 01 September 2016 (has links)
No description available.

Page generated in 0.11 seconds